snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -363,12 +362,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
363
362
  )
364
363
  return selected_cols
365
364
 
366
- @telemetry.send_api_usage_telemetry(
367
- project=_PROJECT,
368
- subproject=_SUBPROJECT,
369
- custom_tags=dict([("autogen", True)]),
370
- )
371
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingRegressor":
365
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingRegressor":
372
366
  """Fit the gradient boosting model
373
367
  For more details on this function, see [sklearn.ensemble.HistGradientBoostingRegressor.fit]
374
368
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor.fit)
@@ -395,12 +389,14 @@ class HistGradientBoostingRegressor(BaseTransformer):
395
389
 
396
390
  self._snowpark_cols = dataset.select(self.input_cols).columns
397
391
 
398
- # If we are already in a stored procedure, no need to kick off another one.
392
+ # If we are already in a stored procedure, no need to kick off another one.
399
393
  if SNOWML_SPROC_ENV in os.environ:
400
394
  statement_params = telemetry.get_function_usage_statement_params(
401
395
  project=_PROJECT,
402
396
  subproject=_SUBPROJECT,
403
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__),
397
+ function_name=telemetry.get_statement_params_full_func_name(
398
+ inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__
399
+ ),
404
400
  api_calls=[Session.call],
405
401
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
406
402
  )
@@ -421,7 +417,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
421
417
  )
422
418
  self._sklearn_object = model_trainer.train()
423
419
  self._is_fitted = True
424
- self._get_model_signatures(dataset)
420
+ self._generate_model_signatures(dataset)
425
421
  return self
426
422
 
427
423
  def _batch_inference_validate_snowpark(
@@ -497,7 +493,9 @@ class HistGradientBoostingRegressor(BaseTransformer):
497
493
  # when it is classifier, infer the datatype from label columns
498
494
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
499
495
  # Batch inference takes a single expected output column type. Use the first columns type for now.
500
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
496
+ label_cols_signatures = [
497
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
498
+ ]
501
499
  if len(label_cols_signatures) == 0:
502
500
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
503
501
  raise exceptions.SnowflakeMLException(
@@ -505,25 +503,22 @@ class HistGradientBoostingRegressor(BaseTransformer):
505
503
  original_exception=ValueError(error_str),
506
504
  )
507
505
 
508
- expected_type_inferred = convert_sp_to_sf_type(
509
- label_cols_signatures[0].as_snowpark_type()
510
- )
506
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
511
507
 
512
508
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
513
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
509
+ assert isinstance(
510
+ dataset._session, Session
511
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
514
512
 
515
513
  transform_kwargs = dict(
516
- session = dataset._session,
517
- dependencies = self._deps,
518
- drop_input_cols = self._drop_input_cols,
519
- expected_output_cols_type = expected_type_inferred,
514
+ session=dataset._session,
515
+ dependencies=self._deps,
516
+ drop_input_cols=self._drop_input_cols,
517
+ expected_output_cols_type=expected_type_inferred,
520
518
  )
521
519
 
522
520
  elif isinstance(dataset, pd.DataFrame):
523
- transform_kwargs = dict(
524
- snowpark_input_cols = self._snowpark_cols,
525
- drop_input_cols = self._drop_input_cols
526
- )
521
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
527
522
 
528
523
  transform_handlers = ModelTransformerBuilder.build(
529
524
  dataset=dataset,
@@ -563,7 +558,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
563
558
  Transformed dataset.
564
559
  """
565
560
  super()._check_dataset_type(dataset)
566
- inference_method="transform"
561
+ inference_method = "transform"
567
562
 
568
563
  # This dictionary contains optional kwargs for batch inference. These kwargs
569
564
  # are specific to the type of dataset used.
@@ -600,17 +595,14 @@ class HistGradientBoostingRegressor(BaseTransformer):
600
595
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
601
596
 
