snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -5,9 +5,9 @@ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4Ts
5
5
  snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
6
  snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
7
  snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
- snowflake/ml/version.py,sha256=TPzBy2mBfZlYdDDim4fBFJhFtPDF4tRr8Te3p6dI8rs,16
8
+ snowflake/ml/version.py,sha256=PhS7XK3XWIDp2SwZaZV976hFEG5kMWzFvOxTAICredA,16
9
9
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
- snowflake/ml/_internal/env_utils.py,sha256=nkBk8bDDKi5zIK9ZD8hBlKd3krccNZ4XC2pt6bgb4L4,25797
10
+ snowflake/ml/_internal/env_utils.py,sha256=Kntfp8gqF4BvaaWQuLpwMtRuPXjlx_EuJY6SZAO0rEw,26212
11
11
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
12
12
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
13
13
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
@@ -23,8 +23,12 @@ snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1G
23
23
  snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
24
24
  snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
25
25
  snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=q1Nh7KvnUebdKCwwAPmotdAVS578CgAXcfDOfKoweVw,665
26
- snowflake/ml/_internal/utils/formatting.py,sha256=udoXzwbgeZ6NTUeU7ywgSA4pASv3xtxm-IslW1l6ZqM,3677
27
- snowflake/ml/_internal/utils/identifier.py,sha256=_NAW00FGtQsQESxF2b30_T4kkmzQITsdfykvJ2PqPUo,10870
26
+ snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpyuKleOKR47jPjC_nKoziOIZMwT0,804
27
+ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
28
+ snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
29
+ snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
30
+ snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
31
+ snowflake/ml/_internal/utils/identifier.py,sha256=eokEDF7JIML2gm_3FfknPdPR9aBT3woweA5S4z_46-E,10925
28
32
  snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
29
33
  snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
30
34
  snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
@@ -36,45 +40,45 @@ snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTd
36
40
  snowflake/ml/_internal/utils/snowflake_env.py,sha256=Mrov0v95pzVUeAe7r1e1PtlIco9ytj5SGAuUWORQaKs,2927
37
41
  snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR38BkBtx813eMqz5wmQosgc1sce0,5403
38
42
  snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
39
- snowflake/ml/_internal/utils/sql_identifier.py,sha256=BYd0_ZNHjbpP33XeVLOcnhZXCrIschQegpE_hXXJ4bw,3502
43
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=CHTxr3qtc1ygNkA5oOQQa-XEoosw5sjfHe7J4WZlkDQ,3270
40
44
  snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
41
45
  snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
42
46
  snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
43
47
  snowflake/ml/dataset/dataset.py,sha256=OG_RonPgj86mRKRgN-xhJV0uZfa78ohVBpxsoYYnceY,6078
44
48
  snowflake/ml/feature_store/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
45
49
  snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
46
- snowflake/ml/feature_store/feature_store.py,sha256=s5TavQVlSnQo4n4N6aupnB4NufQ6EvJBpj9XtWU1yN0,73363
47
- snowflake/ml/feature_store/feature_view.py,sha256=APSn-xqm1Yv_iIKCckPdsvAqFb7D0-3BUW6URjSNut8,17806
50
+ snowflake/ml/feature_store/feature_store.py,sha256=TyLzlsVkPb0Vh-jyCA0prX5vMi6Q8DtxbU2uFElRnVM,71962
51
+ snowflake/ml/feature_store/feature_view.py,sha256=2WtcqcHcvh51ojbf8K7a16GSiY5WbMDDwTMQmj_AQT8,17544
48
52
  snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
49
53
  snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
50
- snowflake/ml/fileset/sfcfs.py,sha256=XFtLpeo2Smq1Hn4sMKl5kwCKfqlMFqA4soynxK9YJJM,15174
51
- snowflake/ml/fileset/stage_fs.py,sha256=_hoJrZoqFZYl8fPdEO8crmcWoahAdxeleEUoKPqG8yg,17021
54
+ snowflake/ml/fileset/sfcfs.py,sha256=aRhGMLnFLRQcvhN3epScTLUoOFNM9UQJwVpF8reZ-Yo,15596
55
+ snowflake/ml/fileset/stage_fs.py,sha256=Lzt5qglRE6p27MYBlb2CO2KdqvTlzuOGXoVmJ1Xfnec,18595
52
56
  snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
53
57
  snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
54
58
  snowflake/ml/model/__init__.py,sha256=fk8OMvOyrSIkAhX0EcrgBBvdz1VGRsdMmfYFV2GCf14,367
55
59
  snowflake/ml/model/_api.py,sha256=Y3r-Rm1-TJ0rnuydcWs6ENGdNp86T57PbmCWJlB0o0U,21595
56
- snowflake/ml/model/custom_model.py,sha256=x1RczFD4cwlHwnQmRan5M6gN-71LNWXuiEk7nMici8Y,8185
60
+ snowflake/ml/model/custom_model.py,sha256=xvu7WZ1YmOdvuPePyAj6qMwKq-HNeVV9bNfkOT09CRI,8267
57
61
  snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
58
62
  snowflake/ml/model/model_signature.py,sha256=UQSGieGJcnmC02V4feCYMdhMXnGoOUa9KBuDrbeivBM,29342
59
- snowflake/ml/model/type_hints.py,sha256=qe9U01Br4zYN0Uo0Pm7OC8eyjIuAoVwzweSvEe9SMzQ,12195
63
+ snowflake/ml/model/type_hints.py,sha256=aUg_1xNtzdH2_kH48v918jbpEnHPNIn6MmfrwdvYvdg,12705
60
64
  snowflake/ml/model/_client/model/model_impl.py,sha256=QmTJr1JLdqBHWrFFpR2xARfbx0INYPzbfKWJn--3yX4,12525
61
- snowflake/ml/model/_client/model/model_version_impl.py,sha256=KZNN_Jq2x69XwELEiVaAXkAGTMS1ZmjCFko8Ale9rBo,13333
65
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=OQJab7XkFGBenuKw5_xqUibXhTU6ZUWTAjCghBooLTY,11160
62
66
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=XFNolmueu0nC3nAjb2Lj3v1NffDAhAq0JWMek9JVO38,4094
63
- snowflake/ml/model/_client/ops/model_ops.py,sha256=cL791mSAr4fJvPco6PtMdpwqicHhSTc8nsn4jdcEuEA,17767
64
- snowflake/ml/model/_client/sql/model.py,sha256=diuyGfFtLu1Z9yBThP-SjGOG9Zy4gflRKh6JoyUBDHk,4525
65
- snowflake/ml/model/_client/sql/model_version.py,sha256=G4chwD_C4oVCPqyAfaWpjOu246XnhgJ4gCM64-jlkTQ,9426
67
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=Rc0jRRkTbJpymlKLOc1iK7xDoKwnP80sB6NjK1XhhLQ,20264
68
+ snowflake/ml/model/_client/sql/model.py,sha256=bIw606G3GP0OQRwYKDywWEpZOIisQP3JjEoWVdTUvpo,5386
69
+ snowflake/ml/model/_client/sql/model_version.py,sha256=YNngtSVrr9-RHlDMpF1RdxjHRNZPfQX14-KywPER2hU,10172
66
70
  snowflake/ml/model/_client/sql/stage.py,sha256=4zP8aO6cv0IDrZEqhkheNWwy4qBuv1qyGLwMFSW-7EI,1497
67
71
  snowflake/ml/model/_client/sql/tag.py,sha256=RYvblBfQmK4xmLF0pz0BNUd9wddqlfHtEK1JRRpJGPE,4646
68
72
  snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
69
73
  snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
70
74
  snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7uhAJsHsk7LbiZv_w3xOCE2O88rTUVnS3_B6OAz-JG4,6129
71
75
  snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
72
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=dvmK6ILhGc3z-oJDHDCPHxtIV8hfDpshRtawHZ7Wm-A,9986
76
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=HnTaj0v27R9PCRuXpcP1nWv5tGBsXGSq6Xwep1m0bb0,9947
73
77
  snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
74
78
  snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=WAqYQaaY5AFywg9yNLKRw350c2fpM4vxgdjYJ50VJJA,1752
75
79
  snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
76
80
  snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
