snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -286,12 +285,7 @@ class PCA(BaseTransformer):
286
285
  )
287
286
  return selected_cols
288
287
 
289
- @telemetry.send_api_usage_telemetry(
290
- project=_PROJECT,
291
- subproject=_SUBPROJECT,
292
- custom_tags=dict([("autogen", True)]),
293
- )
294
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PCA":
288
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PCA":
295
289
  """Fit the model with X
296
290
  For more details on this function, see [sklearn.decomposition.PCA.fit]
297
291
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA.fit)
@@ -318,12 +312,14 @@ class PCA(BaseTransformer):
318
312
 
319
313
  self._snowpark_cols = dataset.select(self.input_cols).columns
320
314
 
321
- # If we are already in a stored procedure, no need to kick off another one.
315
+ # If we are already in a stored procedure, no need to kick off another one.
322
316
  if SNOWML_SPROC_ENV in os.environ:
323
317
  statement_params = telemetry.get_function_usage_statement_params(
324
318
  project=_PROJECT,
325
319
  subproject=_SUBPROJECT,
326
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PCA.__class__.__name__),
320
+ function_name=telemetry.get_statement_params_full_func_name(
321
+ inspect.currentframe(), PCA.__class__.__name__
322
+ ),
327
323
  api_calls=[Session.call],
328
324
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
329
325
  )
@@ -344,7 +340,7 @@ class PCA(BaseTransformer):
344
340
  )
345
341
  self._sklearn_object = model_trainer.train()
346
342
  self._is_fitted = True
347
- self._get_model_signatures(dataset)
343
+ self._generate_model_signatures(dataset)
348
344
  return self
349
345
 
350
346
  def _batch_inference_validate_snowpark(
@@ -418,7 +414,9 @@ class PCA(BaseTransformer):
418
414
  # when it is classifier, infer the datatype from label columns
419
415
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
420
416
  # Batch inference takes a single expected output column type. Use the first columns type for now.
421
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
417
+ label_cols_signatures = [
418
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
419
+ ]
422
420
  if len(label_cols_signatures) == 0:
423
421
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
424
422
  raise exceptions.SnowflakeMLException(
@@ -426,25 +424,22 @@ class PCA(BaseTransformer):
426
424
  original_exception=ValueError(error_str),
427
425
  )
428
426
 
429
- expected_type_inferred = convert_sp_to_sf_type(
430
- label_cols_signatures[0].as_snowpark_type()
431
- )
427
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
432
428
 
433
429
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
434
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
430
+ assert isinstance(
431
+ dataset._session, Session
432
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
435
433
 
436
434
  transform_kwargs = dict(
437
- session = dataset._session,
438
- dependencies = self._deps,
439
- drop_input_cols = self._drop_input_cols,
440
- expected_output_cols_type = expected_type_inferred,
435
+ session=dataset._session,
436
+ dependencies=self._deps,
437
+ drop_input_cols=self._drop_input_cols,
438
+ expected_output_cols_type=expected_type_inferred,
441
439
  )
442
440
 
443
441
  elif isinstance(dataset, pd.DataFrame):
444
- transform_kwargs = dict(
445
- snowpark_input_cols = self._snowpark_cols,
446
- drop_input_cols = self._drop_input_cols
447
- )
442
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
448
443
 
449
444
  transform_handlers = ModelTransformerBuilder.build(
450
445
  dataset=dataset,
@@ -486,7 +481,7 @@ class PCA(BaseTransformer):
486
481
  Transformed dataset.
487
482
  """
488
483
  super()._check_dataset_type(dataset)
489
- inference_method="transform"
484
+ inference_method = "transform"
490
485
 
491
486
  # This dictionary contains optional kwargs for batch inference. These kwargs
492
487
  # are specific to the type of dataset used.
@@ -523,17 +518,14 @@ class PCA(BaseTransformer):
523
518
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
524
519
 
