snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -240,12 +239,7 @@ class TruncatedSVD(BaseTransformer):
|
|
240
239
|
)
|
241
240
|
return selected_cols
|
242
241
|
|
243
|
-
|
244
|
-
project=_PROJECT,
|
245
|
-
subproject=_SUBPROJECT,
|
246
|
-
custom_tags=dict([("autogen", True)]),
|
247
|
-
)
|
248
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TruncatedSVD":
|
242
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TruncatedSVD":
|
249
243
|
"""Fit model on training data X
|
250
244
|
For more details on this function, see [sklearn.decomposition.TruncatedSVD.fit]
|
251
245
|
(https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html#sklearn.decomposition.TruncatedSVD.fit)
|
@@ -272,12 +266,14 @@ class TruncatedSVD(BaseTransformer):
|
|
272
266
|
|
273
267
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
274
268
|
|
275
|
-
|
269
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
276
270
|
if SNOWML_SPROC_ENV in os.environ:
|
277
271
|
statement_params = telemetry.get_function_usage_statement_params(
|
278
272
|
project=_PROJECT,
|
279
273
|
subproject=_SUBPROJECT,
|
280
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
274
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
275
|
+
inspect.currentframe(), TruncatedSVD.__class__.__name__
|
276
|
+
),
|
281
277
|
api_calls=[Session.call],
|
282
278
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
283
279
|
)
|
@@ -298,7 +294,7 @@ class TruncatedSVD(BaseTransformer):
|
|
298
294
|
)
|
299
295
|
self._sklearn_object = model_trainer.train()
|
300
296
|
self._is_fitted = True
|
301
|
-
self.
|
297
|
+
self._generate_model_signatures(dataset)
|
302
298
|
return self
|
303
299
|
|
304
300
|
def _batch_inference_validate_snowpark(
|
@@ -372,7 +368,9 @@ class TruncatedSVD(BaseTransformer):
|
|
372
368
|
# when it is classifier, infer the datatype from label columns
|
373
369
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
374
370
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
375
|
-
label_cols_signatures = [
|
371
|
+
label_cols_signatures = [
|
372
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
373
|
+
]
|
376
374
|
if len(label_cols_signatures) == 0:
|
377
375
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
378
376
|
raise exceptions.SnowflakeMLException(
|
@@ -380,25 +378,22 @@ class TruncatedSVD(BaseTransformer):
|
|
380
378
|
original_exception=ValueError(error_str),
|
381
379
|
)
|
382
380
|
|
383
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
384
|
-
label_cols_signatures[0].as_snowpark_type()
|
385
|
-
)
|
381
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
386
382
|
|
387
383
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
388
|
-
assert isinstance(
|
384
|
+
assert isinstance(
|
385
|
+
dataset._session, Session
|
386
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
389
387
|
|
390
388
|
transform_kwargs = dict(
|
391
|
-
session
|
392
|
-
dependencies
|
393
|
-
drop_input_cols
|
394
|
-
expected_output_cols_type
|
389
|
+
session=dataset._session,
|
390
|
+
dependencies=self._deps,
|
391
|
+
drop_input_cols=self._drop_input_cols,
|
392
|
+
expected_output_cols_type=expected_type_inferred,
|
395
393
|
)
|
396
394
|
|
397
395
|
elif isinstance(dataset, pd.DataFrame):
|
398
|
-
transform_kwargs = dict(
|
399
|
-
snowpark_input_cols = self._snowpark_cols,
|
400
|
-
drop_input_cols = self._drop_input_cols
|
401
|
-
)
|
396
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
402
397
|
|
403
398
|
transform_handlers = ModelTransformerBuilder.build(
|
404
399
|
dataset=dataset,
|
@@ -440,7 +435,7 @@ class TruncatedSVD(BaseTransformer):
|
|
440
435
|
Transformed dataset.