77
- snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=yOnYfKNxv3cFoi6w65i4GFYB8ul1YnMQdLymO6skqAU,28961
81
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=U0axqxy9YdJTsGz0bXSRSM2f7nziRnB83mvK6Rz9tlI,29141
78
82
  snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=X4ncWgcgS9DKaNDiauOR9aVC6D27yb3DNouXDEHEjMQ,5989
79
83
  snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=YHI5D7UXNlEbV_Bzk0Nq6nrzfv2VUJfxwchLe7hY-lA,232
80
84
  snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
@@ -83,40 +87,42 @@ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=ysEBrEs0sBCGHnk9uBX-
83
87
  snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=R_ilt8SGwQR6qh_roaUvst0YrnjbJbAyxYIPn4efo4E,13284
84
88
  snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
85
89
  snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
86
- snowflake/ml/model/_model_composer/model_composer.py,sha256=KqZvrpxOzgHtxxCcLhBwCTXsmorGItLwagZb7rDY9Qk,6331
87
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=wdMTFH8St31mr88Fj8lQLTj_gvskHQu8fQOxAPQoXuQ,6677
88
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=R4oX50Rlpr0C6zTYJRPuuZqImzYcBSTCQJfuSGutULI,2029
90
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=ShoSp74xImfdXuIMTVJKt09sIBS8uxz-0rCbYBxLX9o,6337
91
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=kvNMuL8L2Yvtbgf9wr_nly6DmL8wAkwT976rgdqRQPE,4722
92
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=SCXyYZ2-UN_wcLZRM6wf2N4zy6ObpLsUwOxJBxhHXYI,2291
89
93
  snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
90
94
  snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
91
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=8G2bHRCw1SB00HOHSkGh0SpUaPK7r7z5FGBmsfgWCRg,2164
92
- snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=Lk32tVHAN_oMRuKx_9hiFKuk7gqCDcJe-D0fN56BzvM,6693
93
- snowflake/ml/model/_model_composer/model_runtime/_runtime_requirements.py,sha256=z3V7mRgdP-TYpZSX7TrW2k_4hNQ3ZsR4YO4ZQ0YSm8s,248
94
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py,sha256=y6gZURScuGFZK6-n_YEdzDIzJHCiHXctKuSGv_ObRwc,4307
95
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=gex5if17PZ6t6fPcr2i_LO_3IRY03Ykcv_XAyKJt8pg,2170
96
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=cr5soVDesBm19tjDG6lHLN6xrxj_uwPv1lKt8FgpM-c,6682
95
97
  snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
96
- snowflake/ml/model/_packager/model_packager.py,sha256=qT07boM7j1ZcbjfMLcDpB1JXdg8s0A7zGORpkhxFfVA,5966
98
+ snowflake/ml/model/_packager/model_packager.py,sha256=WwF54Qu5Q-p6qGRcY7BzXNBFCRJRjUWFLpXiYnK7Uf0,5958
97
99
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=MHajuZ7LnMadPImXESeEQDocgKh2E3QiKqC-fqmDKio,16640
98
100
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=-FfoDfULcfFRizya5ZHOjx48_w04Zy4eLEqOOrQIDHM,6033
99
101
  snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=KKwS93yZnrUr2JERuRGWpzxCWwD6LOCCvR3ZfjZTnyQ,2622
102
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=FC0Yw2QDknaR9jdzncTI4QckozT-y87hWSHsqQYHLTs,8142
100
103
  snowflake/ml/model/_packager/model_handlers/custom.py,sha256=y5CHdEeKWAO08uor2OtEob4-67zv1CVfRf1CLvBHN40,7325
101
104
  snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=Z7vZ5zhZByLVPfNdSkhgzBot1Y8UBOM3ITj3Qfway3A,19985
105
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=PWPdpOdden2vfloXZA5sA20b2dCBiGO1-NfJ8atH-Uc,8445
102
106
  snowflake/ml/model/_packager/model_handlers/llm.py,sha256=SgCgy9Ys5KivNymjF35ufCpPOtMtSby2Zu4Tllir8Mg,10772
103
107
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=Itw1fPiBdU2euOmjLU3P6Vyfj9Go3jSx1c-yHlQRYpU,8993
104
108
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=dSxKO530_IlF1OK3t9_UYpVntdPiszKy-x_7XGk0bzQ,8033
105
109
  snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=JRPargMNEJaDFQIpzqEVvOml62G_UVVvJdqBH8Lhu_Y,9051
106
- snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=bb-3AkK5T5HlFLSzviGKKRjhVcGvKIClDU7OP1OsNHg,8065
107
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=0Ea4Jf5gpbDWt9p6IWtsDRkohQUZMLf4UHc0ewaTmcE,7262
110
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=u4ino0SxjAMxEl2jgTqt6Mqs1dKGZmSE90mIp3qHErU,8218
111
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=le4Y_dbiPlcjhiFpK1shla3pVgQ5UASdx2g7a70tYYY,7967
108
112
  snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=ujBcbJ1-Ymv7ZeLfuxuDBe7QZ7KNU7x1p2k6OM_yi-0,8179
109
113
  snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=8s8sMWQ9ydJpK1Nk2uPQ-FVeB-xclfX5qzRDr9G1bdk,8104
110
- snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=ZiHJ9nHwqFRpye6MZP-9wT6XlYZ4QDhh7WFkmTy0G0s,8883
114
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=x5bXz5DRzb3O7DMDOF535LBPGnydCa78JHP_7-vsnjY,8874
111
115
  snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
112
- snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=BE-T6xd48OmUIthNAapbI6w7cmUsJwd32I7c1slaXpE,274
116
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=zObSLyhu56hMnIfdv7PMkzHJrTP3-FAroNZ6-Rji7J4,274
113
117
  snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
114
118
  snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
115
- snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=duiMX-EJDVCMoMnPRdhgk2umtDxF30-uC4CkdbHPSuc,15903
116
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=j5b7hkh3Kz79vDaQmuCnBq5S9FvpUfDz3Ee2KmaKfBE,1897
119
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=UnmTBsWDbvW0iJCkXNYJG2J7qEehrvS3Ds_3G-P7VRM,17266
120
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=8eutgCBiL8IFjFIya0NyHLekPhtAsuMhyMA8MCA9VOQ,2380
117
121
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
118
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=czF4J_i3FPHDaaFwKF93Gr6qxVwF4IbaoCdb3G_5iH8,1034
122
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
119
123
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
124
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=urdG-zCiGWnVBYrvPzeEeaISjBDQwBCft6QJXBmVHWY,248
125
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=Hnu0ND3fEmuI29-ommNJdJRzII3tekHrU4z8mUEUqTk,5872
120
126
  snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
121
127
  snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
122
128
  snowflake/ml/model/_signatures/core.py,sha256=VfOjMsCOKuZwFAXc_FSs2TeFjM-2MSHxQzB_LXc-gLk,17972
@@ -129,150 +135,150 @@ snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFu
129
135
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
130
136
  snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
131
137
  snowflake/ml/modeling/_internal/constants.py,sha256=xI4ofa3ATQ2UszRPpkfUAxghV_gXmvxleqOew4UI1PM,45
132
- snowflake/ml/modeling/_internal/estimator_utils.py,sha256=Szhpip5g7ddmT1-nfRg8WFRRCBx9QIjsSW9ey7jkTLo,8855
133
- snowflake/ml/modeling/_internal/model_specifications.py,sha256=-0PWh4cy-XjbejGb00RiFTnBSWiYMTNFQntXTMADgko,4725
138
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=ajRlCHvb4a-rGzMAVvtKhEE5ijObzW7YA_Ox5u2Orr4,9215