525
520
  transform_kwargs = dict(
526
- session = dataset._session,
527
- dependencies = self._deps,
528
- drop_input_cols = self._drop_input_cols,
529
- expected_output_cols_type = expected_dtype,
521
+ session=dataset._session,
522
+ dependencies=self._deps,
523
+ drop_input_cols=self._drop_input_cols,
524
+ expected_output_cols_type=expected_dtype,
530
525
  )
531
526
 
532
527
  elif isinstance(dataset, pd.DataFrame):
533
- transform_kwargs = dict(
534
- snowpark_input_cols = self._snowpark_cols,
535
- drop_input_cols = self._drop_input_cols
536
- )
528
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
537
529
 
538
530
  transform_handlers = ModelTransformerBuilder.build(
539
531
  dataset=dataset,
@@ -552,7 +544,11 @@ class PCA(BaseTransformer):
552
544
  return output_df
553
545
 
554
546
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
555
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
547
+ def fit_predict(
548
+ self,
549
+ dataset: Union[DataFrame, pd.DataFrame],
550
+ output_cols_prefix: str = "fit_predict_",
551
+ ) -> Union[DataFrame, pd.DataFrame]:
556
552
  """ Method not supported for this class.
557
553
 
558
554
 
@@ -577,7 +573,9 @@ class PCA(BaseTransformer):
577
573
  )
578
574
  output_result, fitted_estimator = model_trainer.train_fit_predict(
579
575
  drop_input_cols=self._drop_input_cols,
580
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
576
+ expected_output_cols_list=(
577
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
578
+ ),
581
579
  )
582
580
  self._sklearn_object = fitted_estimator
583
581
  self._is_fitted = True
@@ -594,6 +592,62 @@ class PCA(BaseTransformer):
594
592
  assert self._sklearn_object is not None
595
593
  return self._sklearn_object.embedding_
596
594
 
595
+
596
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
597
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
598
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
599
+ """
600
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
601
+ # The following condition is introduced for kneighbors methods, and not used in other methods
602
+ if output_cols:
603
+ output_cols = [
604
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
605
+ for c in output_cols
606
+ ]
607
+ elif getattr(self._sklearn_object, "classes_", None) is None:
608
+ output_cols = [output_cols_prefix]
609
+ elif self._sklearn_object is not None:
610
+ classes = self._sklearn_object.classes_
611
+ if isinstance(classes, numpy.ndarray):
612
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
613
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
614
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
615
+ output_cols = []
616
+ for i, cl in enumerate(classes):
617
+ # For binary classification, there is only one output column for each class
618
+ # ndarray as the two classes are complementary.
619
+ if len(cl) == 2:
620
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
621
+ else:
622
+ output_cols.extend([
623
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
624
+ ])
625
+ else:
626
+ output_cols = []
627
+
628
+ # Make sure column names are valid snowflake identifiers.
629
+ assert output_cols is not None # Make MyPy happy
630
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
631
+
632
+ return rv
633
+
634
+ def _align_expected_output_names(
635
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
636
+ ) -> List[str]:
637
+ # in case the inferred output column names dimension is different
638
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
639
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
640
+ output_df_columns = list(output_df_pd.columns)
641
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
642
+ if self.sample_weight_col:
643
+ output_df_columns_set -= set(self.sample_weight_col)
644
+ # if the dimension of inferred output column names is correct; use it
645
+ if len(expected_output_cols_list) == len(output_df_columns_set):
646
+ return expected_output_cols_list
647
+ # otherwise, use the sklearn estimator's output
648
+ else:
649
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
650
+
597
651
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
598
652
  @telemetry.send_api_usage_telemetry(
599
653
  project=_PROJECT,
@@ -624,24 +678,28 @@ class PCA(BaseTransformer):
624
678
  # are specific to the type of dataset used.
625
679
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
626
680
 