602
597
  transform_kwargs = dict(
603
- session = dataset._session,
604
- dependencies = self._deps,
605
- drop_input_cols = self._drop_input_cols,
606
- expected_output_cols_type = expected_dtype,
598
+ session=dataset._session,
599
+ dependencies=self._deps,
600
+ drop_input_cols=self._drop_input_cols,
601
+ expected_output_cols_type=expected_dtype,
607
602
  )
608
603
 
609
604
  elif isinstance(dataset, pd.DataFrame):
610
- transform_kwargs = dict(
611
- snowpark_input_cols = self._snowpark_cols,
612
- drop_input_cols = self._drop_input_cols
613
- )
605
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
614
606
 
615
607
  transform_handlers = ModelTransformerBuilder.build(
616
608
  dataset=dataset,
@@ -629,7 +621,11 @@ class HistGradientBoostingRegressor(BaseTransformer):
629
621
  return output_df
630
622
 
631
623
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
632
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
624
+ def fit_predict(
625
+ self,
626
+ dataset: Union[DataFrame, pd.DataFrame],
627
+ output_cols_prefix: str = "fit_predict_",
628
+ ) -> Union[DataFrame, pd.DataFrame]:
633
629
  """ Method not supported for this class.
634
630
 
635
631
 
@@ -654,7 +650,9 @@ class HistGradientBoostingRegressor(BaseTransformer):
654
650
  )
655
651
  output_result, fitted_estimator = model_trainer.train_fit_predict(
656
652
  drop_input_cols=self._drop_input_cols,
657
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
653
+ expected_output_cols_list=(
654
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
655
+ ),
658
656
  )
659
657
  self._sklearn_object = fitted_estimator
660
658
  self._is_fitted = True
@@ -671,6 +669,62 @@ class HistGradientBoostingRegressor(BaseTransformer):
671
669
  assert self._sklearn_object is not None
672
670
  return self._sklearn_object.embedding_
673
671
 
672
+
673
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
674
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
675
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
676
+ """
677
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
678
+ # The following condition is introduced for kneighbors methods, and not used in other methods
679
+ if output_cols:
680
+ output_cols = [
681
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
682
+ for c in output_cols
683
+ ]
684
+ elif getattr(self._sklearn_object, "classes_", None) is None:
685
+ output_cols = [output_cols_prefix]
686
+ elif self._sklearn_object is not None:
687
+ classes = self._sklearn_object.classes_
688
+ if isinstance(classes, numpy.ndarray):
689
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
690
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
691
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
692
+ output_cols = []
693
+ for i, cl in enumerate(classes):
694
+ # For binary classification, there is only one output column for each class
695
+ # ndarray as the two classes are complementary.
696
+ if len(cl) == 2:
697
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
698
+ else:
699
+ output_cols.extend([
700
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
701
+ ])
702
+ else:
703
+ output_cols = []
704
+
705
+ # Make sure column names are valid snowflake identifiers.
706
+ assert output_cols is not None # Make MyPy happy
707
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
708
+
709
+ return rv
710
+
711
+ def _align_expected_output_names(
712
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
713
+ ) -> List[str]:
714
+ # in case the inferred output column names dimension is different
715
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
716
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
717
+ output_df_columns = list(output_df_pd.columns)
718
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
719
+ if self.sample_weight_col:
720
+ output_df_columns_set -= set(self.sample_weight_col)
721
+ # if the dimension of inferred output column names is correct; use it
722
+ if len(expected_output_cols_list) == len(output_df_columns_set):
723
+ return expected_output_cols_list
724
+ # otherwise, use the sklearn estimator's output
725
+ else:
726
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
727
+
674
728
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
675
729
  @telemetry.send_api_usage_telemetry(
676
730
  project=_PROJECT,
@@ -701,24 +755,28 @@ class HistGradientBoostingRegressor(BaseTransformer):
701
755
  # are specific to the type of dataset used.
702
756
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
703
757
 
