snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -216,12 +215,7 @@ class MultinomialNB(BaseTransformer):
216
215
  )
217
216
  return selected_cols
218
217
 
219
- @telemetry.send_api_usage_telemetry(
220
- project=_PROJECT,
221
- subproject=_SUBPROJECT,
222
- custom_tags=dict([("autogen", True)]),
223
- )
224
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultinomialNB":
218
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultinomialNB":
225
219
  """Fit Naive Bayes classifier according to X, y
226
220
  For more details on this function, see [sklearn.naive_bayes.MultinomialNB.fit]
227
221
  (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB.fit)
@@ -248,12 +242,14 @@ class MultinomialNB(BaseTransformer):
248
242
 
249
243
  self._snowpark_cols = dataset.select(self.input_cols).columns
250
244
 
251
- # If we are already in a stored procedure, no need to kick off another one.
245
+ # If we are already in a stored procedure, no need to kick off another one.
252
246
  if SNOWML_SPROC_ENV in os.environ:
253
247
  statement_params = telemetry.get_function_usage_statement_params(
254
248
  project=_PROJECT,
255
249
  subproject=_SUBPROJECT,
256
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultinomialNB.__class__.__name__),
250
+ function_name=telemetry.get_statement_params_full_func_name(
251
+ inspect.currentframe(), MultinomialNB.__class__.__name__
252
+ ),
257
253
  api_calls=[Session.call],
258
254
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
259
255
  )
@@ -274,7 +270,7 @@ class MultinomialNB(BaseTransformer):
274
270
  )
275
271
  self._sklearn_object = model_trainer.train()
276
272
  self._is_fitted = True
277
- self._get_model_signatures(dataset)
273
+ self._generate_model_signatures(dataset)
278
274
  return self
279
275
 
280
276
  def _batch_inference_validate_snowpark(
@@ -350,7 +346,9 @@ class MultinomialNB(BaseTransformer):
350
346
  # when it is classifier, infer the datatype from label columns
351
347
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
352
348
  # Batch inference takes a single expected output column type. Use the first columns type for now.
353
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
349
+ label_cols_signatures = [
350
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
351
+ ]
354
352
  if len(label_cols_signatures) == 0:
355
353
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
356
354
  raise exceptions.SnowflakeMLException(
@@ -358,25 +356,22 @@ class MultinomialNB(BaseTransformer):
358
356
  original_exception=ValueError(error_str),
359
357
  )
360
358
 
361
- expected_type_inferred = convert_sp_to_sf_type(
362
- label_cols_signatures[0].as_snowpark_type()
363
- )
359
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
364
360
 
365
361
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
366
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
362
+ assert isinstance(
363
+ dataset._session, Session
364
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
367
365
 
368
366
  transform_kwargs = dict(
369
- session = dataset._session,
370
- dependencies = self._deps,
371
- drop_input_cols = self._drop_input_cols,
372
- expected_output_cols_type = expected_type_inferred,
367
+ session=dataset._session,
368
+ dependencies=self._deps,
369
+ drop_input_cols=self._drop_input_cols,
370
+ expected_output_cols_type=expected_type_inferred,
373
371
  )
374
372
 
375
373
  elif isinstance(dataset, pd.DataFrame):
376
- transform_kwargs = dict(
377
- snowpark_input_cols = self._snowpark_cols,
378
- drop_input_cols = self._drop_input_cols
379
- )
374
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
380
375
 
381
376
  transform_handlers = ModelTransformerBuilder.build(
382
377
  dataset=dataset,
@@ -416,7 +411,7 @@ class MultinomialNB(BaseTransformer):
416
411
  Transformed dataset.
417
412
  """
418
413
  super()._check_dataset_type(dataset)
419
- inference_method="transform"
414
+ inference_method = "transform"
420
415
 
421
416
  # This dictionary contains optional kwargs for batch inference. These kwargs
422
417
  # are specific to the type of dataset used.
@@ -453,17 +448,14 @@ class MultinomialNB(BaseTransformer):
453
448
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
454
449
 
455
450
  transform_kwargs = dict(
456
- session = dataset._session,
457
- dependencies = self._deps,
458
- drop_input_cols = self._drop_input_cols,
459
- expected_output_cols_type = expected_dtype,
451
+ session=dataset._session,
452
+ dependencies=self._deps,
453
+ drop_input_cols=self._drop_input_cols,
454
+ expected_output_cols_type=expected_dtype,
460
455
  )
461
456
 