681
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
682
+
627
683
  if isinstance(dataset, DataFrame):
628
684
  self._deps = self._batch_inference_validate_snowpark(
629
685
  dataset=dataset,
630
686
  inference_method=inference_method,
631
687
  )
632
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
688
+ assert isinstance(
689
+ dataset._session, Session
690
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
633
691
  transform_kwargs = dict(
634
692
  session=dataset._session,
635
693
  dependencies=self._deps,
636
- drop_input_cols = self._drop_input_cols,
694
+ drop_input_cols=self._drop_input_cols,
637
695
  expected_output_cols_type="float",
638
696
  )
697
+ expected_output_cols = self._align_expected_output_names(
698
+ inference_method, dataset, expected_output_cols, output_cols_prefix
699
+ )
639
700
 
640
701
  elif isinstance(dataset, pd.DataFrame):
641
- transform_kwargs = dict(
642
- snowpark_input_cols = self._snowpark_cols,
643
- drop_input_cols = self._drop_input_cols
644
- )
702
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
645
703
 
646
704
  transform_handlers = ModelTransformerBuilder.build(
647
705
  dataset=dataset,
@@ -653,7 +711,7 @@ class PCA(BaseTransformer):
653
711
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
654
712
  inference_method=inference_method,
655
713
  input_cols=self.input_cols,
656
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
714
+ expected_output_cols=expected_output_cols,
657
715
  **transform_kwargs
658
716
  )
659
717
  return output_df
@@ -683,7 +741,8 @@ class PCA(BaseTransformer):
683
741
  Output dataset with log probability of the sample for each class in the model.
684
742
  """
685
743
  super()._check_dataset_type(dataset)
686
- inference_method="predict_log_proba"
744
+ inference_method = "predict_log_proba"
745
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
687
746
 
688
747
  # This dictionary contains optional kwargs for batch inference. These kwargs
689
748
  # are specific to the type of dataset used.
@@ -694,18 +753,20 @@ class PCA(BaseTransformer):
694
753
  dataset=dataset,
695
754
  inference_method=inference_method,
696
755
  )
697
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
756
+ assert isinstance(
757
+ dataset._session, Session
758
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
759
  transform_kwargs = dict(
699
760
  session=dataset._session,
700
761
  dependencies=self._deps,
701
- drop_input_cols = self._drop_input_cols,
762
+ drop_input_cols=self._drop_input_cols,
702
763
  expected_output_cols_type="float",
703
764
  )
765
+ expected_output_cols = self._align_expected_output_names(
766
+ inference_method, dataset, expected_output_cols, output_cols_prefix
767
+ )
704
768
  elif isinstance(dataset, pd.DataFrame):
705
- transform_kwargs = dict(
706
- snowpark_input_cols = self._snowpark_cols,
707
- drop_input_cols = self._drop_input_cols
708
- )
769
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
709
770
 
710
771
  transform_handlers = ModelTransformerBuilder.build(
711
772
  dataset=dataset,
@@ -718,7 +779,7 @@ class PCA(BaseTransformer):
718
779
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
719
780
  inference_method=inference_method,
720
781
  input_cols=self.input_cols,
721
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
782
+ expected_output_cols=expected_output_cols,
722
783
  **transform_kwargs
723
784
  )
724
785
  return output_df
@@ -744,30 +805,34 @@ class PCA(BaseTransformer):
744
805
  Output dataset with results of the decision function for the samples in input dataset.
745
806
  """
746
807
  super()._check_dataset_type(dataset)
747
- inference_method="decision_function"
808
+ inference_method = "decision_function"
748
809
 
749
810
  # This dictionary contains optional kwargs for batch inference. These kwargs
750
811
  # are specific to the type of dataset used.
751
812
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
752
813
 