139
+ snowflake/ml/modeling/_internal/model_specifications.py,sha256=nAqgw7i1LcYMKRQq9mg2I50Kl0tsayh2_do5UMDXdT0,4801
134
140
  snowflake/ml/modeling/_internal/model_trainer.py,sha256=AlnTRnIowaF39Qjy2Zv4U3JsMydzCxfcBB2pgLIzNpk,694
135
141
  snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=0zazMgVNmBly7jKLGEwwjirb6VUsmA5bnplCzWxfTP8,7269
136
142
  snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
137
143
  snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
138
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=SbjbDXBwXEd_buFk_7YM5NtzEuDxiuqFBYlpS4Md_fg,7580
144
+ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=xrayZRLP8_qrnfLJE4uPZ1uz0z3xy4Y5HrJqM3c7MA4,7831
139
145
  snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=QuXUeeFzktfxStkXFlFSzB7QAuaTG2mPQJVBlRkb0WI,3169
140
146
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=y9PZ3xgPGDHPBcNHY0f2Fk0nMZMRsPcLWy2cIDTALT4,4850
141
147
  snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
142
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=cXJ9ixStjzyMRMr4vEldYT8YzcmHjTqilYE_FphXuX4,29384
143
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=cxW8dW39fJQwt-y9OvysjYXW0nfkMJO7hwxE7lI338c,13405
148
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=baETLCVGDcaaGXwiOx6QyhaMX_zQ1Kt7xGjotd_MSKo,54368
149
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=8rVe366RSYYYAwGSqhKyxZYhW3nAqC7MiTucnFLvNQM,13616
144
150
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=w3zCrv-TwDB1o9eFppMaiXWmMeEPz_EAn_vl_2_6GL8,21699
145
151
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
146
152
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
147
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=CYa8vxy0FEO76VsPNDjnk183YKgpOP50Nzyhjsgd1Aw,47625
153
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=jUlsmletPjnV8KYLJIoRkd8JrDO33F7VlEf-xpxXZ2s,51017
148
154
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
149
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=gUAcqg8CzIuSXS3hdDXlRhquBklZPCN6qDcOJ4G676o,45454
150
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=VmSjSA8_6i9A00ywPatvZQhImhK7EPgDfJS7MNc1j40,47491
151
- snowflake/ml/modeling/cluster/birch.py,sha256=cCGVrpCGXcAU_XJSJNDuARoc1ruBO5STLIeYfxMM4yw,45179
152
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=MlWzdj1r2e8YOyB1W7msjlQ-_LkL7gVsqphBma50W14,47878
153
- snowflake/ml/modeling/cluster/dbscan.py,sha256=oPFfugJCWvUhBjHa4-zsVb0DLV8cPWe8NzvmO35YO5I,45541
154
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=dzKHlkRqqaaX2-zS4tBJLChOkuWsxdqAqvSxvWRxKaI,48009
155
- snowflake/ml/modeling/cluster/k_means.py,sha256=Hwq8pyxvbOeNqzMJ8Hc5fRI0vGJmeZWJqkVVx8HDM3k,47434
156
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=GMbc6ZqZOxlin8Q-XHVGlYIqF1RJ256tUpiIeP7BaZY,45751
157
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=9z2CVgN-yoehFRmo1dn6VQzwxMJM_kk96RVZV6HknCM,48796
158
- snowflake/ml/modeling/cluster/optics.py,sha256=Zwp-FOOwW5YPQC9kpiBe0B99OXCQej_46Uq8kP__PYw,48855
159
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=kv1J6Tcl41wMBbvdMJwoWN0HC5mOFMtYA51jjU3wzLk,45750
160
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=g6nENhQm3PBZipUP2ijG5nbyTExMSPX9rZZpPghp0dU,48942
161
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=vKvl0uD79hazcX9stojTCS68mymYNz950elR20P6wJ8,44883
155
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=afp4K6VIXjph1oDxEDHbG_fHBlGo0qwM2ZXjl9Pe_90,48846
156
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=rmExcHQw4rkNruTRclVNfiGrcqqURsiYk3x9TO-IAqA,50883
157
+ snowflake/ml/modeling/cluster/birch.py,sha256=DCK5o2TSPwmBxxxZYgQsGuwIOErYu9jUAFnhHdTKJqY,48571
158
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=731dOd6cvOVDL2IFmY3yoPvUe-GvU7qdUdolCiZDhg0,51270
159
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=A9C_8_BB-KPvlvNtdVcHuMhga6pPG_IW-r8VwKdu3lE,48933
160
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=Q5gMSa-W-j9WMhYLcQDQVnI6ErcKYla_yavs9I9GTxs,51401
161
+ snowflake/ml/modeling/cluster/k_means.py,sha256=g2H5DwxAcmBfzs3dyHgNmkLLMqYNuerR-o0QWFTcQyc,50826
162
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=ycVAbdL14g_lR3gUlgaj0v1Lt8_eoJcrsXLySav1Vq4,49143
163
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=OOhW2gMlljzJWtI_61psJ2LOx95YSms2IDKnsVIHS0A,52188
164
+ snowflake/ml/modeling/cluster/optics.py,sha256=EngSMXX1eTLKJCmDZ8KjtBZElpnln_rnGyLnyHyaZ6k,52247
165
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=bk2PMHOMnJG6h0zSLyJplUKwGxmBjxdGNSHQBIXTpVU,49142
166
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=VZXmEOcb-E1o894iBhnFqqjMkShBEql5U2lb1OFkhTs,52334
167
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=rKhNgIitjXGupWfFqYjimk49nCXYS_j3I57m-OHpcso,48275
162
168
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
163
- snowflake/ml/modeling/compose/column_transformer.py,sha256=5dezU1RLj8FppvNQ2hQhWLpeS5XI6D8PMi6loH_1fHs,47449
164
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=U0qI1NxGGrHHaTQ1-T4LS29bkkP7zKP0qldS-SuExGs,45437
169
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=JM95YHKS1l7SPWIGjtkCfQefMo31X5idL7-RhFAiD8A,50841
170
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=9dwmnkydmJogcBcxn5ChMvYMQ9iaEySthbbwACg0sns,48829
165
171
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
166
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=gfXNdBaJVmDErpz0oFdQpk8xf-8X4GB9h2Nd5IBHFbQ,45775
167
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=vHPQGjQE985wdLD3KHul0NWOoAatH5djDSI8oamghw8,43583
168
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=1E9fhXKdhB_lC0e54fGws1AFfC2tAcMFFpZpsQbSdR8,45447
169
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=JA7hjBSi6cThyeBjDR8xDPenvZmpHNl5beWmgZN8AAY,46612
170
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=-S6mm2kUqXVKZrYuY1idk4DysuiCfxNp6g1UwUcUXMw,43721
171
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=sQcKR33Kp8Dkyd-fRrDtCfvxd-INOxN_HU-dDlnFTrc,44476
172
- snowflake/ml/modeling/covariance/oas.py,sha256=t8NqXHdtt0g6MvQKVsa7rx_ez6Dmvp1Xm3VjCTEJkfE,43362
173
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=yZUrXk41_YBY5Zow9hgTSEZMyYkI-V2IDtQMUWzpWFA,43738
172
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=4FesJyaTg4p7QEDA146Yah6qa6pITAydu3bjrWXpR9s,49167
173
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=MnAbsL383FamDGP-w75j0XNyKyWGZJVeiFox1IrnN18,46975
174
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=Wsx7XXEbk2mLihAGLD0-8JlDUt1PzU5ScNibIaPBYo4,48839
175
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=tpaXIOw2rcbn7PhTRLXPjYNZ8w0_YHOkZ44AYLApp-E,50004
176
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=1DjNUC6vyafLkS-FBByGJX2daB8GwV-nx_gp2MPoSTc,47113
177
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=4LRTnoNaQ8QMvLZ7rfV00oujVKKY9CqmfRBaX88Rw_g,47868
178
+ snowflake/ml/modeling/covariance/oas.py,sha256=b5aPAfCQZIW4VwRLIj06OcVPOABFx7wHwYxX89-bVdo,46754
179
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=t2faZLN_pr6tqN48gQvkaVBNuxq1PwIVroeE07CG-ws,47130