|
441
436
|
"""
|
442
437
|
super()._check_dataset_type(dataset)
|
443
|
-
inference_method="transform"
|
438
|
+
inference_method = "transform"
|
444
439
|
|
445
440
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
446
441
|
# are specific to the type of dataset used.
|
@@ -477,17 +472,14 @@ class TruncatedSVD(BaseTransformer):
|
|
477
472
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
478
473
|
|
479
474
|
transform_kwargs = dict(
|
480
|
-
session
|
481
|
-
dependencies
|
482
|
-
drop_input_cols
|
483
|
-
expected_output_cols_type
|
475
|
+
session=dataset._session,
|
476
|
+
dependencies=self._deps,
|
477
|
+
drop_input_cols=self._drop_input_cols,
|
478
|
+
expected_output_cols_type=expected_dtype,
|
484
479
|
)
|
485
480
|
|
486
481
|
elif isinstance(dataset, pd.DataFrame):
|
487
|
-
transform_kwargs = dict(
|
488
|
-
snowpark_input_cols = self._snowpark_cols,
|
489
|
-
drop_input_cols = self._drop_input_cols
|
490
|
-
)
|
482
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
491
483
|
|
492
484
|
transform_handlers = ModelTransformerBuilder.build(
|
493
485
|
dataset=dataset,
|
@@ -506,7 +498,11 @@ class TruncatedSVD(BaseTransformer):
|
|
506
498
|
return output_df
|
507
499
|
|
508
500
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
509
|
-
def fit_predict(
|
501
|
+
def fit_predict(
|
502
|
+
self,
|
503
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
504
|
+
output_cols_prefix: str = "fit_predict_",
|
505
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
510
506
|
""" Method not supported for this class.
|
511
507
|
|
512
508
|
|
@@ -531,7 +527,9 @@ class TruncatedSVD(BaseTransformer):
|
|
531
527
|
)
|
532
528
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
533
529
|
drop_input_cols=self._drop_input_cols,
|
534
|
-
expected_output_cols_list=
|
530
|
+
expected_output_cols_list=(
|
531
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
532
|
+
),
|
535
533
|
)
|
536
534
|
self._sklearn_object = fitted_estimator
|
537
535
|
self._is_fitted = True
|
@@ -548,6 +546,62 @@ class TruncatedSVD(BaseTransformer):
|
|
548
546
|
assert self._sklearn_object is not None
|
549
547
|
return self._sklearn_object.embedding_
|
550
548
|
|
549
|
+
|
550
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
551
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
552
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
553
|
+
"""
|
554
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
555
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
556
|
+
if output_cols:
|
557
|
+
output_cols = [
|
558
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
559
|
+
for c in output_cols
|
560
|
+
]
|
561
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
562
|
+
output_cols = [output_cols_prefix]
|
563
|
+
elif self._sklearn_object is not None:
|
564
|
+
classes = self._sklearn_object.classes_
|
565
|
+
if isinstance(classes, numpy.ndarray):
|
566
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
567
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
568
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
569
|
+
output_cols = []
|
570
|
+
for i, cl in enumerate(classes):
|
571
|
+
# For binary classification, there is only one output column for each class
|
572
|
+
# ndarray as the two classes are complementary.
|
573
|
+
if len(cl) == 2:
|
574
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
575
|
+
else:
|
576
|
+
output_cols.extend([
|
577
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
578
|
+
])
|
579
|
+
else:
|
580
|
+
output_cols = []
|
581
|
+
|
582
|
+
# Make sure column names are valid snowflake identifiers.
|
583
|
+
assert output_cols is not None # Make MyPy happy
|
584
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
585
|
+
|
586
|
+
return rv
|
587
|
+
|
588
|
+
def _align_expected_output_names(
|
589
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
590
|
+
) -> List[str]:
|
591
|
+
# in case the inferred output column names dimension is different
|
592
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
593
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
594
|
+
output_df_columns = list(output_df_pd.columns)
|
595
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
596
|
+
if self.sample_weight_col:
|
597
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
598
|
+
# if the dimension of inferred output column names is correct; use it
|
599
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
600
|
+
return expected_output_cols_list
|
601
|
+
# otherwise, use the sklearn estimator's output
|
602
|
+
else:
|
603
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
604
|
+
|
551
605
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
552
606
|
@telemetry.send_api_usage_telemetry(
|
553
607
|
project=_PROJECT,
|
@@ -578,24 +632,28 @@ class TruncatedSVD(BaseTransformer):
