snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -233,12 +232,7 @@ class Birch(BaseTransformer):
233
232
  )
234
233
  return selected_cols
235
234
 
236
- @telemetry.send_api_usage_telemetry(
237
- project=_PROJECT,
238
- subproject=_SUBPROJECT,
239
- custom_tags=dict([("autogen", True)]),
240
- )
241
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Birch":
235
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Birch":
242
236
  """Build a CF Tree for the input data
243
237
  For more details on this function, see [sklearn.cluster.Birch.fit]
244
238
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch.fit)
@@ -265,12 +259,14 @@ class Birch(BaseTransformer):
265
259
 
266
260
  self._snowpark_cols = dataset.select(self.input_cols).columns
267
261
 
268
- # If we are already in a stored procedure, no need to kick off another one.
262
+ # If we are already in a stored procedure, no need to kick off another one.
269
263
  if SNOWML_SPROC_ENV in os.environ:
270
264
  statement_params = telemetry.get_function_usage_statement_params(
271
265
  project=_PROJECT,
272
266
  subproject=_SUBPROJECT,
273
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Birch.__class__.__name__),
267
+ function_name=telemetry.get_statement_params_full_func_name(
268
+ inspect.currentframe(), Birch.__class__.__name__
269
+ ),
274
270
  api_calls=[Session.call],
275
271
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
276
272
  )
@@ -291,7 +287,7 @@ class Birch(BaseTransformer):
291
287
  )
292
288
  self._sklearn_object = model_trainer.train()
293
289
  self._is_fitted = True
294
- self._get_model_signatures(dataset)
290
+ self._generate_model_signatures(dataset)
295
291
  return self
296
292
 
297
293
  def _batch_inference_validate_snowpark(
@@ -367,7 +363,9 @@ class Birch(BaseTransformer):
367
363
  # when it is classifier, infer the datatype from label columns
368
364
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
369
365
  # Batch inference takes a single expected output column type. Use the first columns type for now.
370
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
366
+ label_cols_signatures = [
367
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
368
+ ]
371
369
  if len(label_cols_signatures) == 0:
372
370
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
373
371
  raise exceptions.SnowflakeMLException(
@@ -375,25 +373,22 @@ class Birch(BaseTransformer):
375
373
  original_exception=ValueError(error_str),
376
374
  )
377
375
 
378
- expected_type_inferred = convert_sp_to_sf_type(
379
- label_cols_signatures[0].as_snowpark_type()
380
- )
376
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
381
377
 
382
378
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
383
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
379
+ assert isinstance(
380
+ dataset._session, Session
381
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
384
382
 
385
383
  transform_kwargs = dict(
386
- session = dataset._session,
387
- dependencies = self._deps,
388
- drop_input_cols = self._drop_input_cols,
389
- expected_output_cols_type = expected_type_inferred,
384
+ session=dataset._session,
385
+ dependencies=self._deps,
386
+ drop_input_cols=self._drop_input_cols,
387
+ expected_output_cols_type=expected_type_inferred,
390
388
  )
391
389
 
392
390
  elif isinstance(dataset, pd.DataFrame):
393
- transform_kwargs = dict(
394
- snowpark_input_cols = self._snowpark_cols,
395
- drop_input_cols = self._drop_input_cols
396
- )
391
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
397
392
 
398
393
  transform_handlers = ModelTransformerBuilder.build(
399
394
  dataset=dataset,
@@ -435,7 +430,7 @@ class Birch(BaseTransformer):
435
430
  Transformed dataset.
436
431
  """
437
432
  super()._check_dataset_type(dataset)
438
- inference_method="transform"
433
+ inference_method = "transform"
439
434
 
440
435
  # This dictionary contains optional kwargs for batch inference. These kwargs
441
436
  # are specific to the type of dataset used.
@@ -472,17 +467,14 @@ class Birch(BaseTransformer):
472
467
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
473
468
 