814
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
815
+
753
816
  if isinstance(dataset, DataFrame):
754
817
  self._deps = self._batch_inference_validate_snowpark(
755
818
  dataset=dataset,
756
819
  inference_method=inference_method,
757
820
  )
758
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
821
+ assert isinstance(
822
+ dataset._session, Session
823
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
759
824
  transform_kwargs = dict(
760
825
  session=dataset._session,
761
826
  dependencies=self._deps,
762
- drop_input_cols = self._drop_input_cols,
827
+ drop_input_cols=self._drop_input_cols,
763
828
  expected_output_cols_type="float",
764
829
  )
830
+ expected_output_cols = self._align_expected_output_names(
831
+ inference_method, dataset, expected_output_cols, output_cols_prefix
832
+ )
765
833
 
766
834
  elif isinstance(dataset, pd.DataFrame):
767
- transform_kwargs = dict(
768
- snowpark_input_cols = self._snowpark_cols,
769
- drop_input_cols = self._drop_input_cols
770
- )
835
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
771
836
 
772
837
  transform_handlers = ModelTransformerBuilder.build(
773
838
  dataset=dataset,
@@ -780,7 +845,7 @@ class PCA(BaseTransformer):
780
845
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
781
846
  inference_method=inference_method,
782
847
  input_cols=self.input_cols,
783
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
848
+ expected_output_cols=expected_output_cols,
784
849
  **transform_kwargs
785
850
  )
786
851
  return output_df
@@ -811,12 +876,14 @@ class PCA(BaseTransformer):
811
876
  Output dataset with probability of the sample for each class in the model.
812
877
  """
813
878
  super()._check_dataset_type(dataset)
814
- inference_method="score_samples"
879
+ inference_method = "score_samples"
815
880
 
816
881
  # This dictionary contains optional kwargs for batch inference. These kwargs
817
882
  # are specific to the type of dataset used.
818
883
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
819
884
 
885
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
886
+
820
887
  if isinstance(dataset, DataFrame):
821
888
  self._deps = self._batch_inference_validate_snowpark(
822
889
  dataset=dataset,
@@ -829,6 +896,9 @@ class PCA(BaseTransformer):
829
896
  drop_input_cols = self._drop_input_cols,
830
897
  expected_output_cols_type="float",
831
898
  )
899
+ expected_output_cols = self._align_expected_output_names(
900
+ inference_method, dataset, expected_output_cols, output_cols_prefix
901
+ )
832
902
 
833
903
  elif isinstance(dataset, pd.DataFrame):
834
904
  transform_kwargs = dict(
@@ -847,7 +917,7 @@ class PCA(BaseTransformer):
847
917
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
848
918
  inference_method=inference_method,
849
919
  input_cols=self.input_cols,
850
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
920
+ expected_output_cols=expected_output_cols,
851
921
  **transform_kwargs
852
922
  )
853
923
  return output_df
@@ -994,50 +1064,84 @@ class PCA(BaseTransformer):
994
1064
  )
995
1065
  return output_df
996
1066
 
1067
+
1068
+
1069
+ def to_sklearn(self) -> Any:
1070
+ """Get sklearn.decomposition.PCA object.
1071
+ """
1072
+ if self._sklearn_object is None:
1073
+ self._sklearn_object = self._create_sklearn_object()
1074
+ return self._sklearn_object
1075
+
1076
+ def to_xgboost(self) -> Any:
1077
+ raise exceptions.SnowflakeMLException(
1078
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1079
+ original_exception=AttributeError(
1080
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1081
+ "to_xgboost()",
1082
+ "to_sklearn()"
1083
+ )
1084
+ ),
1085
+ )
1086
+
1087
+ def to_lightgbm(self) -> Any:
1088
+ raise exceptions.SnowflakeMLException(
1089
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1090
+ original_exception=AttributeError(
1091
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1092
+ "to_lightgbm()",
1093
+ "to_sklearn()"
1094
+ )
1095
+ ),
1096
+ )
997
1097
 
998
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1098
+ def _get_dependencies(self) -> List[str]:
1099
+ return self._deps
1100
+
1101
+
1102
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
999
1103
  self._model_signature_dict = dict()
1000
1104
 