758
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
759
+
704
760
  if isinstance(dataset, DataFrame):
705
761
  self._deps = self._batch_inference_validate_snowpark(
706
762
  dataset=dataset,
707
763
  inference_method=inference_method,
708
764
  )
709
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
765
+ assert isinstance(
766
+ dataset._session, Session
767
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
710
768
  transform_kwargs = dict(
711
769
  session=dataset._session,
712
770
  dependencies=self._deps,
713
- drop_input_cols = self._drop_input_cols,
771
+ drop_input_cols=self._drop_input_cols,
714
772
  expected_output_cols_type="float",
715
773
  )
774
+ expected_output_cols = self._align_expected_output_names(
775
+ inference_method, dataset, expected_output_cols, output_cols_prefix
776
+ )
716
777
 
717
778
  elif isinstance(dataset, pd.DataFrame):
718
- transform_kwargs = dict(
719
- snowpark_input_cols = self._snowpark_cols,
720
- drop_input_cols = self._drop_input_cols
721
- )
779
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
722
780
 
723
781
  transform_handlers = ModelTransformerBuilder.build(
724
782
  dataset=dataset,
@@ -730,7 +788,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
730
788
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
731
789
  inference_method=inference_method,
732
790
  input_cols=self.input_cols,
733
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
791
+ expected_output_cols=expected_output_cols,
734
792
  **transform_kwargs
735
793
  )
736
794
  return output_df
@@ -760,7 +818,8 @@ class HistGradientBoostingRegressor(BaseTransformer):
760
818
  Output dataset with log probability of the sample for each class in the model.
761
819
  """
762
820
  super()._check_dataset_type(dataset)
763
- inference_method="predict_log_proba"
821
+ inference_method = "predict_log_proba"
822
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
764
823
 
765
824
  # This dictionary contains optional kwargs for batch inference. These kwargs
766
825
  # are specific to the type of dataset used.
@@ -771,18 +830,20 @@ class HistGradientBoostingRegressor(BaseTransformer):
771
830
  dataset=dataset,
772
831
  inference_method=inference_method,
773
832
  )
774
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
833
+ assert isinstance(
834
+ dataset._session, Session
835
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
775
836
  transform_kwargs = dict(
776
837
  session=dataset._session,
777
838
  dependencies=self._deps,
778
- drop_input_cols = self._drop_input_cols,
839
+ drop_input_cols=self._drop_input_cols,
779
840
  expected_output_cols_type="float",
780
841
  )
842
+ expected_output_cols = self._align_expected_output_names(
843
+ inference_method, dataset, expected_output_cols, output_cols_prefix
844
+ )
781
845
  elif isinstance(dataset, pd.DataFrame):
782
- transform_kwargs = dict(
783
- snowpark_input_cols = self._snowpark_cols,
784
- drop_input_cols = self._drop_input_cols
785
- )
846
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
786
847
 
787
848
  transform_handlers = ModelTransformerBuilder.build(
788
849
  dataset=dataset,
@@ -795,7 +856,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
795
856
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
796
857
  inference_method=inference_method,
797
858
  input_cols=self.input_cols,
798
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
859
+ expected_output_cols=expected_output_cols,
799
860
  **transform_kwargs
800
861
  )
801
862
  return output_df
@@ -821,30 +882,34 @@ class HistGradientBoostingRegressor(BaseTransformer):
821
882
  Output dataset with results of the decision function for the samples in input dataset.
822
883
  """
823
884
  super()._check_dataset_type(dataset)
824
- inference_method="decision_function"
885
+ inference_method = "decision_function"
825
886
 
826
887
  # This dictionary contains optional kwargs for batch inference. These kwargs
827
888
  # are specific to the type of dataset used.
828
889
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
829
890
 
891
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
892
+
830
893
  if isinstance(dataset, DataFrame):
831
894
  self._deps = self._batch_inference_validate_snowpark(
832
895
  dataset=dataset,
833
896
  inference_method=inference_method,
834
897
  )
835
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
898
+ assert isinstance(
899
+ dataset._session, Session
900
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
836
901
  transform_kwargs = dict(
837
902
  session=dataset._session,
838
903
  dependencies=self._deps,
839
- drop_input_cols = self._drop_input_cols,
904
+ drop_input_cols=self._drop_input_cols,
840
905
  expected_output_cols_type="float",
841
906
  )
907
+ expected_output_cols = self._align_expected_output_names(
908
+ inference_method, dataset, expected_output_cols, output_cols_prefix
909
+ )
842
910
 
