snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -240,12 +239,7 @@ class TruncatedSVD(BaseTransformer):
240
239
  )
241
240
  return selected_cols
242
241
 
243
- @telemetry.send_api_usage_telemetry(
244
- project=_PROJECT,
245
- subproject=_SUBPROJECT,
246
- custom_tags=dict([("autogen", True)]),
247
- )
248
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TruncatedSVD":
242
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TruncatedSVD":
249
243
  """Fit model on training data X
250
244
  For more details on this function, see [sklearn.decomposition.TruncatedSVD.fit]
251
245
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html#sklearn.decomposition.TruncatedSVD.fit)
@@ -272,12 +266,14 @@ class TruncatedSVD(BaseTransformer):
272
266
 
273
267
  self._snowpark_cols = dataset.select(self.input_cols).columns
274
268
 
275
- # If we are already in a stored procedure, no need to kick off another one.
269
+ # If we are already in a stored procedure, no need to kick off another one.
276
270
  if SNOWML_SPROC_ENV in os.environ:
277
271
  statement_params = telemetry.get_function_usage_statement_params(
278
272
  project=_PROJECT,
279
273
  subproject=_SUBPROJECT,
280
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TruncatedSVD.__class__.__name__),
274
+ function_name=telemetry.get_statement_params_full_func_name(
275
+ inspect.currentframe(), TruncatedSVD.__class__.__name__
276
+ ),
281
277
  api_calls=[Session.call],
282
278
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
283
279
  )
@@ -298,7 +294,7 @@ class TruncatedSVD(BaseTransformer):
298
294
  )
299
295
  self._sklearn_object = model_trainer.train()
300
296
  self._is_fitted = True
301
- self._get_model_signatures(dataset)
297
+ self._generate_model_signatures(dataset)
302
298
  return self
303
299
 
304
300
  def _batch_inference_validate_snowpark(
@@ -372,7 +368,9 @@ class TruncatedSVD(BaseTransformer):
372
368
  # when it is classifier, infer the datatype from label columns
373
369
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
374
370
  # Batch inference takes a single expected output column type. Use the first columns type for now.
375
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
371
+ label_cols_signatures = [
372
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
373
+ ]
376
374
  if len(label_cols_signatures) == 0:
377
375
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
378
376
  raise exceptions.SnowflakeMLException(
@@ -380,25 +378,22 @@ class TruncatedSVD(BaseTransformer):
380
378
  original_exception=ValueError(error_str),
381
379
  )
382
380
 
383
- expected_type_inferred = convert_sp_to_sf_type(
384
- label_cols_signatures[0].as_snowpark_type()
385
- )
381
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
386
382
 
387
383
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
388
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
384
+ assert isinstance(
385
+ dataset._session, Session
386
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
389
387
 
390
388
  transform_kwargs = dict(
391
- session = dataset._session,
392
- dependencies = self._deps,
393
- drop_input_cols = self._drop_input_cols,
394
- expected_output_cols_type = expected_type_inferred,
389
+ session=dataset._session,
390
+ dependencies=self._deps,
391
+ drop_input_cols=self._drop_input_cols,
392
+ expected_output_cols_type=expected_type_inferred,
395
393
  )
396
394
 
397
395
  elif isinstance(dataset, pd.DataFrame):
398
- transform_kwargs = dict(
399
- snowpark_input_cols = self._snowpark_cols,
400
- drop_input_cols = self._drop_input_cols
401
- )
396
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
402
397
 
403
398
  transform_handlers = ModelTransformerBuilder.build(
404
399
  dataset=dataset,
@@ -440,7 +435,7 @@ class TruncatedSVD(BaseTransformer):
440
435
  Transformed dataset.
441
436
  """
442
437
  super()._check_dataset_type(dataset)
443
- inference_method="transform"
438
+ inference_method = "transform"
444
439
 
445
440
  # This dictionary contains optional kwargs for batch inference. These kwargs
446
441
  # are specific to the type of dataset used.
@@ -477,17 +472,14 @@ class TruncatedSVD(BaseTransformer):
477
472
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
478
473
 
