snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -261,12 +260,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
261
260
|
)
|
262
261
|
return selected_cols
|
263
262
|
|
264
|
-
|
265
|
-
project=_PROJECT,
|
266
|
-
subproject=_SUBPROJECT,
|
267
|
-
custom_tags=dict([("autogen", True)]),
|
268
|
-
)
|
269
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralBiclustering":
|
263
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralBiclustering":
|
270
264
|
"""Create a biclustering for X
|
271
265
|
For more details on this function, see [sklearn.cluster.SpectralBiclustering.fit]
|
272
266
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralBiclustering.html#sklearn.cluster.SpectralBiclustering.fit)
|
@@ -293,12 +287,14 @@ class SpectralBiclustering(BaseTransformer):
|
|
293
287
|
|
294
288
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
295
289
|
|
296
|
-
|
290
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
297
291
|
if SNOWML_SPROC_ENV in os.environ:
|
298
292
|
statement_params = telemetry.get_function_usage_statement_params(
|
299
293
|
project=_PROJECT,
|
300
294
|
subproject=_SUBPROJECT,
|
301
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
295
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
296
|
+
inspect.currentframe(), SpectralBiclustering.__class__.__name__
|
297
|
+
),
|
302
298
|
api_calls=[Session.call],
|
303
299
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
304
300
|
)
|
@@ -319,7 +315,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
319
315
|
)
|
320
316
|
self._sklearn_object = model_trainer.train()
|
321
317
|
self._is_fitted = True
|
322
|
-
self.
|
318
|
+
self._generate_model_signatures(dataset)
|
323
319
|
return self
|
324
320
|
|
325
321
|
def _batch_inference_validate_snowpark(
|
@@ -393,7 +389,9 @@ class SpectralBiclustering(BaseTransformer):
|
|
393
389
|
# when it is classifier, infer the datatype from label columns
|
394
390
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
395
391
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
396
|
-
label_cols_signatures = [
|
392
|
+
label_cols_signatures = [
|
393
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
394
|
+
]
|
397
395
|
if len(label_cols_signatures) == 0:
|
398
396
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
399
397
|
raise exceptions.SnowflakeMLException(
|
@@ -401,25 +399,22 @@ class SpectralBiclustering(BaseTransformer):
|
|
401
399
|
original_exception=ValueError(error_str),
|
402
400
|
)
|
403
401
|
|
404
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
405
|
-
label_cols_signatures[0].as_snowpark_type()
|
406
|
-
)
|
402
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
407
403
|
|
408
404
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
409
|
-
assert isinstance(
|
405
|
+
assert isinstance(
|
406
|
+
dataset._session, Session
|
407
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
410
408
|
|
411
409
|
transform_kwargs = dict(
|
412
|
-
session
|
413
|
-
dependencies
|
414
|
-
drop_input_cols
|
415
|
-
expected_output_cols_type
|
410
|
+
session=dataset._session,
|
411
|
+
dependencies=self._deps,
|
412
|
+
drop_input_cols=self._drop_input_cols,
|
413
|
+
expected_output_cols_type=expected_type_inferred,
|
416
414
|
)
|
417
415
|
|
418
416
|
elif isinstance(dataset, pd.DataFrame):
|
419
|
-
transform_kwargs = dict(
|
420
|
-
snowpark_input_cols = self._snowpark_cols,
|
421
|
-
drop_input_cols = self._drop_input_cols
|
422
|
-
)
|
417
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
423
418
|
|
424
419
|
transform_handlers = ModelTransformerBuilder.build(
|
425
420
|
dataset=dataset,
|
@@ -459,7 +454,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
459
454
|
Transformed dataset.