843
911
  elif isinstance(dataset, pd.DataFrame):
844
- transform_kwargs = dict(
845
- snowpark_input_cols = self._snowpark_cols,
846
- drop_input_cols = self._drop_input_cols
847
- )
912
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
848
913
 
849
914
  transform_handlers = ModelTransformerBuilder.build(
850
915
  dataset=dataset,
@@ -857,7 +922,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
857
922
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
858
923
  inference_method=inference_method,
859
924
  input_cols=self.input_cols,
860
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
925
+ expected_output_cols=expected_output_cols,
861
926
  **transform_kwargs
862
927
  )
863
928
  return output_df
@@ -886,12 +951,14 @@ class HistGradientBoostingRegressor(BaseTransformer):
886
951
  Output dataset with probability of the sample for each class in the model.
887
952
  """
888
953
  super()._check_dataset_type(dataset)
889
- inference_method="score_samples"
954
+ inference_method = "score_samples"
890
955
 
891
956
  # This dictionary contains optional kwargs for batch inference. These kwargs
892
957
  # are specific to the type of dataset used.
893
958
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
894
959
 
960
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
961
+
895
962
  if isinstance(dataset, DataFrame):
896
963
  self._deps = self._batch_inference_validate_snowpark(
897
964
  dataset=dataset,
@@ -904,6 +971,9 @@ class HistGradientBoostingRegressor(BaseTransformer):
904
971
  drop_input_cols = self._drop_input_cols,
905
972
  expected_output_cols_type="float",
906
973
  )
974
+ expected_output_cols = self._align_expected_output_names(
975
+ inference_method, dataset, expected_output_cols, output_cols_prefix
976
+ )
907
977
 
908
978
  elif isinstance(dataset, pd.DataFrame):
909
979
  transform_kwargs = dict(
@@ -922,7 +992,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
922
992
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
923
993
  inference_method=inference_method,
924
994
  input_cols=self.input_cols,
925
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
995
+ expected_output_cols=expected_output_cols,
926
996
  **transform_kwargs
927
997
  )
928
998
  return output_df
@@ -1069,50 +1139,84 @@ class HistGradientBoostingRegressor(BaseTransformer):
1069
1139
  )
1070
1140
  return output_df
1071
1141
 
1142
+
1143
+
1144
+ def to_sklearn(self) -> Any:
1145
+ """Get sklearn.ensemble.HistGradientBoostingRegressor object.
1146
+ """
1147
+ if self._sklearn_object is None:
1148
+ self._sklearn_object = self._create_sklearn_object()
1149
+ return self._sklearn_object
1150
+
1151
+ def to_xgboost(self) -> Any:
1152
+ raise exceptions.SnowflakeMLException(
1153
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1154
+ original_exception=AttributeError(
1155
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1156
+ "to_xgboost()",
1157
+ "to_sklearn()"
1158
+ )
1159
+ ),
1160
+ )
1161
+
1162
+ def to_lightgbm(self) -> Any:
1163
+ raise exceptions.SnowflakeMLException(
1164
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1165
+ original_exception=AttributeError(
1166
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1167
+ "to_lightgbm()",
1168
+ "to_sklearn()"
1169
+ )
1170
+ ),
1171
+ )
1072
1172
 
1073
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1173
+ def _get_dependencies(self) -> List[str]:
1174
+ return self._deps
1175
+
1176
+
1177
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1074
1178
  self._model_signature_dict = dict()
1075
1179
 