479
474
  transform_kwargs = dict(
480
- session = dataset._session,
481
- dependencies = self._deps,
482
- drop_input_cols = self._drop_input_cols,
483
- expected_output_cols_type = expected_dtype,
475
+ session=dataset._session,
476
+ dependencies=self._deps,
477
+ drop_input_cols=self._drop_input_cols,
478
+ expected_output_cols_type=expected_dtype,
484
479
  )
485
480
 
486
481
  elif isinstance(dataset, pd.DataFrame):
487
- transform_kwargs = dict(
488
- snowpark_input_cols = self._snowpark_cols,
489
- drop_input_cols = self._drop_input_cols
490
- )
482
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
491
483
 
492
484
  transform_handlers = ModelTransformerBuilder.build(
493
485
  dataset=dataset,
@@ -506,7 +498,11 @@ class TruncatedSVD(BaseTransformer):
506
498
  return output_df
507
499
 
508
500
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
509
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
501
+ def fit_predict(
502
+ self,
503
+ dataset: Union[DataFrame, pd.DataFrame],
504
+ output_cols_prefix: str = "fit_predict_",
505
+ ) -> Union[DataFrame, pd.DataFrame]:
510
506
  """ Method not supported for this class.
511
507
 
512
508
 
@@ -531,7 +527,9 @@ class TruncatedSVD(BaseTransformer):
531
527
  )
532
528
  output_result, fitted_estimator = model_trainer.train_fit_predict(
533
529
  drop_input_cols=self._drop_input_cols,
534
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
530
+ expected_output_cols_list=(
531
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
532
+ ),
535
533
  )
536
534
  self._sklearn_object = fitted_estimator
537
535
  self._is_fitted = True
@@ -548,6 +546,62 @@ class TruncatedSVD(BaseTransformer):
548
546
  assert self._sklearn_object is not None
549
547
  return self._sklearn_object.embedding_
550
548
 
549
+
550
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
551
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
552
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
553
+ """
554
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
555
+ # The following condition is introduced for kneighbors methods, and not used in other methods
556
+ if output_cols:
557
+ output_cols = [
558
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
559
+ for c in output_cols
560
+ ]
561
+ elif getattr(self._sklearn_object, "classes_", None) is None:
562
+ output_cols = [output_cols_prefix]
563
+ elif self._sklearn_object is not None:
564
+ classes = self._sklearn_object.classes_
565
+ if isinstance(classes, numpy.ndarray):
566
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
567
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
568
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
569
+ output_cols = []
570
+ for i, cl in enumerate(classes):
571
+ # For binary classification, there is only one output column for each class
572
+ # ndarray as the two classes are complementary.
573
+ if len(cl) == 2:
574
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
575
+ else:
576
+ output_cols.extend([
577
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
578
+ ])
579
+ else:
580
+ output_cols = []
581
+
582
+ # Make sure column names are valid snowflake identifiers.
583
+ assert output_cols is not None # Make MyPy happy
584
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
585
+
586
+ return rv
587
+
588
+ def _align_expected_output_names(
589
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
590
+ ) -> List[str]:
591
+ # in case the inferred output column names dimension is different
592
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
593
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
594
+ output_df_columns = list(output_df_pd.columns)
595
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
596
+ if self.sample_weight_col:
597
+ output_df_columns_set -= set(self.sample_weight_col)
598
+ # if the dimension of inferred output column names is correct; use it
599
+ if len(expected_output_cols_list) == len(output_df_columns_set):
600
+ return expected_output_cols_list
601
+ # otherwise, use the sklearn estimator's output
602
+ else:
603
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
604
+
551
605
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
552
606
  @telemetry.send_api_usage_telemetry(
553
607
  project=_PROJECT,
@@ -578,24 +632,28 @@ class TruncatedSVD(BaseTransformer):
578
632
  # are specific to the type of dataset used.
579
633
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
580
634
 