474
469
  transform_kwargs = dict(
475
- session = dataset._session,
476
- dependencies = self._deps,
477
- drop_input_cols = self._drop_input_cols,
478
- expected_output_cols_type = expected_dtype,
470
+ session=dataset._session,
471
+ dependencies=self._deps,
472
+ drop_input_cols=self._drop_input_cols,
473
+ expected_output_cols_type=expected_dtype,
479
474
  )
480
475
 
481
476
  elif isinstance(dataset, pd.DataFrame):
482
- transform_kwargs = dict(
483
- snowpark_input_cols = self._snowpark_cols,
484
- drop_input_cols = self._drop_input_cols
485
- )
477
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
486
478
 
487
479
  transform_handlers = ModelTransformerBuilder.build(
488
480
  dataset=dataset,
@@ -501,7 +493,11 @@ class Birch(BaseTransformer):
501
493
  return output_df
502
494
 
503
495
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
504
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
496
+ def fit_predict(
497
+ self,
498
+ dataset: Union[DataFrame, pd.DataFrame],
499
+ output_cols_prefix: str = "fit_predict_",
500
+ ) -> Union[DataFrame, pd.DataFrame]:
505
501
  """ Perform clustering on `X` and returns cluster labels
506
502
  For more details on this function, see [sklearn.cluster.Birch.fit_predict]
507
503
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch.fit_predict)
@@ -528,7 +524,9 @@ class Birch(BaseTransformer):
528
524
  )
529
525
  output_result, fitted_estimator = model_trainer.train_fit_predict(
530
526
  drop_input_cols=self._drop_input_cols,
531
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
527
+ expected_output_cols_list=(
528
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
529
+ ),
532
530
  )
533
531
  self._sklearn_object = fitted_estimator
534
532
  self._is_fitted = True
@@ -545,6 +543,62 @@ class Birch(BaseTransformer):
545
543
  assert self._sklearn_object is not None
546
544
  return self._sklearn_object.embedding_
547
545
 
546
+
547
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
548
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
549
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
550
+ """
551
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
552
+ # The following condition is introduced for kneighbors methods, and not used in other methods
553
+ if output_cols:
554
+ output_cols = [
555
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
556
+ for c in output_cols
557
+ ]
558
+ elif getattr(self._sklearn_object, "classes_", None) is None:
559
+ output_cols = [output_cols_prefix]
560
+ elif self._sklearn_object is not None:
561
+ classes = self._sklearn_object.classes_
562
+ if isinstance(classes, numpy.ndarray):
563
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
564
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
565
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
566
+ output_cols = []
567
+ for i, cl in enumerate(classes):
568
+ # For binary classification, there is only one output column for each class
569
+ # ndarray as the two classes are complementary.
570
+ if len(cl) == 2:
571
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
572
+ else:
573
+ output_cols.extend([
574
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
575
+ ])
576
+ else:
577
+ output_cols = []
578
+
579
+ # Make sure column names are valid snowflake identifiers.
580
+ assert output_cols is not None # Make MyPy happy
581
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
582
+
583
+ return rv
584
+
585
+ def _align_expected_output_names(
586
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
587
+ ) -> List[str]:
588
+ # in case the inferred output column names dimension is different
589
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
590
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
591
+ output_df_columns = list(output_df_pd.columns)
592
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
593
+ if self.sample_weight_col:
594
+ output_df_columns_set -= set(self.sample_weight_col)
595
+ # if the dimension of inferred output column names is correct; use it
596
+ if len(expected_output_cols_list) == len(output_df_columns_set):
597
+ return expected_output_cols_list
598
+ # otherwise, use the sklearn estimator's output
599
+ else:
600
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
601
+
548
602
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
549
603
  @telemetry.send_api_usage_telemetry(
550
604
  project=_PROJECT,
@@ -575,24 +629,28 @@ class Birch(BaseTransformer):
575
629
  # are specific to the type of dataset used.
576
630
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
577
631
 