|
460
455
|
"""
|
461
456
|
super()._check_dataset_type(dataset)
|
462
|
-
inference_method="transform"
|
457
|
+
inference_method = "transform"
|
463
458
|
|
464
459
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
465
460
|
# are specific to the type of dataset used.
|
@@ -496,17 +491,14 @@ class SpectralBiclustering(BaseTransformer):
|
|
496
491
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
497
492
|
|
498
493
|
transform_kwargs = dict(
|
499
|
-
session
|
500
|
-
dependencies
|
501
|
-
drop_input_cols
|
502
|
-
expected_output_cols_type
|
494
|
+
session=dataset._session,
|
495
|
+
dependencies=self._deps,
|
496
|
+
drop_input_cols=self._drop_input_cols,
|
497
|
+
expected_output_cols_type=expected_dtype,
|
503
498
|
)
|
504
499
|
|
505
500
|
elif isinstance(dataset, pd.DataFrame):
|
506
|
-
transform_kwargs = dict(
|
507
|
-
snowpark_input_cols = self._snowpark_cols,
|
508
|
-
drop_input_cols = self._drop_input_cols
|
509
|
-
)
|
501
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
510
502
|
|
511
503
|
transform_handlers = ModelTransformerBuilder.build(
|
512
504
|
dataset=dataset,
|
@@ -525,7 +517,11 @@ class SpectralBiclustering(BaseTransformer):
|
|
525
517
|
return output_df
|
526
518
|
|
527
519
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
528
|
-
def fit_predict(
|
520
|
+
def fit_predict(
|
521
|
+
self,
|
522
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
523
|
+
output_cols_prefix: str = "fit_predict_",
|
524
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
529
525
|
""" Method not supported for this class.
|
530
526
|
|
531
527
|
|
@@ -550,7 +546,9 @@ class SpectralBiclustering(BaseTransformer):
|
|
550
546
|
)
|
551
547
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
552
548
|
drop_input_cols=self._drop_input_cols,
|
553
|
-
expected_output_cols_list=
|
549
|
+
expected_output_cols_list=(
|
550
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
551
|
+
),
|
554
552
|
)
|
555
553
|
self._sklearn_object = fitted_estimator
|
556
554
|
self._is_fitted = True
|
@@ -567,6 +565,62 @@ class SpectralBiclustering(BaseTransformer):
|
|
567
565
|
assert self._sklearn_object is not None
|
568
566
|
return self._sklearn_object.embedding_
|
569
567
|
|
568
|
+
|
569
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
570
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
571
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
572
|
+
"""
|
573
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
574
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
575
|
+
if output_cols:
|
576
|
+
output_cols = [
|
577
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
578
|
+
for c in output_cols
|
579
|
+
]
|
580
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
581
|
+
output_cols = [output_cols_prefix]
|
582
|
+
elif self._sklearn_object is not None:
|
583
|
+
classes = self._sklearn_object.classes_
|
584
|
+
if isinstance(classes, numpy.ndarray):
|
585
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
586
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
587
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
588
|
+
output_cols = []
|
589
|
+
for i, cl in enumerate(classes):
|
590
|
+
# For binary classification, there is only one output column for each class
|
591
|
+
# ndarray as the two classes are complementary.
|
592
|
+
if len(cl) == 2:
|
593
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
594
|
+
else:
|
595
|
+
output_cols.extend([
|
596
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
597
|
+
])
|
598
|
+
else:
|
599
|
+
output_cols = []
|
600
|
+
|
601
|
+
# Make sure column names are valid snowflake identifiers.
|
602
|
+
assert output_cols is not None # Make MyPy happy
|
603
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
604
|
+
|
605
|
+
return rv
|
606
|
+
|
607
|
+
def _align_expected_output_names(
|
608
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
609
|
+
) -> List[str]:
|
610
|
+
# in case the inferred output column names dimension is different
|
611
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
612
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
613
|
+
output_df_columns = list(output_df_pd.columns)
|
614
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
615
|
+
if self.sample_weight_col:
|
616
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
617
|
+
# if the dimension of inferred output column names is correct; use it
|
618
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
619
|
+
return expected_output_cols_list
|
620
|
+
# otherwise, use the sklearn estimator's output
|
621
|
+
else:
|
622
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
623
|
+
|
570
624
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
571
625
|
@telemetry.send_api_usage_telemetry(
|
572
626
|
project=_PROJECT,
|
@@ -597,24 +651,28 @@ class SpectralBiclustering(BaseTransformer):