635
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
636
+
581
637
  if isinstance(dataset, DataFrame):
582
638
  self._deps = self._batch_inference_validate_snowpark(
583
639
  dataset=dataset,
584
640
  inference_method=inference_method,
585
641
  )
586
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
642
+ assert isinstance(
643
+ dataset._session, Session
644
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
587
645
  transform_kwargs = dict(
588
646
  session=dataset._session,
589
647
  dependencies=self._deps,
590
- drop_input_cols = self._drop_input_cols,
648
+ drop_input_cols=self._drop_input_cols,
591
649
  expected_output_cols_type="float",
592
650
  )
651
+ expected_output_cols = self._align_expected_output_names(
652
+ inference_method, dataset, expected_output_cols, output_cols_prefix
653
+ )
593
654
 
594
655
  elif isinstance(dataset, pd.DataFrame):
595
- transform_kwargs = dict(
596
- snowpark_input_cols = self._snowpark_cols,
597
- drop_input_cols = self._drop_input_cols
598
- )
656
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
599
657
 
600
658
  transform_handlers = ModelTransformerBuilder.build(
601
659
  dataset=dataset,
@@ -607,7 +665,7 @@ class TruncatedSVD(BaseTransformer):
607
665
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
608
666
  inference_method=inference_method,
609
667
  input_cols=self.input_cols,
610
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
668
+ expected_output_cols=expected_output_cols,
611
669
  **transform_kwargs
612
670
  )
613
671
  return output_df
@@ -637,7 +695,8 @@ class TruncatedSVD(BaseTransformer):
637
695
  Output dataset with log probability of the sample for each class in the model.
638
696
  """
639
697
  super()._check_dataset_type(dataset)
640
- inference_method="predict_log_proba"
698
+ inference_method = "predict_log_proba"
699
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
641
700
 
642
701
  # This dictionary contains optional kwargs for batch inference. These kwargs
643
702
  # are specific to the type of dataset used.
@@ -648,18 +707,20 @@ class TruncatedSVD(BaseTransformer):
648
707
  dataset=dataset,
649
708
  inference_method=inference_method,
650
709
  )
651
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
710
+ assert isinstance(
711
+ dataset._session, Session
712
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
652
713
  transform_kwargs = dict(
653
714
  session=dataset._session,
654
715
  dependencies=self._deps,
655
- drop_input_cols = self._drop_input_cols,
716
+ drop_input_cols=self._drop_input_cols,
656
717
  expected_output_cols_type="float",
657
718
  )
719
+ expected_output_cols = self._align_expected_output_names(
720
+ inference_method, dataset, expected_output_cols, output_cols_prefix
721
+ )
658
722
  elif isinstance(dataset, pd.DataFrame):
659
- transform_kwargs = dict(
660
- snowpark_input_cols = self._snowpark_cols,
661
- drop_input_cols = self._drop_input_cols
662
- )
723
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
663
724
 
664
725
  transform_handlers = ModelTransformerBuilder.build(
665
726
  dataset=dataset,
@@ -672,7 +733,7 @@ class TruncatedSVD(BaseTransformer):
672
733
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
673
734
  inference_method=inference_method,
674
735
  input_cols=self.input_cols,
675
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
736
+ expected_output_cols=expected_output_cols,
676
737
  **transform_kwargs
677
738
  )
678
739
  return output_df
@@ -698,30 +759,34 @@ class TruncatedSVD(BaseTransformer):
698
759
  Output dataset with results of the decision function for the samples in input dataset.
699
760
  """
700
761
  super()._check_dataset_type(dataset)
701
- inference_method="decision_function"
762
+ inference_method = "decision_function"
702
763
 
703
764
  # This dictionary contains optional kwargs for batch inference. These kwargs
704
765
  # are specific to the type of dataset used.
705
766
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
706
767
 