632
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
633
+
578
634
  if isinstance(dataset, DataFrame):
579
635
  self._deps = self._batch_inference_validate_snowpark(
580
636
  dataset=dataset,
581
637
  inference_method=inference_method,
582
638
  )
583
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
639
+ assert isinstance(
640
+ dataset._session, Session
641
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
584
642
  transform_kwargs = dict(
585
643
  session=dataset._session,
586
644
  dependencies=self._deps,
587
- drop_input_cols = self._drop_input_cols,
645
+ drop_input_cols=self._drop_input_cols,
588
646
  expected_output_cols_type="float",
589
647
  )
648
+ expected_output_cols = self._align_expected_output_names(
649
+ inference_method, dataset, expected_output_cols, output_cols_prefix
650
+ )
590
651
 
591
652
  elif isinstance(dataset, pd.DataFrame):
592
- transform_kwargs = dict(
593
- snowpark_input_cols = self._snowpark_cols,
594
- drop_input_cols = self._drop_input_cols
595
- )
653
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
596
654
 
597
655
  transform_handlers = ModelTransformerBuilder.build(
598
656
  dataset=dataset,
@@ -604,7 +662,7 @@ class Birch(BaseTransformer):
604
662
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
605
663
  inference_method=inference_method,
606
664
  input_cols=self.input_cols,
607
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
665
+ expected_output_cols=expected_output_cols,
608
666
  **transform_kwargs
609
667
  )
610
668
  return output_df
@@ -634,7 +692,8 @@ class Birch(BaseTransformer):
634
692
  Output dataset with log probability of the sample for each class in the model.
635
693
  """
636
694
  super()._check_dataset_type(dataset)
637
- inference_method="predict_log_proba"
695
+ inference_method = "predict_log_proba"
696
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
638
697
 
639
698
  # This dictionary contains optional kwargs for batch inference. These kwargs
640
699
  # are specific to the type of dataset used.
@@ -645,18 +704,20 @@ class Birch(BaseTransformer):
645
704
  dataset=dataset,
646
705
  inference_method=inference_method,
647
706
  )
648
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
707
+ assert isinstance(
708
+ dataset._session, Session
709
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
649
710
  transform_kwargs = dict(
650
711
  session=dataset._session,
651
712
  dependencies=self._deps,
652
- drop_input_cols = self._drop_input_cols,
713
+ drop_input_cols=self._drop_input_cols,
653
714
  expected_output_cols_type="float",
654
715
  )
716
+ expected_output_cols = self._align_expected_output_names(
717
+ inference_method, dataset, expected_output_cols, output_cols_prefix
718
+ )
655
719
  elif isinstance(dataset, pd.DataFrame):
656
- transform_kwargs = dict(
657
- snowpark_input_cols = self._snowpark_cols,
658
- drop_input_cols = self._drop_input_cols
659
- )
720
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
660
721
 
661
722
  transform_handlers = ModelTransformerBuilder.build(
662
723
  dataset=dataset,
@@ -669,7 +730,7 @@ class Birch(BaseTransformer):
669
730
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
670
731
  inference_method=inference_method,
671
732
  input_cols=self.input_cols,
672
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
733
+ expected_output_cols=expected_output_cols,
673
734
  **transform_kwargs
674
735
  )
675
736
  return output_df
@@ -695,30 +756,34 @@ class Birch(BaseTransformer):
695
756
  Output dataset with results of the decision function for the samples in input dataset.
696
757
  """
697
758
  super()._check_dataset_type(dataset)
698
- inference_method="decision_function"
759
+ inference_method = "decision_function"
699
760
 
700
761
  # This dictionary contains optional kwargs for batch inference. These kwargs
701
762
  # are specific to the type of dataset used.
702
763
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
703
764
 