174
180
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
175
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=r0NAIdbDuWsoPLXe8ho9ePIGoHyDsRysYNxkHJoU4d0,48446
176
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=YIgvHrTVNNgmxJQK47skVy6OaEdaX4XQeY22tl3YZSg,46151
177
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=Azm2Kp5ud2vWP24sokMSd_h2BfsCtMtNTAiZJzWRiy4,46092
178
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=-1sGgytOyU0YQvDX7fLx0RV5pU12AatnVzY6kImOrgE,44445
179
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=qZoHKyfO3M8NtZ7cdEnmI34o7vBgnY-UpGvQDzllg_I,48444
180
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=0m-DxZfhfh7s7SWl3Q5gSkCH31pLEQxqbnnVsEexQG4,49490
181
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=2cZ6jyv6Taf_VM7_OsVe5GWq2rQCtXT8o6cGmCtIbdI,46782
182
- snowflake/ml/modeling/decomposition/pca.py,sha256=5KkbZdj1lzRAfuHiUS5LaxUM6jTu9-D9jq2RDHazlGU,47711
183
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=rb9r2g_KAIEEsgEVjn76AvV7JyquEsUG0TWbIyQ47ok,45614
184
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=FQdGcPCApnifH466AxtINz4QAmUdwOUz7ArGUGNGb6c,45202
181
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=LY-6TJJ9_m822mCAzkH-FqyI2LtGpOKg-pwfz_UViUQ,51838
182
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=J-c6ya1twEGf9oZnGWOruCZwMrDVG23sFesbdK2Thpo,49543
183
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=x6wJ-wKbLFAfwHgiacDbbyJZj82zz3LVfFDRUaYVAt0,49484
184
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=Isda0dKytZ4sWkj276Sfk7u4obj1ViRWmINfMDu1-8Y,47837
185
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=de5vTOkvpQebwJBGFzKWN3e4eDANiHcvYtNwUAsjxWc,51836
186
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=rceFeLfNzMkZJ7ZNM_D8rI6Z3Af6-4aBXYAZpY5-8Qg,52882
187
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=9uvLahexV7VCH6KD3i6DchRoulOOtK9IBpebB-NEZVE,50174
188
+ snowflake/ml/modeling/decomposition/pca.py,sha256=xOWvnQt7EFWjxB5HLc_61-k8t_d33fFTaD64NhCXais,51103
189
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=U52ueZYP3dsrGY8EgAiCWwXyHb7ZDGlx_YEBx6Sg9yI,49006
190
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=UOsph316mxYS6SsiVsM1hMkWF_X_jz2q4rYfkHQ6Wi4,48594
185
191
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
186
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=abn-yzfJ16XZsQJH--6BBcbo5Ax81OQJGd1UWohwyK0,47917
187
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=35r9I-WCd2Ky-YoR7YkpIf0qmDcfc7aIZrBTHDRUHR4,46006
192
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=2j10IY2v_XN-Couke3gXHuKYYxBfaGan9Td3dPv9cfQ,51309
193
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=0p1j-2tHGF63iNRH9Cu7Bpvx3F_Wnu7xZvSbGgixz3w,49398
188
194
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
189
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=1PKPXrtnBhySmddQbXbpmM-xoDYKvQCId9CWmugOWzk,46824
190
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=5Gq0tEGvkQBXFakDMLUP7_QgR9bPxIycMaFAlvxSwaQ,45715
191
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=YSPVn_QngReSIs7Np6iTP-h-jFe91l0TZNioK6hKrd4,47735
192
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=mF9t_6W6fAmyZjg-vk2lfqGiklmVuuWkXTkP8Q6edio,46971
193
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=rg0tcidpg4Vn3MkXmfM8tF8DRG39v4ljJr2a5dLGm7o,52655
194
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=dw45poTDCH59Jim7e2Q-jWbXG4kePxketH7_VCY56P0,51259
195
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=A2uCPa4zaO0N6u8x-5D5e2QJFwayithmrTJkoGDvNR0,54110
196
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=kfKVfNuF8esX9lems2osK95zVqhTW4iwTHv1UFnFYOo,53703
197
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=hPNwZIg9oKUOWUBFXLikwPHj5VcP60fQx6_dq4odtHg,53944
198
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=Ya1Z2TPM7HKkylfenLQ8vMGxxT53JyPISMvDPUncRKk,52429
199
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=tpqX98wl9sS06ZJQqNdW4kibFtwnqmuCulF6Vi143AE,46923
200
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=4caeketEZmxmjx_9KkqZfbRTkOsUU3VkqK_0o9QWjQE,52638
201
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=iWkEx6A5JlPex5tCaX0F2k2B9EZ0KfDxjG4xKOmpsbY,51230
202
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=PdKbG2Vc8uXxVI9O8gGNQoxibR24MnKWv-MJfAg8d0k,46668
203
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=K_BowzvqgiOM885UQCgEoYPmXkxLqtk72W4qjP1YDo0,46239
204
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=o7WKhzYZIRPsfyE7vnH9DQOkQzIComz3t0_biI5saMg,44768
195
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=VgxneH2u795BnWhSibz0WsFx6CrS9HNa5G3vDXLb1HA,50216
196
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=3ZD9rt4_BIb5UY5627iw2sAQ9nclCrr0gAERdJ-FUUY,49107
197
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=n-w6SXU9GAyiRzvVQzf41JTFuhMZTiNA2gfMAQdIwY8,51127
198
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=ba0Qk0sq6LkjyIMMYj4imuX3OGvoQVOZQ4HbSNq1JoE,50363
199
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=ao2055ldja5mNCArNlQiI7y5-EUrWNXpZs3oJ6DA5Lw,56047
200
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=wJ87KI6Zrcg1i8AULKYPJVwrrejrdZ5nSJp9G0-rnzk,54651
201
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=zwoNi8NL6kmAd5HuYmbKUC6cTr2q_5YX-eVf1xLyReg,57502
202
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=GNHEy6qKoj_LvbBXQHi9XWmroyvA037leP88ZWgYaKk,57095
203
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=fWpMe1KGXkgTyTtGZHCsy_CdIxUXYt5qcfqM-LrRHb0,57336
204
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=CevblPb_gRICCWI_-9-WX0bUU8xfHfzcOaNMgLcP2dE,55821
205
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=VxAodKDVI2zlGlDguAjcttkUIsCjbFMuv3buUkIIYTw,50315
206
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=cQPdeI3Z3pxFnEjy9qkOG3JTp--B1jogDZ22tlmDKgk,56030
207
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=gmDcsGH4Nfo1y-b5ISwBT9yfS1Qr6nImy4OYhlflkuo,54622
208
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=uvy-Lvv-JMKJB5-FBNSabuAKD5B--QFknm2GhLt0e8M,50060
209
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=hLDRXzIg3Ub-xWU5gTK2Qgyx2ojDS3sBGLy8mtORCd0,49631
210
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=0FFUoxzg0hcGjDlrU4wxFJZ3RWcoPulziiwT0WI43xQ,48160
205
211
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
206
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=w6yWOpJ81eD39Ff0_rjKRbkgb1kaCztejmQNUCpfDVA,44079
207
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=cxOdhyv-uExXTzQ5UX_wKzEHwRXrjoOqAp63Rt5iOeg,43722
208
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=GPmVENFXdZlb8msR1gGB2jPWMn-DWFDG35dGxgTFJcA,43716
209
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=7M-paZ2f_RuSCpcq2_BhxNRmMmPPvQEBMioeynEVjvg,43724
210
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=ca2AUtsUhmZLWR4eNIvhlRWRrkodYR85mRo2IBnyce4,43809
211
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=10-R2ijOsTVRGJiHL9rpSZNbQPPcZ2q-kBqe8jc-4KM,43849