|
|
597
651
|
# are specific to the type of dataset used.
|
598
652
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
599
653
|
|
654
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
655
|
+
|
600
656
|
if isinstance(dataset, DataFrame):
|
601
657
|
self._deps = self._batch_inference_validate_snowpark(
|
602
658
|
dataset=dataset,
|
603
659
|
inference_method=inference_method,
|
604
660
|
)
|
605
|
-
assert isinstance(
|
661
|
+
assert isinstance(
|
662
|
+
dataset._session, Session
|
663
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
606
664
|
transform_kwargs = dict(
|
607
665
|
session=dataset._session,
|
608
666
|
dependencies=self._deps,
|
609
|
-
drop_input_cols
|
667
|
+
drop_input_cols=self._drop_input_cols,
|
610
668
|
expected_output_cols_type="float",
|
611
669
|
)
|
670
|
+
expected_output_cols = self._align_expected_output_names(
|
671
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
672
|
+
)
|
612
673
|
|
613
674
|
elif isinstance(dataset, pd.DataFrame):
|
614
|
-
transform_kwargs = dict(
|
615
|
-
snowpark_input_cols = self._snowpark_cols,
|
616
|
-
drop_input_cols = self._drop_input_cols
|
617
|
-
)
|
675
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
618
676
|
|
619
677
|
transform_handlers = ModelTransformerBuilder.build(
|
620
678
|
dataset=dataset,
|
@@ -626,7 +684,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
626
684
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
627
685
|
inference_method=inference_method,
|
628
686
|
input_cols=self.input_cols,
|
629
|
-
expected_output_cols=
|
687
|
+
expected_output_cols=expected_output_cols,
|
630
688
|
**transform_kwargs
|
631
689
|
)
|
632
690
|
return output_df
|
@@ -656,7 +714,8 @@ class SpectralBiclustering(BaseTransformer):
|
|
656
714
|
Output dataset with log probability of the sample for each class in the model.
|
657
715
|
"""
|
658
716
|
super()._check_dataset_type(dataset)
|
659
|
-
inference_method="predict_log_proba"
|
717
|
+
inference_method = "predict_log_proba"
|
718
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
660
719
|
|
661
720
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
662
721
|
# are specific to the type of dataset used.
|
@@ -667,18 +726,20 @@ class SpectralBiclustering(BaseTransformer):
|
|
667
726
|
dataset=dataset,
|
668
727
|
inference_method=inference_method,
|
669
728
|
)
|
670
|
-
assert isinstance(
|
729
|
+
assert isinstance(
|
730
|
+
dataset._session, Session
|
731
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
671
732
|
transform_kwargs = dict(
|
672
733
|
session=dataset._session,
|
673
734
|
dependencies=self._deps,
|
674
|
-
drop_input_cols
|
735
|
+
drop_input_cols=self._drop_input_cols,
|
675
736
|
expected_output_cols_type="float",
|
676
737
|
)
|
738
|
+
expected_output_cols = self._align_expected_output_names(
|
739
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
740
|
+
)
|
677
741
|
elif isinstance(dataset, pd.DataFrame):
|
678
|
-
transform_kwargs = dict(
|
679
|
-
snowpark_input_cols = self._snowpark_cols,
|
680
|
-
drop_input_cols = self._drop_input_cols
|
681
|
-
)
|
742
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
682
743
|
|
683
744
|
transform_handlers = ModelTransformerBuilder.build(
|
684
745
|
dataset=dataset,
|
@@ -691,7 +752,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
691
752
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
692
753
|
inference_method=inference_method,
|
693
754
|
input_cols=self.input_cols,
|
694
|
-
expected_output_cols=
|
755
|
+
expected_output_cols=expected_output_cols,
|
695
756
|
**transform_kwargs
|
696
757
|
)
|
697
758
|
return output_df
|
@@ -717,30 +778,34 @@ class SpectralBiclustering(BaseTransformer):
|
|
717
778
|
Output dataset with results of the decision function for the samples in input dataset.
|
718
779
|
"""
|
719
780
|
super()._check_dataset_type(dataset)
|
720
|
-
inference_method="decision_function"
|
781
|
+
inference_method = "decision_function"