768
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
769
+
707
770
  if isinstance(dataset, DataFrame):
708
771
  self._deps = self._batch_inference_validate_snowpark(
709
772
  dataset=dataset,
710
773
  inference_method=inference_method,
711
774
  )
712
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
775
+ assert isinstance(
776
+ dataset._session, Session
777
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
713
778
  transform_kwargs = dict(
714
779
  session=dataset._session,
715
780
  dependencies=self._deps,
716
- drop_input_cols = self._drop_input_cols,
781
+ drop_input_cols=self._drop_input_cols,
717
782
  expected_output_cols_type="float",
718
783
  )
784
+ expected_output_cols = self._align_expected_output_names(
785
+ inference_method, dataset, expected_output_cols, output_cols_prefix
786
+ )
719
787
 
720
788
  elif isinstance(dataset, pd.DataFrame):
721
- transform_kwargs = dict(
722
- snowpark_input_cols = self._snowpark_cols,
723
- drop_input_cols = self._drop_input_cols
724
- )
789
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
725
790
 
726
791
  transform_handlers = ModelTransformerBuilder.build(
727
792
  dataset=dataset,
@@ -734,7 +799,7 @@ class TruncatedSVD(BaseTransformer):
734
799
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
735
800
  inference_method=inference_method,
736
801
  input_cols=self.input_cols,
737
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
802
+ expected_output_cols=expected_output_cols,
738
803
  **transform_kwargs
739
804
  )
740
805
  return output_df
@@ -763,12 +828,14 @@ class TruncatedSVD(BaseTransformer):
763
828
  Output dataset with probability of the sample for each class in the model.
764
829
  """
765
830
  super()._check_dataset_type(dataset)
766
- inference_method="score_samples"
831
+ inference_method = "score_samples"
767
832
 
768
833
  # This dictionary contains optional kwargs for batch inference. These kwargs
769
834
  # are specific to the type of dataset used.
770
835
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
771
836
 
837
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
838
+
772
839
  if isinstance(dataset, DataFrame):
773
840
  self._deps = self._batch_inference_validate_snowpark(
774
841
  dataset=dataset,
@@ -781,6 +848,9 @@ class TruncatedSVD(BaseTransformer):
781
848
  drop_input_cols = self._drop_input_cols,
782
849
  expected_output_cols_type="float",
783
850
  )
851
+ expected_output_cols = self._align_expected_output_names(
852
+ inference_method, dataset, expected_output_cols, output_cols_prefix
853
+ )
784
854
 
785
855
  elif isinstance(dataset, pd.DataFrame):
786
856
  transform_kwargs = dict(
@@ -799,7 +869,7 @@ class TruncatedSVD(BaseTransformer):
799
869
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
800
870
  inference_method=inference_method,
801
871
  input_cols=self.input_cols,
802
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
872
+ expected_output_cols=expected_output_cols,
803
873
  **transform_kwargs
804
874
  )
805
875
  return output_df
@@ -944,50 +1014,84 @@ class TruncatedSVD(BaseTransformer):
944
1014
  )
945
1015
  return output_df
946
1016
 
1017
+
1018
+
1019
+ def to_sklearn(self) -> Any:
1020
+ """Get sklearn.decomposition.TruncatedSVD object.
1021
+ """
1022
+ if self._sklearn_object is None:
1023
+ self._sklearn_object = self._create_sklearn_object()
1024
+ return self._sklearn_object
1025
+
1026
+ def to_xgboost(self) -> Any:
1027
+ raise exceptions.SnowflakeMLException(
1028
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1029
+ original_exception=AttributeError(
1030
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1031
+ "to_xgboost()",
1032
+ "to_sklearn()"
1033
+ )
1034
+ ),
1035
+ )
1036
+
1037
+ def to_lightgbm(self) -> Any:
1038
+ raise exceptions.SnowflakeMLException(
1039
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1040
+ original_exception=AttributeError(
1041
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
+ "to_lightgbm()",
1043
+ "to_sklearn()"
1044
+ )
1045
+ ),
1046
+ )
947
1047
 
948
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1048
+ def _get_dependencies(self) -> List[str]:
1049
+ return self._deps
1050
+
1051
+
1052
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
949
1053
  self._model_signature_dict = dict()
950
1054
 