212
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=kRZ4HPQgzawll6ZGZ76ZseVA3qhLYtNRFmq4d_9u0gc,46442
213
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=8i6_ALx-0XY2FxRGnBeOY2Jd29PYz6ALFDAouC6ysoQ,43402
214
- snowflake/ml/modeling/framework/_utils.py,sha256=85q83_QVwAQmnzMYefSE5FaxiGMYnOpRatyvdpemU6w,9974
215
- snowflake/ml/modeling/framework/base.py,sha256=TlAfli0RzDYr6SWxVfFcfkK6T9Up4XXZ0nnAYj9tMFg,29962
212
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=iEI1NAJRAYWbvV7W0JxCzHHxfTS4wHra7K4bas7lMYg,47471
213
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=s12RZaRVjthJPtF4gKTADmrAdUxmlDsoyy-SOhEDosY,47114
214
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=2yugXuswa1eryGuj5cEFTnLh78l4igRrX3QqqFRJ52c,47108
215
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=mBxNLyPeu6EC2YxELsAllAHAoDMw7g9phh-Jdo_qWC8,47116
216
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=ArGC7MVPil3_l-WEcFofOespzYuzqzAIjKpSJ6BOamE,47201
217
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=sodp-xs8NoBuveCiUlpOt6AW0cwFSQlA0SCqnIQqOwo,47241
218
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=3a9I2j7_EHTXnL4IuIYpIqzgeUtaHp__rfO5chONW_8,49834
219
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=H_S5UhsRwYRedSSx1c0fJnKcxeRmKLT5EU6kWJ8rDm0,46794
220
+ snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
221
+ snowflake/ml/modeling/framework/base.py,sha256=6ebxZIkUfDsLcEufokyN7XVKyvfvjhys3pFsUyQtfQ4,30470
216
222
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
217
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=igmWhHpuU27OtYDAHbduJHNltCTKwakCu5ch3Q0brew,49376
218
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=VXIWTMMM80zqzBBdwQLeEAdzf67jZ0pXhJ50O_do2UQ,48441
223
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=xoaQud9cg8-qNG65Zf1KkJdbcuBp8lR9uYxU7M5yhrE,52768
224
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=t_UPbZ9uR9mIYgoNlcBR9JEpcCBY_h3EzpmWgQV_nSg,51833
219
225
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
220
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=jF_H8WvECHavwzaOKYqsR0ijM3VnyWzBC3Gl70Qd4zc,49939
221
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=49U_EkD-kQ6uSIxC8BOKqc9IxS1IHuvW1gfOeGeEFCA,45696
222
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=sdwF5ip-u7g3ioeK7ImdEmvCZE-D6xigAbiXP4kkduc,44524
223
- snowflake/ml/modeling/impute/simple_imputer.py,sha256=eC9CRhHMmsylm7oi5LGiukRlP6HIN6r3IP1DVpYrwmg,19258
226
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=ShzrWrfRHN7U5OsWWpRnB_-yRe6i5pKCZWIOdCIVwJs,53331
227
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=oTwdqdnsDfdLcx9nb6Jqe9H71B-VutU0vaZrj8UrxaQ,49088
228
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=v0fSUO9hoQ9zk7121ZZhr8i1bo483IlHPcyZdMwkATo,47916
229
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=awM33HugS5jGs3JXud1U8eEMm2VLdIAf7z_eVXAzKD0,18499
224
230
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
225
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=McvxnMNfyv3O2fNXsIMmGFFWfbKnEulj11Z0D4X8bDo,43515
226
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=fMANo2btM_MaJRID8RrF7Ni66uwcsvmyUlOXPEgo_4w,45319
227
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=dH5PXUV9ucAUNK-s6BNazCKcidt2FrAf0Q5zhEcWqSA,44528
228
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=WCx417eh8aGpPQys35ExSO8nXIl-a_n2zd32f0EZT8E,43915
229
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=0kB3UCP7mKE6-jzznCunfVmO09_XESUyteJGRgrXjds,43942
231
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=SqtQEX4ez9km91JDYN2NcIHEAKT8lxKkEWlZX8HM9M4,46907
232
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=SZRx5NieE2Skj_6FvqiBXNQ3neaB3F3U874Avk7P3Zs,48711
233
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=eO2fS91GkcHfWTyxFNRQVdtPhNd21AuV1myUpks_Uiw,47920
234
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=c87jMzeIguq_CPsXN05hX5pKhU0WDLxEgOk3dsEJcR0,47307
235
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=BpOYKneZk8jwklR2hopITgnA3WVKBk5fgunzO1aonEw,47334
230
236
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
231
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=Hm9RoSJqOvd6xQrNByvKU3NAjGktUF__Txsj5HrO66s,45755
237
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=bvaF-kDn4wWUhijpH-J2IYhvdVjKWqJ3rSt4SQtO-tc,49147
232
238
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
233
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=7iSIXWRBMmB8rzDtiMXzm43adHvtZAmBK4wv49fnljs,45257
234
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=eXxl0o7WYUAq9ToqOT5OKZg1YBCVvQ5_trlLgzVZusc,44760
239
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=DTK5Ja5jNtZueOCt_9_-tPWJCH7K9LS8qIG6Olpq8I0,48715
240
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=LgVfIPNhWLkvpwYcNmcSoh438EtfxMyc2rqf5nxQiK0,48218
235
241
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
236
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=BE0Mp7qtXFltlRrh25dytZla50nuyLeIvcE19wDsxDU,45700
237
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=qU5_D_0H34X14gZa4EAdlxluPXqQIe5tRPPRctiZzOY,46116
238
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=1qCqDfx12EiNxgVXS0j6VpxWK1H7axmQThFp2iNyCkE,46688
239
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=2xz6RbCi-KkpSU9XNIHBMzJr5EtEPgcOI6_kBuKUIbU,47956
240
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=XDY-b0Q_LrMz52OZE2l4Y8W7CXMCL6n_ieeJm2fEtRY,45768
241
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=DB-sSJb4HGqQG8vsP3zm7wUhVeM8yyBSx__GkUpIGX0,44965
242
- snowflake/ml/modeling/linear_model/lars.py,sha256=uRZKWVAaFskGIWA3JLwrOROYcfL2x9n9IsgeUWI7O58,46188
243
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Ql6yABd-lkV6zfgi8C1lPzhWHv3QLFm799abp_N4bMc,46409
244
- snowflake/ml/modeling/linear_model/lasso.py,sha256=zG7L6KjWEo8TSjsnVSZpiuMt62y9CP4xhmgxLWa-A-s,46294
245
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=uMAhsYh7FimkVht2XntX3zCGuL05-Mcpco-qYntfH_s,47079
246
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=sCvBslSN26bvq7d27ADRWtKRQkTe-5NmzEt3MoHr3xA,47324
247
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=2z3P2tQVw00JBwCjNNEehWB53uJzBOAGGaXmWK_HgMM,47285
248
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=fpORngW3p-9zSA2hkWqHCqXwEGj5Akb1a-ZdLCGoecI,46631
249
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=Zh56EYsMX7KqndtxAWx8ehS26GFS2cg2yHFRfAFN0fg,44507
250
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=IjNu9RIosJqIV-PaACdrvJqt6Q75FbLslFgWFuuBbvE,50762
251
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=Lj9hsheYdBuvn8cA7LtIrd25ckhOuGIhwi605rI5_Vs,51802
252
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=x-l-glEXz4VdbbbyVW1diRTcThbzfZYMVkyt4Car02g,45979
253
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=Z4xNGDpMeAWM_QrO8M-MOH-VruKhq9_MJ71qeM-mcik,47617
254
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=za5VRyA_cCXmhQxElgWpYqiiwcEiFg5JD2MZOzDfcIc,45527
255