765
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
766
+
704
767
  if isinstance(dataset, DataFrame):
705
768
  self._deps = self._batch_inference_validate_snowpark(
706
769
  dataset=dataset,
707
770
  inference_method=inference_method,
708
771
  )
709
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
772
+ assert isinstance(
773
+ dataset._session, Session
774
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
710
775
  transform_kwargs = dict(
711
776
  session=dataset._session,
712
777
  dependencies=self._deps,
713
- drop_input_cols = self._drop_input_cols,
778
+ drop_input_cols=self._drop_input_cols,
714
779
  expected_output_cols_type="float",
715
780
  )
781
+ expected_output_cols = self._align_expected_output_names(
782
+ inference_method, dataset, expected_output_cols, output_cols_prefix
783
+ )
716
784
 
717
785
  elif isinstance(dataset, pd.DataFrame):
718
- transform_kwargs = dict(
719
- snowpark_input_cols = self._snowpark_cols,
720
- drop_input_cols = self._drop_input_cols
721
- )
786
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
722
787
 
723
788
  transform_handlers = ModelTransformerBuilder.build(
724
789
  dataset=dataset,
@@ -731,7 +796,7 @@ class Birch(BaseTransformer):
731
796
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
732
797
  inference_method=inference_method,
733
798
  input_cols=self.input_cols,
734
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
799
+ expected_output_cols=expected_output_cols,
735
800
  **transform_kwargs
736
801
  )
737
802
  return output_df
@@ -760,12 +825,14 @@ class Birch(BaseTransformer):
760
825
  Output dataset with probability of the sample for each class in the model.
761
826
  """
762
827
  super()._check_dataset_type(dataset)
763
- inference_method="score_samples"
828
+ inference_method = "score_samples"
764
829
 
765
830
  # This dictionary contains optional kwargs for batch inference. These kwargs
766
831
  # are specific to the type of dataset used.
767
832
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
768
833
 
834
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
835
+
769
836
  if isinstance(dataset, DataFrame):
770
837
  self._deps = self._batch_inference_validate_snowpark(
771
838
  dataset=dataset,
@@ -778,6 +845,9 @@ class Birch(BaseTransformer):
778
845
  drop_input_cols = self._drop_input_cols,
779
846
  expected_output_cols_type="float",
780
847
  )
848
+ expected_output_cols = self._align_expected_output_names(
849
+ inference_method, dataset, expected_output_cols, output_cols_prefix
850
+ )
781
851
 
782
852
  elif isinstance(dataset, pd.DataFrame):
783
853
  transform_kwargs = dict(
@@ -796,7 +866,7 @@ class Birch(BaseTransformer):
796
866
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
797
867
  inference_method=inference_method,
798
868
  input_cols=self.input_cols,
799
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
869
+ expected_output_cols=expected_output_cols,
800
870
  **transform_kwargs
801
871
  )
802
872
  return output_df
@@ -941,50 +1011,84 @@ class Birch(BaseTransformer):
941
1011
  )
942
1012
  return output_df
943
1013
 
1014
+
1015
+
1016
+ def to_sklearn(self) -> Any:
1017
+ """Get sklearn.cluster.Birch object.
1018
+ """
1019
+ if self._sklearn_object is None:
1020
+ self._sklearn_object = self._create_sklearn_object()
1021
+ return self._sklearn_object
1022
+
1023
+ def to_xgboost(self) -> Any:
1024
+ raise exceptions.SnowflakeMLException(
1025
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1026
+ original_exception=AttributeError(
1027
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1028
+ "to_xgboost()",
1029
+ "to_sklearn()"
1030
+ )
1031
+ ),
1032
+ )
1033
+
1034
+ def to_lightgbm(self) -> Any:
1035
+ raise exceptions.SnowflakeMLException(
1036
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1037
+ original_exception=AttributeError(
1038
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1039
+ "to_lightgbm()",
1040
+ "to_sklearn()"
1041
+ )
1042
+ ),
1043
+ )
944
1044
 
945
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1045
+ def _get_dependencies(self) -> List[str]:
1046
+ return self._deps
1047
+
1048
+
1049
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
946
1050
  self._model_signature_dict = dict()
947
1051
 