|
|
578
632
|
# are specific to the type of dataset used.
|
579
633
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
580
634
|
|
635
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
636
|
+
|
581
637
|
if isinstance(dataset, DataFrame):
|
582
638
|
self._deps = self._batch_inference_validate_snowpark(
|
583
639
|
dataset=dataset,
|
584
640
|
inference_method=inference_method,
|
585
641
|
)
|
586
|
-
assert isinstance(
|
642
|
+
assert isinstance(
|
643
|
+
dataset._session, Session
|
644
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
587
645
|
transform_kwargs = dict(
|
588
646
|
session=dataset._session,
|
589
647
|
dependencies=self._deps,
|
590
|
-
drop_input_cols
|
648
|
+
drop_input_cols=self._drop_input_cols,
|
591
649
|
expected_output_cols_type="float",
|
592
650
|
)
|
651
|
+
expected_output_cols = self._align_expected_output_names(
|
652
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
653
|
+
)
|
593
654
|
|
594
655
|
elif isinstance(dataset, pd.DataFrame):
|
595
|
-
transform_kwargs = dict(
|
596
|
-
snowpark_input_cols = self._snowpark_cols,
|
597
|
-
drop_input_cols = self._drop_input_cols
|
598
|
-
)
|
656
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
599
657
|
|
600
658
|
transform_handlers = ModelTransformerBuilder.build(
|
601
659
|
dataset=dataset,
|
@@ -607,7 +665,7 @@ class TruncatedSVD(BaseTransformer):
|
|
607
665
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
608
666
|
inference_method=inference_method,
|
609
667
|
input_cols=self.input_cols,
|
610
|
-
expected_output_cols=
|
668
|
+
expected_output_cols=expected_output_cols,
|
611
669
|
**transform_kwargs
|
612
670
|
)
|
613
671
|
return output_df
|
@@ -637,7 +695,8 @@ class TruncatedSVD(BaseTransformer):
|
|
637
695
|
Output dataset with log probability of the sample for each class in the model.
|
638
696
|
"""
|
639
697
|
super()._check_dataset_type(dataset)
|
640
|
-
inference_method="predict_log_proba"
|
698
|
+
inference_method = "predict_log_proba"
|
699
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
641
700
|
|
642
701
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
643
702
|
# are specific to the type of dataset used.
|
@@ -648,18 +707,20 @@ class TruncatedSVD(BaseTransformer):
|
|
648
707
|
dataset=dataset,
|
649
708
|
inference_method=inference_method,
|
650
709
|
)
|
651
|
-
assert isinstance(
|
710
|
+
assert isinstance(
|
711
|
+
dataset._session, Session
|
712
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
652
713
|
transform_kwargs = dict(
|
653
714
|
session=dataset._session,
|
654
715
|
dependencies=self._deps,
|
655
|
-
drop_input_cols
|
716
|
+
drop_input_cols=self._drop_input_cols,
|
656
717
|
expected_output_cols_type="float",
|
657
718
|
)
|
719
|
+
expected_output_cols = self._align_expected_output_names(
|
720
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
721
|
+
)
|
658
722
|
elif isinstance(dataset, pd.DataFrame):
|
659
|
-
transform_kwargs = dict(
|
660
|
-
snowpark_input_cols = self._snowpark_cols,
|
661
|
-
drop_input_cols = self._drop_input_cols
|
662
|
-
)
|
723
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
663
724
|
|
664
725
|
transform_handlers = ModelTransformerBuilder.build(
|
665
726
|
dataset=dataset,
|
@@ -672,7 +733,7 @@ class TruncatedSVD(BaseTransformer):
|
|
672
733
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
673
734
|
inference_method=inference_method,
|
674
735
|
input_cols=self.input_cols,
|
675
|
-
expected_output_cols=
|
736
|
+
expected_output_cols=expected_output_cols,
|
676
737
|
**transform_kwargs
|
677
738
|
)
|
678
739
|
return output_df
|
@@ -698,30 +759,34 @@ class TruncatedSVD(BaseTransformer):
|
|
698
759
|
Output dataset with results of the decision function for the samples in input dataset.