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=dZxCUZn_CodKcd3f73PCgsrsModB-57JT17KEWxO2L8,46789
256
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=MdHMXDI9COycSuEcPoFJmLr1yGqvU-MWywpYYGQKb7Y,45134
257
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=g28wTZgL77CM63UjbEF9sk6Z-W9Otg7i77yz6bqtPDU,48490
258
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=eRk7Wx0Jdz9EOSykusi36ih3wcr7DpRWdOdPL_O-A0g,47557
259
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=aGZ9lcPnCge318q4mEhe4g33wf3tCFzhHLnSGG_O0aI,47874
260
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=d7HD5-Hfg2CC2mosQYTEcIcRM909XwynOHe1fWECVfg,45813
261
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=KLMKrF8zW6TkyLz1UUwrV6Ecua29NrnVpw_1y-56bII,48932
262
- snowflake/ml/modeling/linear_model/ridge.py,sha256=xXdVan8y3qCoeEguTLgq-YKVFcLuJcCPutE4V8E4b0g,47838
263
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=6csfmq367kThuwe33sRCYy5dxsO7NUzzFfZXg7AQsSM,48226
264
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=Y49MtT7og2PMkKe2MqQmdTj-8WhzKKU-Jfwrh5n1y8c,46221
265
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=xsBPpsxbqv5m7TKseRGzzm9qqmini3WSjj8v0Gr98b8,46922
266
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=WBlc9w1BUFBujfqhq1_c62CCjf_8EU59MxuT9_4ZPe0,53299
267
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=8NZImlxBOBT7qTypY0wgkPUCDQBxfXV_4yLPyD9Yduk,48097
268
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=3CfSJtIBYJ_00OHKW4qMJVFXtmUfb8CHeQU03oo_Uus,50770
269
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=BpQU_THSILO-jsm83FyGBUs6cDq4bQ0z4thj5TDWlkE,46248
270
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=xynomI6tbTDDSmxxoONY7NnByVnfuUApUHui3PLbdUA,47204
242
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=MBbPZEbrVKJFgVa4X_JWK7gOY5oyqJUJkA40uRHTA68,49092
243
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=-bMiotMYqoLRAd9qVkFFDPJKjJqKHoH5vDX1-rrpAMY,49508
244
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=gqv2mrTmcWrcxF2XDDoHEq3WQv2P5FwDLXz82hwseRE,50080
245
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=5ZtqlSMQTLP_DyUMPdrvPzgR40RvGW5iLnC2WP4qlyM,51348
246
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=p4oOBdWGqtoqrHxzhi793ST-MTs95IjW1k7gvwTWOX4,49160
247
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=pnkGNWrHDphyan52lFo7qfqDLqktq5QM7i7kd8Lz0SA,48357
248
+ snowflake/ml/modeling/linear_model/lars.py,sha256=Dg43PU2uhy-Z0TneRgc1EpaKGOKMc7BVHdJGEaYvVNQ,49580
249
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Vt_ll0a0Tgjf3ZZAHzssb-YN8iTti0CeX4JEmtjGAm8,49801
250
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=9789pUfQLG66ox4EaM4-W3-ay801yz4w8HxduGyRKi8,49686
251
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=TlzF3JRIdBqO1SZbmLvEe5GE_f2KaIiQBbw1ypar70E,50471
252
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=te8RfcaK3Fd493Vw4P7rh0Cq62Ow6GqePgEcePE7I58,50716
253
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=nVCYsE3kFLkeDov521rmusmdbqJtADFczI3DgciazIE,50677
254
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=ZAX7IbjPYwYNg8TO7Vwf7_rc-JZxqtAHOCNwqvXbFxg,50023
255
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=rjiPOnQrpzbBpH4v5z5lPDA9Q_M_zI9bGaX30iNwD30,47899
256
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=MiJcM0p2SZEv73NgCIym71ljk5F5rckyNSKXrdyKZQ0,54154
257
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=CNnWwT6pKuVKLVkiuYTMKDeVpYlz4sg4JOJv6mlEEng,55194
258
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=fg7lgy8vwQCaubDnxFB97Vgj0i_Jt9T2XG7q9eWRdwY,49371
259
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=qBdIWIkpZ7IKjimbx05Uj72Inh3Gwu_Wbv8vnctNGKk,51009
260
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=lIBHh_XaHP9DuJEOslATxa2VseaE47WI--Eo_5XBf0M,48919
261
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=Ki_CLjIKUzSHavZDwpmkoeRmIUmRHvp_Rz1fqYpFZk4,50181
262
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=jBRIMM96qihVhRkz4WqYSXQIhKvDGblwSN0pZSMh3XM,48526
263
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=TmKUYInBA5K8hURL7fjGKwGZ45LhiKUllyQzqlth1ps,51882
264
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=_H9FFj9TS8JrOfgF2g6TH_YBwxUirQMv5MW9LayfKgc,50949
265
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=r_iWf0r1H0uUWwJuVL1ln3-1odN8LLBnzrd4LEhQNTs,51266
266
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=CKXD2gLEsz8V5Xi7sKyAftiS352LpLYXyFu08Oinw08,49205
267
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=mYRyQgBTp45Wb4BeNSl6rTK_SzYvQVvzx8hpgOh57_M,52324
268
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=Mmhb3rQQgs2Nc5GYU88_lE_DGBUlKEQqr2z4TAa7cgE,51230
269
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=5wCXK6g-BlMUTc_PVuH44PMH6tzYC-KeUCnK7XS9pNE,51618
270
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=8RAc3tcTNjQ86kI9AOuwpheRqr0q76HA-o5DoRiQZOM,49613
271
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=PfIfSR3zKgdxGlkeTGFgbYAITtYkk0s6Q8Nz3QopVW0,50314
272
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=8TGJqBTXs0b_BVn7p2qRPAfMxenMQhGW914P_h7ThPs,56691
273
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=9seurHoZp5Ycd2qjNFmyyX5ijuY536h907WM3FL2iQ4,51489
274
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=BqnU5tr04mi2Kr0prb1bs0dArI8-2ZfQAEfAGkcEX-k,54162
275
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=oD3OXFHyiHqnVfzYgKRN9S9t1BmonmcZkSdvs8_yd0Y,49640
276
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=bhBMLULBc_sEdaKX7tAsdoyn_1FuK11X2oiXucb1_V8,50596
271
277
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
272
- snowflake/ml/modeling/manifold/isomap.py,sha256=OOtcC3LDWrzXA7DZu42VLrz-RtX_WxSQYjL3IIjwL8c,46208
273
- snowflake/ml/modeling/manifold/mds.py,sha256=4G58NMEKcl3Ng8ueyhQJQrss86sF9S_mvXs-HukRRj0,45422
274
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=_7EGlAPcs0ToL-GzpL25d4umIFljCG6Pn5LG1nOnGCs,46246
275
- snowflake/ml/modeling/manifold/tsne.py,sha256=LBM229aO0IpF4J5N3zZOtqYreMPVUj1wRP0bP9n0mRI,49205
278
+ snowflake/ml/modeling/manifold/isomap.py,sha256=60ASOONodAkjyhXRdFOy2APjUvCuMmrtT7KuMWXJXcY,49600
279
+ snowflake/ml/modeling/manifold/mds.py,sha256=VxHFQJc9JW-cUA35pxPmPXJwK0936HI95fp2Rb_gHNI,48814
280
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=L8OYTKQwqEWybCKyLnwWq7zPES7AtlWQIufDM076wZE,49638
281
+ snowflake/ml/modeling/manifold/tsne.py,sha256=wipO5HnzUQhfBC-6reP_JalRmrP9mNwdfhv0apss1nU,52597
276
282
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
277
283
  snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
278
284
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -281,70 +287,70 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuX
281
287
  snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
282
288
  snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
283
289
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
284
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=9J-6gUBFrSxwrmNVdcFKfsgoW9MjrCwK1PiU-akFJAY,51004