948
1052
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
949
1053
 
950
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1054
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
951
1055
  outputs: List[BaseFeatureSpec] = []
952
1056
  if hasattr(self, "predict"):
953
1057
  # keep mypy happy
954
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1058
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
955
1059
  # For classifier, the type of predict is the same as the type of label
956
- if self._sklearn_object._estimator_type == 'classifier':
957
- # label columns is the desired type for output
1060
+ if self._sklearn_object._estimator_type == "classifier":
1061
+ # label columns is the desired type for output
958
1062
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
959
1063
  # rename the output columns
960
1064
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
961
- self._model_signature_dict["predict"] = ModelSignature(inputs,
962
- ([] if self._drop_input_cols else inputs)
963
- + outputs)
1065
+ self._model_signature_dict["predict"] = ModelSignature(
1066
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1067
+ )
964
1068
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
965
1069
  # For outlier models, returns -1 for outliers and 1 for inliers.
966
- # Clusterer returns int64 cluster labels.
1070
+ # Clusterer returns int64 cluster labels.
967
1071
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
968
1072
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
969
- self._model_signature_dict["predict"] = ModelSignature(inputs,
970
- ([] if self._drop_input_cols else inputs)
971
- + outputs)
972
-
1073
+ self._model_signature_dict["predict"] = ModelSignature(
1074
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1075
+ )
1076
+
973
1077
  # For regressor, the type of predict is float64
974
- elif self._sklearn_object._estimator_type == 'regressor':
1078
+ elif self._sklearn_object._estimator_type == "regressor":
975
1079
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
976
- self._model_signature_dict["predict"] = ModelSignature(inputs,
977
- ([] if self._drop_input_cols else inputs)
978
- + outputs)
979
-
1080
+ self._model_signature_dict["predict"] = ModelSignature(
1081
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1082
+ )
1083
+
980
1084
  for prob_func in PROB_FUNCTIONS:
981
1085
  if hasattr(self, prob_func):
982
1086
  output_cols_prefix: str = f"{prob_func}_"
983
1087
  output_column_names = self._get_output_column_names(output_cols_prefix)
984
1088
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
985
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
986
- ([] if self._drop_input_cols else inputs)
987
- + outputs)
1089
+ self._model_signature_dict[prob_func] = ModelSignature(
1090
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1091
+ )
988
1092
 
989
1093
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
990
1094
  items = list(self._model_signature_dict.items())
@@ -997,10 +1101,10 @@ class Birch(BaseTransformer):
997
1101
  """Returns model signature of current class.
998
1102
 
999
1103
  Raises:
1000
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1104
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1001
1105
 
1002
1106
  Returns:
1003
- Dict[str, ModelSignature]: each method and its input output signature
1107
+ Dict with each method and its input output signature
1004
1108
  """
1005
1109
  if self._model_signature_dict is None:
1006
1110
  raise exceptions.SnowflakeMLException(
@@ -1008,35 +1112,3 @@ class Birch(BaseTransformer):
1008
1112
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1009
1113
  )
1010
1114
  return self._model_signature_dict
1011
-
1012
- def to_sklearn(self) -> Any:
1013
- """Get sklearn.cluster.Birch object.
1014
- """
1015
- if self._sklearn_object is None:
1016
- self._sklearn_object = self._create_sklearn_object()
1017
- return self._sklearn_object
1018
-
1019
- def to_xgboost(self) -> Any:
1020
- raise exceptions.SnowflakeMLException(
1021
- error_code=error_codes.METHOD_NOT_ALLOWED,
1022
- original_exception=AttributeError(
1023
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1024
- "to_xgboost()",
1025
- "to_sklearn()"
1026
- )
1027
- ),
1028
- )
1029
-
1030
- def to_lightgbm(self) -> Any:
1031
- raise exceptions.SnowflakeMLException(
1032
- error_code=error_codes.METHOD_NOT_ALLOWED,
1033
- original_exception=AttributeError(
1034
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1035
- "to_lightgbm()",
1036
- "to_sklearn()"
1037
- )
1038
- ),
1039
- )
1040
-
1041
- def _get_dependencies(self) -> List[str]:
1042
- return self._deps