|
721
782
|
|
722
783
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
723
784
|
# are specific to the type of dataset used.
|
724
785
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
725
786
|
|
787
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
788
|
+
|
726
789
|
if isinstance(dataset, DataFrame):
|
727
790
|
self._deps = self._batch_inference_validate_snowpark(
|
728
791
|
dataset=dataset,
|
729
792
|
inference_method=inference_method,
|
730
793
|
)
|
731
|
-
assert isinstance(
|
794
|
+
assert isinstance(
|
795
|
+
dataset._session, Session
|
796
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
732
797
|
transform_kwargs = dict(
|
733
798
|
session=dataset._session,
|
734
799
|
dependencies=self._deps,
|
735
|
-
drop_input_cols
|
800
|
+
drop_input_cols=self._drop_input_cols,
|
736
801
|
expected_output_cols_type="float",
|
737
802
|
)
|
803
|
+
expected_output_cols = self._align_expected_output_names(
|
804
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
805
|
+
)
|
738
806
|
|
739
807
|
elif isinstance(dataset, pd.DataFrame):
|
740
|
-
transform_kwargs = dict(
|
741
|
-
snowpark_input_cols = self._snowpark_cols,
|
742
|
-
drop_input_cols = self._drop_input_cols
|
743
|
-
)
|
808
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
744
809
|
|
745
810
|
transform_handlers = ModelTransformerBuilder.build(
|
746
811
|
dataset=dataset,
|
@@ -753,7 +818,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
753
818
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
754
819
|
inference_method=inference_method,
|
755
820
|
input_cols=self.input_cols,
|
756
|
-
expected_output_cols=
|
821
|
+
expected_output_cols=expected_output_cols,
|
757
822
|
**transform_kwargs
|
758
823
|
)
|
759
824
|
return output_df
|
@@ -782,12 +847,14 @@ class SpectralBiclustering(BaseTransformer):
|
|
782
847
|
Output dataset with probability of the sample for each class in the model.
|
783
848
|
"""
|
784
849
|
super()._check_dataset_type(dataset)
|
785
|
-
inference_method="score_samples"
|
850
|
+
inference_method = "score_samples"
|
786
851
|
|
787
852
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
788
853
|
# are specific to the type of dataset used.
|
789
854
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
790
855
|
|
856
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
857
|
+
|
791
858
|
if isinstance(dataset, DataFrame):
|
792
859
|
self._deps = self._batch_inference_validate_snowpark(
|
793
860
|
dataset=dataset,
|
@@ -800,6 +867,9 @@ class SpectralBiclustering(BaseTransformer):
|
|
800
867
|
drop_input_cols = self._drop_input_cols,
|
801
868
|
expected_output_cols_type="float",
|
802
869
|
)
|
870
|
+
expected_output_cols = self._align_expected_output_names(
|
871
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
872
|
+
)
|
803
873
|
|
804
874
|
elif isinstance(dataset, pd.DataFrame):
|
805
875
|
transform_kwargs = dict(
|
@@ -818,7 +888,7 @@ class SpectralBiclustering(BaseTransformer):
|
|
818
888
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
819
889
|
inference_method=inference_method,
|
820
890
|
input_cols=self.input_cols,
|
821
|
-
expected_output_cols=
|
891
|
+
expected_output_cols=expected_output_cols,
|
822
892
|
**transform_kwargs
|
823
893
|
)
|
824
894
|
return output_df
|
@@ -963,50 +1033,84 @@ class SpectralBiclustering(BaseTransformer):
|
|
963
1033
|
)
|
964
1034
|
return output_df
|
965
1035
|
|
1036
|
+
|
1037
|
+
|
1038
|
+
def to_sklearn(self) -> Any:
|
1039
|
+
"""Get sklearn.cluster.SpectralBiclustering object.