1001
1105
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1002
1106
 
1003
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1107
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1004
1108
  outputs: List[BaseFeatureSpec] = []
1005
1109
  if hasattr(self, "predict"):
1006
1110
  # keep mypy happy
1007
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1111
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1008
1112
  # For classifier, the type of predict is the same as the type of label
1009
- if self._sklearn_object._estimator_type == 'classifier':
1010
- # label columns is the desired type for output
1113
+ if self._sklearn_object._estimator_type == "classifier":
1114
+ # label columns is the desired type for output
1011
1115
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1012
1116
  # rename the output columns
1013
1117
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1014
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1015
- ([] if self._drop_input_cols else inputs)
1016
- + outputs)
1118
+ self._model_signature_dict["predict"] = ModelSignature(
1119
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1120
+ )
1017
1121
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1018
1122
  # For outlier models, returns -1 for outliers and 1 for inliers.
1019
- # Clusterer returns int64 cluster labels.
1123
+ # Clusterer returns int64 cluster labels.
1020
1124
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1021
1125
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1022
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1023
- ([] if self._drop_input_cols else inputs)
1024
- + outputs)
1025
-
1126
+ self._model_signature_dict["predict"] = ModelSignature(
1127
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1128
+ )
1129
+
1026
1130
  # For regressor, the type of predict is float64
1027
- elif self._sklearn_object._estimator_type == 'regressor':
1131
+ elif self._sklearn_object._estimator_type == "regressor":
1028
1132
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1029
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1030
- ([] if self._drop_input_cols else inputs)
1031
- + outputs)
1032
-
1133
+ self._model_signature_dict["predict"] = ModelSignature(
1134
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1135
+ )
1136
+
1033
1137
  for prob_func in PROB_FUNCTIONS:
1034
1138
  if hasattr(self, prob_func):
1035
1139
  output_cols_prefix: str = f"{prob_func}_"
1036
1140
  output_column_names = self._get_output_column_names(output_cols_prefix)
1037
1141
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1038
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1142
+ self._model_signature_dict[prob_func] = ModelSignature(
1143
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1144
+ )
1041
1145
 
1042
1146
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1043
1147
  items = list(self._model_signature_dict.items())
@@ -1050,10 +1154,10 @@ class PCA(BaseTransformer):
1050
1154
  """Returns model signature of current class.
1051
1155
 
1052
1156
  Raises:
1053
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1157
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1054
1158
 
1055
1159
  Returns:
1056
- Dict[str, ModelSignature]: each method and its input output signature
1160
+ Dict with each method and its input output signature
1057
1161
  """
1058
1162
  if self._model_signature_dict is None:
1059
1163
  raise exceptions.SnowflakeMLException(
@@ -1061,35 +1165,3 @@ class PCA(BaseTransformer):
1061
1165
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1062
1166
  )
1063
1167
  return self._model_signature_dict
1064
-
1065
- def to_sklearn(self) -> Any:
1066
- """Get sklearn.decomposition.PCA object.
1067
- """
1068
- if self._sklearn_object is None:
1069
- self._sklearn_object = self._create_sklearn_object()
1070
- return self._sklearn_object
1071
-
1072
- def to_xgboost(self) -> Any:
1073
- raise exceptions.SnowflakeMLException(
1074
- error_code=error_codes.METHOD_NOT_ALLOWED,
1075
- original_exception=AttributeError(
1076
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1077
- "to_xgboost()",
1078
- "to_sklearn()"
1079
- )
1080
- ),
1081
- )
1082
-
1083
- def to_lightgbm(self) -> Any:
1084
- raise exceptions.SnowflakeMLException(
1085
- error_code=error_codes.METHOD_NOT_ALLOWED,
1086
- original_exception=AttributeError(
1087
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1088
- "to_lightgbm()",
1089
- "to_sklearn()"
1090
- )
1091
- ),
1092
- )
1093
-
1094
- def _get_dependencies(self) -> List[str]:
1095
- return self._deps