951
1055
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
952
1056
 
953
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1057
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
954
1058
  outputs: List[BaseFeatureSpec] = []
955
1059
  if hasattr(self, "predict"):
956
1060
  # keep mypy happy
957
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1061
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
958
1062
  # For classifier, the type of predict is the same as the type of label
959
- if self._sklearn_object._estimator_type == 'classifier':
960
- # label columns is the desired type for output
1063
+ if self._sklearn_object._estimator_type == "classifier":
1064
+ # label columns is the desired type for output
961
1065
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
962
1066
  # rename the output columns
963
1067
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
964
- self._model_signature_dict["predict"] = ModelSignature(inputs,
965
- ([] if self._drop_input_cols else inputs)
966
- + outputs)
1068
+ self._model_signature_dict["predict"] = ModelSignature(
1069
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1070
+ )
967
1071
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
968
1072
  # For outlier models, returns -1 for outliers and 1 for inliers.
969
- # Clusterer returns int64 cluster labels.
1073
+ # Clusterer returns int64 cluster labels.
970
1074
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
971
1075
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
972
- self._model_signature_dict["predict"] = ModelSignature(inputs,
973
- ([] if self._drop_input_cols else inputs)
974
- + outputs)
975
-
1076
+ self._model_signature_dict["predict"] = ModelSignature(
1077
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1078
+ )
1079
+
976
1080
  # For regressor, the type of predict is float64
977
- elif self._sklearn_object._estimator_type == 'regressor':
1081
+ elif self._sklearn_object._estimator_type == "regressor":
978
1082
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
979
- self._model_signature_dict["predict"] = ModelSignature(inputs,
980
- ([] if self._drop_input_cols else inputs)
981
- + outputs)
982
-
1083
+ self._model_signature_dict["predict"] = ModelSignature(
1084
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1085
+ )
1086
+
983
1087
  for prob_func in PROB_FUNCTIONS:
984
1088
  if hasattr(self, prob_func):
985
1089
  output_cols_prefix: str = f"{prob_func}_"
986
1090
  output_column_names = self._get_output_column_names(output_cols_prefix)
987
1091
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
988
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
989
- ([] if self._drop_input_cols else inputs)
990
- + outputs)
1092
+ self._model_signature_dict[prob_func] = ModelSignature(
1093
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1094
+ )
991
1095
 
992
1096
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
993
1097
  items = list(self._model_signature_dict.items())
@@ -1000,10 +1104,10 @@ class TruncatedSVD(BaseTransformer):
1000
1104
  """Returns model signature of current class.
1001
1105
 
1002
1106
  Raises:
1003
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1107
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1004
1108
 
1005
1109
  Returns:
1006
- Dict[str, ModelSignature]: each method and its input output signature
1110
+ Dict with each method and its input output signature
1007
1111
  """
1008
1112
  if self._model_signature_dict is None:
1009
1113
  raise exceptions.SnowflakeMLException(
@@ -1011,35 +1115,3 @@ class TruncatedSVD(BaseTransformer):
1011
1115
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1012
1116
  )
1013
1117
  return self._model_signature_dict
1014
-
1015
- def to_sklearn(self) -> Any:
1016
- """Get sklearn.decomposition.TruncatedSVD object.
1017
- """
1018
- if self._sklearn_object is None:
1019
- self._sklearn_object = self._create_sklearn_object()
1020
- return self._sklearn_object
1021
-
1022
- def to_xgboost(self) -> Any:
1023
- raise exceptions.SnowflakeMLException(
1024
- error_code=error_codes.METHOD_NOT_ALLOWED,
1025
- original_exception=AttributeError(
1026
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1027
- "to_xgboost()",
1028
- "to_sklearn()"
1029
- )
1030
- ),
1031
- )
1032
-
1033
- def to_lightgbm(self) -> Any:
1034
- raise exceptions.SnowflakeMLException(
1035
- error_code=error_codes.METHOD_NOT_ALLOWED,
1036
- original_exception=AttributeError(
1037
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1038
- "to_lightgbm()",
1039
- "to_sklearn()"
1040
- )
1041
- ),
1042
- )
1043
-
1044
- def _get_dependencies(self) -> List[str]:
1045
- return self._deps