|
1040
|
+
"""
|
1041
|
+
if self._sklearn_object is None:
|
1042
|
+
self._sklearn_object = self._create_sklearn_object()
|
1043
|
+
return self._sklearn_object
|
1044
|
+
|
1045
|
+
def to_xgboost(self) -> Any:
|
1046
|
+
raise exceptions.SnowflakeMLException(
|
1047
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1048
|
+
original_exception=AttributeError(
|
1049
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1050
|
+
"to_xgboost()",
|
1051
|
+
"to_sklearn()"
|
1052
|
+
)
|
1053
|
+
),
|
1054
|
+
)
|
1055
|
+
|
1056
|
+
def to_lightgbm(self) -> Any:
|
1057
|
+
raise exceptions.SnowflakeMLException(
|
1058
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1059
|
+
original_exception=AttributeError(
|
1060
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1061
|
+
"to_lightgbm()",
|
1062
|
+
"to_sklearn()"
|
1063
|
+
)
|
1064
|
+
),
|
1065
|
+
)
|
966
1066
|
|
967
|
-
def
|
1067
|
+
def _get_dependencies(self) -> List[str]:
|
1068
|
+
return self._deps
|
1069
|
+
|
1070
|
+
|
1071
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
968
1072
|
self._model_signature_dict = dict()
|
969
1073
|
|
970
1074
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
971
1075
|
|
972
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1076
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
973
1077
|
outputs: List[BaseFeatureSpec] = []
|
974
1078
|
if hasattr(self, "predict"):
|
975
1079
|
# keep mypy happy
|
976
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1080
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
977
1081
|
# For classifier, the type of predict is the same as the type of label
|
978
|
-
if self._sklearn_object._estimator_type ==
|
979
|
-
|
1082
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1083
|
+
# label columns is the desired type for output
|
980
1084
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
981
1085
|
# rename the output columns
|
982
1086
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
983
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
984
|
-
|
985
|
-
|
1087
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1088
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1089
|
+
)
|
986
1090
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
987
1091
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
988
|
-
# Clusterer returns int64 cluster labels.
|
1092
|
+
# Clusterer returns int64 cluster labels.
|
989
1093
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
990
1094
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
991
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
992
|
-
|
993
|
-
|
994
|
-
|
1095
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1096
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1097
|
+
)
|
1098
|
+
|
995
1099
|
# For regressor, the type of predict is float64
|
996
|
-
elif self._sklearn_object._estimator_type ==
|
1100
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
997
1101
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
998
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
999
|
-
|
1000
|
-
|
1001
|
-
|
1102
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1103
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1104
|
+
)
|
1105
|
+
|
1002
1106
|
for prob_func in PROB_FUNCTIONS:
|
1003
1107
|
if hasattr(self, prob_func):
|
1004
1108
|
output_cols_prefix: str = f"{prob_func}_"
|
1005
1109
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1006
1110
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1007
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1008
|
-
|
1009
|
-
|
1111
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1112
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1113
|
+
)
|
1010
1114
|
|
1011
1115
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1012
1116
|
items = list(self._model_signature_dict.items())
|
@@ -1019,10 +1123,10 @@ class SpectralBiclustering(BaseTransformer):
|
|
1019
1123
|
"""Returns model signature of current class.
|
1020
1124
|
|
1021
1125
|
Raises:
|
1022
|
-
|
1126
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1023
1127
|
|
1024
1128
|
Returns:
|
1025
|
-
Dict
|
1129
|
+
Dict with each method and its input output signature
|
1026
1130
|
"""
|
1027
1131
|
if self._model_signature_dict is None:
|
1028
1132
|
raise exceptions.SnowflakeMLException(
|
@@ -1030,35 +1134,3 @@ class SpectralBiclustering(BaseTransformer):
|
|
1030
1134
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1031
1135
|
)
|
1032
1136
|
return self._model_signature_dict
|
1033
|
-
|
1034
|
-
def to_sklearn(self) -> Any:
|
1035
|
-
"""Get sklearn.cluster.SpectralBiclustering object.
|
1036
|
-
"""
|
1037
|
-
if self._sklearn_object is None:
|
1038
|
-
self._sklearn_object = self._create_sklearn_object()
|
1039
|
-
return self._sklearn_object
|
1040
|
-
|
1041
|
-
def to_xgboost(self) -> Any:
|
1042
|
-
raise exceptions.SnowflakeMLException(
|
1043
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1044
|
-
original_exception=AttributeError(
|
1045
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1046
|
-
"to_xgboost()",
|
1047
|
-
"to_sklearn()"
|
1048
|
-
)
|
1049
|
-
),
|
1050
|
-
)
|
1051
|
-
|
1052
|
-
def to_lightgbm(self) -> Any:
|
1053
|
-
raise exceptions.SnowflakeMLException(
|
1054
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1055
|
-
original_exception=AttributeError(
|
1056
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1057
|
-
"to_lightgbm()",
|
1058
|
-
"to_sklearn()"
|
1059
|
-
)
|
1060
|
-
),
|
1061
|
-
)
|
1062
|
-
|
1063
|
-
def _get_dependencies(self) -> List[str]:
|
1064
|
-
return self._deps
|