|
699
760
|
"""
|
700
761
|
super()._check_dataset_type(dataset)
|
701
|
-
inference_method="decision_function"
|
762
|
+
inference_method = "decision_function"
|
702
763
|
|
703
764
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
704
765
|
# are specific to the type of dataset used.
|
705
766
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
706
767
|
|
768
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
769
|
+
|
707
770
|
if isinstance(dataset, DataFrame):
|
708
771
|
self._deps = self._batch_inference_validate_snowpark(
|
709
772
|
dataset=dataset,
|
710
773
|
inference_method=inference_method,
|
711
774
|
)
|
712
|
-
assert isinstance(
|
775
|
+
assert isinstance(
|
776
|
+
dataset._session, Session
|
777
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
713
778
|
transform_kwargs = dict(
|
714
779
|
session=dataset._session,
|
715
780
|
dependencies=self._deps,
|
716
|
-
drop_input_cols
|
781
|
+
drop_input_cols=self._drop_input_cols,
|
717
782
|
expected_output_cols_type="float",
|
718
783
|
)
|
784
|
+
expected_output_cols = self._align_expected_output_names(
|
785
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
786
|
+
)
|
719
787
|
|
720
788
|
elif isinstance(dataset, pd.DataFrame):
|
721
|
-
transform_kwargs = dict(
|
722
|
-
snowpark_input_cols = self._snowpark_cols,
|
723
|
-
drop_input_cols = self._drop_input_cols
|
724
|
-
)
|
789
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
725
790
|
|
726
791
|
transform_handlers = ModelTransformerBuilder.build(
|
727
792
|
dataset=dataset,
|
@@ -734,7 +799,7 @@ class TruncatedSVD(BaseTransformer):
|
|
734
799
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
735
800
|
inference_method=inference_method,
|
736
801
|
input_cols=self.input_cols,
|
737
|
-
expected_output_cols=
|
802
|
+
expected_output_cols=expected_output_cols,
|
738
803
|
**transform_kwargs
|
739
804
|
)
|
740
805
|
return output_df
|
@@ -763,12 +828,14 @@ class TruncatedSVD(BaseTransformer):
|
|
763
828
|
Output dataset with probability of the sample for each class in the model.
|
764
829
|
"""
|
765
830
|
super()._check_dataset_type(dataset)
|
766
|
-
inference_method="score_samples"
|
831
|
+
inference_method = "score_samples"
|
767
832
|
|
768
833
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
769
834
|
# are specific to the type of dataset used.
|
770
835
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
771
836
|
|
837
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
838
|
+
|
772
839
|
if isinstance(dataset, DataFrame):
|
773
840
|
self._deps = self._batch_inference_validate_snowpark(
|
774
841
|
dataset=dataset,
|
@@ -781,6 +848,9 @@ class TruncatedSVD(BaseTransformer):
|
|
781
848
|
drop_input_cols = self._drop_input_cols,
|
782
849
|
expected_output_cols_type="float",
|
783
850
|
)
|
851
|
+
expected_output_cols = self._align_expected_output_names(
|
852
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
853
|
+
)
|
784
854
|
|
785
855
|
elif isinstance(dataset, pd.DataFrame):
|
786
856
|
transform_kwargs = dict(
|
@@ -799,7 +869,7 @@ class TruncatedSVD(BaseTransformer):
|
|
799
869
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
800
870
|
inference_method=inference_method,
|
801
871
|
input_cols=self.input_cols,
|
802
|
-
expected_output_cols=
|
872
|
+
expected_output_cols=expected_output_cols,
|
803
873
|
**transform_kwargs
|
804
874
|
)
|
805
875
|
return output_df
|
@@ -944,50 +1014,84 @@ class TruncatedSVD(BaseTransformer):
|
|
944
1014
|
)
|
945
1015
|
return output_df
|
946
1016
|
|
1017
|
+
|
1018
|
+
|
1019
|
+
def to_sklearn(self) -> Any:
|
1020
|
+
"""Get sklearn.decomposition.TruncatedSVD object.