1076
1180
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1077
1181
 
1078
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1182
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1079
1183
  outputs: List[BaseFeatureSpec] = []
1080
1184
  if hasattr(self, "predict"):
1081
1185
  # keep mypy happy
1082
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1186
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1083
1187
  # For classifier, the type of predict is the same as the type of label
1084
- if self._sklearn_object._estimator_type == 'classifier':
1085
- # label columns is the desired type for output
1188
+ if self._sklearn_object._estimator_type == "classifier":
1189
+ # label columns is the desired type for output
1086
1190
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1087
1191
  # rename the output columns
1088
1192
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1089
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1090
- ([] if self._drop_input_cols else inputs)
1091
- + outputs)
1193
+ self._model_signature_dict["predict"] = ModelSignature(
1194
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1195
+ )
1092
1196
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1093
1197
  # For outlier models, returns -1 for outliers and 1 for inliers.
1094
- # Clusterer returns int64 cluster labels.
1198
+ # Clusterer returns int64 cluster labels.
1095
1199
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1096
1200
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1097
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1098
- ([] if self._drop_input_cols else inputs)
1099
- + outputs)
1100
-
1201
+ self._model_signature_dict["predict"] = ModelSignature(
1202
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1203
+ )
1204
+
1101
1205
  # For regressor, the type of predict is float64
1102
- elif self._sklearn_object._estimator_type == 'regressor':
1206
+ elif self._sklearn_object._estimator_type == "regressor":
1103
1207
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1104
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1105
- ([] if self._drop_input_cols else inputs)
1106
- + outputs)
1107
-
1208
+ self._model_signature_dict["predict"] = ModelSignature(
1209
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1210
+ )
1211
+
1108
1212
  for prob_func in PROB_FUNCTIONS:
1109
1213
  if hasattr(self, prob_func):
1110
1214
  output_cols_prefix: str = f"{prob_func}_"
1111
1215
  output_column_names = self._get_output_column_names(output_cols_prefix)
1112
1216
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1113
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1114
- ([] if self._drop_input_cols else inputs)
1115
- + outputs)
1217
+ self._model_signature_dict[prob_func] = ModelSignature(
1218
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1219
+ )
1116
1220
 
1117
1221
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1118
1222
  items = list(self._model_signature_dict.items())
@@ -1125,10 +1229,10 @@ class HistGradientBoostingRegressor(BaseTransformer):
1125
1229
  """Returns model signature of current class.
1126
1230
 
1127
1231
  Raises:
1128
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1232
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1129
1233
 
1130
1234
  Returns:
1131
- Dict[str, ModelSignature]: each method and its input output signature
1235
+ Dict with each method and its input output signature
1132
1236
  """
1133
1237
  if self._model_signature_dict is None:
1134
1238
  raise exceptions.SnowflakeMLException(
@@ -1136,35 +1240,3 @@ class HistGradientBoostingRegressor(BaseTransformer):
1136
1240
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1137
1241
  )
1138
1242
  return self._model_signature_dict
1139
-
1140
- def to_sklearn(self) -> Any:
1141
- """Get sklearn.ensemble.HistGradientBoostingRegressor object.
1142
- """
1143
- if self._sklearn_object is None:
1144
- self._sklearn_object = self._create_sklearn_object()
1145
- return self._sklearn_object
1146
-
1147
- def to_xgboost(self) -> Any:
1148
- raise exceptions.SnowflakeMLException(
1149
- error_code=error_codes.METHOD_NOT_ALLOWED,
1150
- original_exception=AttributeError(
1151
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1152
- "to_xgboost()",
1153
- "to_sklearn()"
1154
- )
1155
- ),
1156
- )
1157
-
1158
- def to_lightgbm(self) -> Any:
1159
- raise exceptions.SnowflakeMLException(
1160
- error_code=error_codes.METHOD_NOT_ALLOWED,
1161
- original_exception=AttributeError(
1162
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1163
- "to_lightgbm()",
1164
- "to_sklearn()"
1165
- )
1166
- ),
1167
- )
1168
-
1169
- def _get_dependencies(self) -> List[str]:
1170
- return self._deps