285
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=mcdhmU5IJjqGb9r2gtzFg0UEDwn6x8-Katl4Mbmmat0,48905
290
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=2TogPi_LioMVhi5Daldlvze_o-hD1WQpNnkTf5AkFxE,54396
291
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=Eh1N2aYsRnuFBxV2QTaVwrtlNRE1Cap3G0Aa-p2kYdU,52297
286
292
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
287
- snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=IvZrOqNYQmRLo_sRCq64tPYYLoURkq_cP7u06T1kBr4,37147
288
- snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=Ebub4ywRs6al_58mz4kQWFcaCBWRxbflaSYgMTvhJfk,37386
293
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=JyE8MHM0tiSdRFFzcTswhLk--n5yt-4yj6znx5EyoaQ,38453
294
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=3BmQQe23wvnHWN3-BfG7zzKiG-6X-FfVu0_2A9yhqdU,38692
289
295
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
290
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=fS6LyMAjpHVhdaxFPo_g2qnlnnCquunD-o7hUhoZBX0,44507
291
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=wNXTMaXGuc6lTY8G8208uVqsI9muciLLTB_hGouHpUM,45441
292
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=sORLKVTEZ7wel8L1DVfriEjUyqrsp-u_bjNhJhaspQY,44777
296
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=YV9-vVxIkQzcjAVauatxfoGx4mP7OvWUTD-pzh-oXt8,47899
297
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=Cc6v9n1bdIyFzqGSPnqFiHWZbofqDxAEiPCsW2zJ4hk,48833
298
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=6QtdMlV8VNGXgHzd-Lo3eszCRhFCz96PWurlbukifeU,48169
293
299
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
294
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=sO-cWHHYRrJMymLRClqDitRqeV02SCZywWPNXFRjqXg,45046
295
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=yIYE14LHQylypJYDaMc5lOelZiKj7DCSKpaNxDH2__8,45381
296
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=g0qYn1DFp_fIUHRIRrfPQuM84aaAR1REUvfu3c-kR4c,45061
297
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=l8-pVqGoeD-1Xw5y2-FzRNmq1he-3Gam1x8O2JCU1fk,44190
298
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=17w57d0HFqISjBSQlFm1k3t9eVe5Qadg3JIOj-iCf6I,44826
300
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=xus3Of6nKtPCJYsnWZf3gL42pdvfGnkEkq2yPj49mE0,48438
301
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=3JoeKRyn0CoAjA8Gk_2Uhk1wtj2FvbtXk2wNyaLnKlM,48773
302
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=BiegAGRFG92DLesOBTvbPZZZGovTC6_mHtksSraSxB8,48453
303
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=ebY5aK-nHoM9NKVlEO207JijRO2aI33cjqwO8qgOox4,47582
304
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=q_Q20vfh4OdUQ9U1XW9PNQt8XyB-mzYAAELhZTek28s,48218
299
305
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
300
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=YiYzAW-cm6NsiKO74k_lxLfRyva08NNCY20UQoX1iFE,47895
301
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=qLZRNBLwK1twwXdkT0eWuBvrV79EikZtm9om4UwpSrw,47366
302
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=Egnkug25GjYYj9bz7Yt8Fbkh0fA07EvDXIhShaK8_tE,45724
303
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=u8KJ2NVI2kIDMOdNowl8590GYLigSpeZ21wFL46ZexQ,48302
304
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=aaUYHHNWlfklScLFCiQfUBftvzjbonStKS8cpb_OoX8,44384
305
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=lNHrWL3sChKS-5mgTLwIzn-BURlYB0KUelxxT4Fs6Vc,46193
306
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=xRcDPKZRw6y7GBAnCb82zLg-qMLWschgFVmG7KgQZeA,47573
307
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=epGG4OVf-k6OD8qjQWAXXrVTePGPjb8hcUzAOivplA0,48308
308
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=smg-_1NYHB5ZtdWQXDYG8h1Y0Vh42YZhxKZW_aRx2yo,47189
306
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=EgOxWl3hJlhBGUh_ERzLgUpvbfSaEa9fmG9NwCvl-WU,51287
307
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=AnFJpXgQQyJqtJdHImbCsVBO9U6IEw4zsexvCYYayh8,50758
308
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=QSgpGXXEyrgjubKeophBMEppyfSEHjj0CFn-iHI6VHY,49116
309
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=PUR1R-jEc65iKofDnoPdwy3-RRNGPKJDY2akwKJHRuY,51694
310
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=DbntjDRekGwuGYq77BON-TX_1_oEFwPgcVpo00jrymk,47776
311
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=ncPlfTMY426L82uU7RRGivV-IBVc1BL61VDh91TY5E0,49585
312
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=VuIWZD8dy0C2SzSgTzA_lx-F_hQdWvAyXrkLSl1E0wU,50965
313
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=oHWTW1aGLHPqZMK7OGou5DeZEaIIXsW3nh-ep0nBquY,51700
314
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=z7aYidP3kmDJG61Jmv_x9QVHM5fNavqsEBy8KBsDJEo,50581
309
315
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
310
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=Of4lW-32n88fD91RDUf0P2YGKceFS3w27ItRJzZ1tUc,44688
311
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=8PxgFrqDezRQdubWhBzOfbo6NYHwx43epJ0WdElCnBY,52268
312
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=p3IQcDXOfLeuUzvreraoCzEPxLPp2x1zpDpfHCn7COg,51537
316
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=JDjwNsPZJcNjHgUkbNGM3LnQgFAQdbE5v_TJIcOGSdA,48080
317
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=etjW75x8b4iCFIM8lnuaZPLC5UakLzVDE8_LDr-EN3Q,55660
318
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=JheiwTgmArE_VX6OcXNvPFt0V2H_R-5rKcsHcZXuaHs,54929
313
319
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
314
320
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
315
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=jg8cwmE2mP_IcKUabjdXBtbtvr_AZME6ZaqgTf--r1w,25436
321
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=R5F0jVmKyVZWXHE64UQnBa2dVjSFZFQCYXlA_s1x5qg,25456
316
322
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
317
- snowflake/ml/modeling/preprocessing/binarizer.py,sha256=jc2ZhVaW6R6SH12di4W3J8Awgb8GhDBjCQbaH4bnaqc,7111
318
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=XUCGQlitkx3Tv794D4dLKu758EHN_PU6HWPh6U-_Eko,21082
319
- snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=z95P3umu9L4Uk4UlAGDOkRRs5h33RPVNeCHbJ1oqjdw,7517
320
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=U_QUzDVS6W4gd_uvt5iBZUQuDu60yFRHZvpk7Vqq1kY,8880
321
- snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=SRPvTPZtNKdpWFpX9eyRp9F11seFASPLzCuhX-BlUYU,11987
322
- snowflake/ml/modeling/preprocessing/normalizer.py,sha256=rSn1c8n7sbIswlDrFdq1eaWRvW0nTrX1LF0IIHBWTJM,6696
323
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=0kX_H6dhjPiycUW0axCb_-Wbz37MhoAuMq33HHnuwWU,71691
324
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=rkY_9ANjLAfn1VNm3aowppLJBnHVDsAJRthtWCKFcTA,33388
325
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=vwjHs0PzoBF63Y_o6NQ5Hzvwv7SrOoWUiEuguhByGAQ,44599
326
- snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=SrQgRixonU2pwqfy3DVeBC3OiQ_0UeQpqNtEkn4Hr74,12510
327
- snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=Wol8YEr2JjqsbFrLk5A4MKcpXvLDScVtflnspOB-PSg,11197
323
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=noHrlTqpI7RRzYbCSuCjKHxhL8NUCDKNw-kDNTwyY_U,6999
324
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=g7kY0LHjnCaBzkslCkjdPV06eL2KRYwZuYKRmDef3ew,20970
325
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=C35I9biWxefltNmXzqaJoqVgOP8eOnTNP7NIsnfR2xE,7405
326
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=xpuybHsjrL68u0qNe9DTrQOJsqzb8GOvHT0-_tIBzvM,8768
327
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=agZt9B37PsVhmS8AkH8ix0bZFsf-EGapeTp6-OD1pwI,12200
328
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=iv3MgJZ4B9-X1fAlC0pWsrYuQvRz1iJrM0_f4XfZKc0,6584
329
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=Ro8Rjg4cqdGZgkyIbb4X75qEExVVztIzuIM6ndslZnQ,71579
330
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=3c6XnwnMpbHbAITzo5YoJoI86YI-Q_BBFajoEa-7q80,33276
331
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=nq4e1QC8R9-5m3UFNr4PBlo-HF7R7dbjIqIWe-RC2ro,47991
332
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=iBwCP10CljdGmjEo-JEZMsHsk_3tccSXYbxN4xVq5Do,12398
333
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=LxvcZ4a5xuHJLtIvkLafNjv0HsZd7mqzp_cdI378kkM,11395
328
334
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
329
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=ZyQpilq5ukHW2lCfYuDZe9IozokN6TKmGKNpwmCMoks,45283
330
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=3EY6_AxAxB0wvnLVJeiDkEvUtVZjWxLzoP9BWgxHaHI,45632
335
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=-PiLSdnYJUXbMuOGTZCxfI23MUtKZIrNCI8CkXefUqU,48675
336
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=RqwGkGNabLUdOZ_xT_o-JeoOpzCWD49MacGYf42sb7o,49024
331
337
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
332
- snowflake/ml/modeling/svm/linear_svc.py,sha256=Rj_WLjLVmi234auyXTIt6-e8LAka03Tmen48L0uZM3Y,48093
333
- snowflake/ml/modeling/svm/linear_svr.py,sha256=i0Ba_lO2l9fjc776q2uZ0t5MrETOFtoGqxx3bhNUOW8,46446
334
- snowflake/ml/modeling/svm/nu_svc.py,sha256=L7n7vks7VLSAg6TGGnePXhY_d7i44_uqk2NmvdlyyIY,48405
335
- snowflake/ml/modeling/svm/nu_svr.py,sha256=v3MmS_iuW5XDqyfISMb3rrDLIVgzP8HylwqF6ipoQeE,45484
336
- snowflake/ml/modeling/svm/svc.py,sha256=zhmbl0H0_1xXBI6TJyI8bw-4mHK6f25-cGMxCkQokm8,48554
337
- snowflake/ml/modeling/svm/svr.py,sha256=7ff4uS7UaUYmEV4PqwJwxBH2YZqA3Q9mzE-M3Uo2-es,45673
338
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=cg8XdIXUgCb2hqH6lUV_8SznsSYM_4Rv-Us6y_e_Uw4,51485
339
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=jsOCsb2YXGHjp5IvnHBLdXKL7LizM2YH6eTQydTDn_w,49838
340
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=edjqwhcv8H2NiK5QQds85D0fFXw54i53L6aF7fTLJKE,51797
341
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=A2DDWc8GO-M-2kKfbZbCM5g11UJUPoW_MVFHh7dFhak,48876
342
+ snowflake/ml/modeling/svm/svc.py,sha256=jJ7DwlXwmN0M0Jr3MN-ERrUsJzvX9IcTtSjGr_7z8wg,51946
343
+ snowflake/ml/modeling/svm/svr.py,sha256=Nhs16EL09Fpmciqj6h_U1CeVf4WV5fU5cJ_3PT8LFIM,49065
338
344
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
339
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=IIJEjjYX_ewLja7SwxCC20os0A6ZCKsmT1OsMUyxa4k,50830
340
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=YniyR5DwuFv5Wpi9V22O-liMc5TDcPs0JxambqLEXZw,49529
341
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=hv1iaImjrUYsOZ-G5ns7Jvt-6uyitxUOsI0Co2nxI7A,50172
342
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=x5jM42Pj5Tmje8fQLi4l7CQ4-VKrUmlJLY2JxLBeD-s,48880
345
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=bWkIi4j8PzPTP2djteY4rllrjiFdvIdpcyNdk9DULxM,54222
346
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=5NYUDCTEvQEg99b2CSBZjieh2Nqn5EyUwVH_Ybs5q74,52921
347
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=PzKYyjJod6_712C3cYg83kYXlXupnhq37mQasn_dgC0,53564
348
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=oh1D5gSzt9G4HwLX6KXniWh9Ur25Gc-XpagE8NJcg6k,52272
343
349
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
344
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=zDqXvGMjTz7p0O881qtWbU8kGyz_MTu6HWH3_LmfYb0,55828
345
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=anSx6zCl6fBs8RfXd9xiLgULaVpJOGP2y71W8gCK9UE,55327
346
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=5raynqG_fnksOVUsT57yFZ2SPr4o6VxYRc-2SiXb4fQ,56004
347
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=Z7-ReBZRrE9-G4XENdbFHXGKMwGAE-BmK0vuXzWYF1M,55530
350
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=GH12HzpDhIlyUf9goywmywndTczaPUyYIpsMveyGUC8,59220
351
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=ddmYxpexJsodWT6bTI8LG6wxGWpry1YdvfFUj76t_fA,58719
352
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=4gMA2jD7yi11YrR160FBfGDz4x2s-SSdvHaXXlTLE6E,59396
353
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=nXnnK26ORSy2exd0pTB4DmJJCeED5_vNQND0loagXI4,58922
348
354
  snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
349
355
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
350
356
  snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
@@ -354,13 +360,13 @@ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1
354
360
  snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
355
361
  snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
356
362
  snowflake/ml/registry/artifact.py,sha256=9JDcr4aaR0d4cp4YSRnGMFRIdu-k0tABbs6jDH4VDGQ,1263
357
- snowflake/ml/registry/model_registry.py,sha256=a3PqbATHNOG3oO3rY9zuoWMHd5jKKTl_or-HLU1PcgY,90041
358
- snowflake/ml/registry/registry.py,sha256=Hx-pjrnkwYSAftDaSLIXSgoivkXzXDrQxf-4-nzZ13E,10855
359
- snowflake/ml/registry/_manager/model_manager.py,sha256=67QHJi_ufloYmZikBALD_3MEdudeJDFtO0grRIimMkI,5578
363
+ snowflake/ml/registry/model_registry.py,sha256=MgI4Dj9kvxfNd3kQ3tWY6ygmxUd6kzb430-GKkn4BA0,91007
364
+ snowflake/ml/registry/registry.py,sha256=RxEM0xLWdF3kIPf5upJffaPPP9liNMMZOnVeSyYNIb8,10949
365
+ snowflake/ml/registry/_manager/model_manager.py,sha256=LYX_nS_egwum7F_LCbz_a3hibIHOTDK8LO1DPOWxPrE,5809
360
366
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
361
367
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
362
- snowflake_ml_python-1.3.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
363
- snowflake_ml_python-1.3.1.dist-info/METADATA,sha256=-h4LtktBD-3xkHOsGOgt4842Fz5l8gx7pAZL3U60rjw,45077
364
- snowflake_ml_python-1.3.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
365
- snowflake_ml_python-1.3.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
366
- snowflake_ml_python-1.3.1.dist-info/RECORD,,
368
+ snowflake_ml_python-1.4.1.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
369
+ snowflake_ml_python-1.4.1.dist-info/METADATA,sha256=dz4Jp2I7bs8n4X7l5EzuXLqsZq8F9fzZ8IyImn2SFII,47072
370
+ snowflake_ml_python-1.4.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
371
+ snowflake_ml_python-1.4.1.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
372
+ snowflake_ml_python-1.4.1.dist-info/RECORD,,