|
1021
|
+
"""
|
1022
|
+
if self._sklearn_object is None:
|
1023
|
+
self._sklearn_object = self._create_sklearn_object()
|
1024
|
+
return self._sklearn_object
|
1025
|
+
|
1026
|
+
def to_xgboost(self) -> Any:
|
1027
|
+
raise exceptions.SnowflakeMLException(
|
1028
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1029
|
+
original_exception=AttributeError(
|
1030
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1031
|
+
"to_xgboost()",
|
1032
|
+
"to_sklearn()"
|
1033
|
+
)
|
1034
|
+
),
|
1035
|
+
)
|
1036
|
+
|
1037
|
+
def to_lightgbm(self) -> Any:
|
1038
|
+
raise exceptions.SnowflakeMLException(
|
1039
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1040
|
+
original_exception=AttributeError(
|
1041
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1042
|
+
"to_lightgbm()",
|
1043
|
+
"to_sklearn()"
|
1044
|
+
)
|
1045
|
+
),
|
1046
|
+
)
|
947
1047
|
|
948
|
-
def
|
1048
|
+
def _get_dependencies(self) -> List[str]:
|
1049
|
+
return self._deps
|
1050
|
+
|
1051
|
+
|
1052
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
949
1053
|
self._model_signature_dict = dict()
|
950
1054
|
|
951
1055
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
952
1056
|
|
953
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1057
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
954
1058
|
outputs: List[BaseFeatureSpec] = []
|
955
1059
|
if hasattr(self, "predict"):
|
956
1060
|
# keep mypy happy
|
957
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1061
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
958
1062
|
# For classifier, the type of predict is the same as the type of label
|
959
|
-
if self._sklearn_object._estimator_type ==
|
960
|
-
|
1063
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1064
|
+
# label columns is the desired type for output
|
961
1065
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
962
1066
|
# rename the output columns
|
963
1067
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
964
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
965
|
-
|
966
|
-
|
1068
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1069
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1070
|
+
)
|
967
1071
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
968
1072
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
969
|
-
# Clusterer returns int64 cluster labels.
|
1073
|
+
# Clusterer returns int64 cluster labels.
|
970
1074
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
971
1075
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
972
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
973
|
-
|
974
|
-
|
975
|
-
|
1076
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1077
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1078
|
+
)
|
1079
|
+
|
976
1080
|
# For regressor, the type of predict is float64
|
977
|
-
elif self._sklearn_object._estimator_type ==
|
1081
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
978
1082
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
979
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
980
|
-
|
981
|
-
|
982
|
-
|
1083
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1084
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1085
|
+
)
|
1086
|
+
|
983
1087
|
for prob_func in PROB_FUNCTIONS:
|
984
1088
|
if hasattr(self, prob_func):
|
985
1089
|
output_cols_prefix: str = f"{prob_func}_"
|
986
1090
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
987
1091
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
988
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
989
|
-
|
990
|
-
|
1092
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1093
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1094
|
+
)
|
991
1095
|
|
992
1096
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
993
1097
|
items = list(self._model_signature_dict.items())
|
@@ -1000,10 +1104,10 @@ class TruncatedSVD(BaseTransformer):
|
|
1000
1104
|
"""Returns model signature of current class.
|
1001
1105
|
|
1002
1106
|
Raises:
|
1003
|
-
|
1107
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1004
1108
|
|
1005
1109
|
Returns:
|
1006
|
-
Dict
|
1110
|
+
Dict with each method and its input output signature
|
1007
1111
|
"""
|
1008
1112
|
if self._model_signature_dict is None:
|
1009
1113
|
raise exceptions.SnowflakeMLException(
|
@@ -1011,35 +1115,3 @@ class TruncatedSVD(BaseTransformer):
|
|
1011
1115
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1012
1116
|
)
|
1013
1117
|
return self._model_signature_dict
|
1014
|
-
|
1015
|
-
def to_sklearn(self) -> Any:
|
1016
|
-
"""Get sklearn.decomposition.TruncatedSVD object.
|
1017
|
-
"""
|
1018
|
-
if self._sklearn_object is None:
|
1019
|
-
self._sklearn_object = self._create_sklearn_object()
|
1020
|
-
return self._sklearn_object
|
1021
|
-
|
1022
|
-
def to_xgboost(self) -> Any:
|
1023
|
-
raise exceptions.SnowflakeMLException(
|
1024
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1025
|
-
original_exception=AttributeError(
|
1026
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1027
|
-
"to_xgboost()",
|
1028
|
-
"to_sklearn()"
|
1029
|
-
)
|
1030
|
-
),
|
1031
|
-
)
|
1032
|
-
|
1033
|
-
def to_lightgbm(self) -> Any:
|
1034
|
-
raise exceptions.SnowflakeMLException(
|
1035
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1036
|
-
original_exception=AttributeError(
|
1037
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1038
|
-
"to_lightgbm()",
|
1039
|
-
"to_sklearn()"
|
1040
|
-
)
|
1041
|
-
),
|
1042
|
-
)
|
1043
|
-
|
1044
|
-
def _get_dependencies(self) -> List[str]:
|
1045
|
-
return self._deps
|