462
457
  elif isinstance(dataset, pd.DataFrame):
463
- transform_kwargs = dict(
464
- snowpark_input_cols = self._snowpark_cols,
465
- drop_input_cols = self._drop_input_cols
466
- )
458
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
467
459
 
468
460
  transform_handlers = ModelTransformerBuilder.build(
469
461
  dataset=dataset,
@@ -482,7 +474,11 @@ class MultinomialNB(BaseTransformer):
482
474
  return output_df
483
475
 
484
476
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
485
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
477
+ def fit_predict(
478
+ self,
479
+ dataset: Union[DataFrame, pd.DataFrame],
480
+ output_cols_prefix: str = "fit_predict_",
481
+ ) -> Union[DataFrame, pd.DataFrame]:
486
482
  """ Method not supported for this class.
487
483
 
488
484
 
@@ -507,7 +503,9 @@ class MultinomialNB(BaseTransformer):
507
503
  )
508
504
  output_result, fitted_estimator = model_trainer.train_fit_predict(
509
505
  drop_input_cols=self._drop_input_cols,
510
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
506
+ expected_output_cols_list=(
507
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
508
+ ),
511
509
  )
512
510
  self._sklearn_object = fitted_estimator
513
511
  self._is_fitted = True
@@ -524,6 +522,62 @@ class MultinomialNB(BaseTransformer):
524
522
  assert self._sklearn_object is not None
525
523
  return self._sklearn_object.embedding_
526
524
 
525
+
526
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
527
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
528
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
529
+ """
530
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
531
+ # The following condition is introduced for kneighbors methods, and not used in other methods
532
+ if output_cols:
533
+ output_cols = [
534
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
535
+ for c in output_cols
536
+ ]
537
+ elif getattr(self._sklearn_object, "classes_", None) is None:
538
+ output_cols = [output_cols_prefix]
539
+ elif self._sklearn_object is not None:
540
+ classes = self._sklearn_object.classes_
541
+ if isinstance(classes, numpy.ndarray):
542
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
543
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
544
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
545
+ output_cols = []
546
+ for i, cl in enumerate(classes):
547
+ # For binary classification, there is only one output column for each class
548
+ # ndarray as the two classes are complementary.
549
+ if len(cl) == 2:
550
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
551
+ else:
552
+ output_cols.extend([
553
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
554
+ ])
555
+ else:
556
+ output_cols = []
557
+
558
+ # Make sure column names are valid snowflake identifiers.
559
+ assert output_cols is not None # Make MyPy happy
560
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
561
+
562
+ return rv
563
+
564
+ def _align_expected_output_names(
565
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
566
+ ) -> List[str]:
567
+ # in case the inferred output column names dimension is different
568
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
569
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
570
+ output_df_columns = list(output_df_pd.columns)
571
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
572
+ if self.sample_weight_col:
573
+ output_df_columns_set -= set(self.sample_weight_col)
574
+ # if the dimension of inferred output column names is correct; use it
575
+ if len(expected_output_cols_list) == len(output_df_columns_set):
576
+ return expected_output_cols_list
577
+ # otherwise, use the sklearn estimator's output
578
+ else:
579
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
580
+
527
581
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
528
582
  @telemetry.send_api_usage_telemetry(
529
583
  project=_PROJECT,
@@ -556,24 +610,28 @@ class MultinomialNB(BaseTransformer):
556
610
  # are specific to the type of dataset used.
557
611
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
558
612
 
613
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
614
+
559
615
  if isinstance(dataset, DataFrame):
560
616
  self._deps = self._batch_inference_validate_snowpark(
561
617
  dataset=dataset,
562
618
  inference_method=inference_method,
563
619
  )
564
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
620
+ assert isinstance(
621
+ dataset._session, Session
622
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
565
623
  transform_kwargs = dict(
566
624
  session=dataset._session,
567
625
  dependencies=self._deps,
568
- drop_input_cols = self._drop_input_cols,
626
+ drop_input_cols=self._drop_input_cols,
569
627
  expected_output_cols_type="float",
570
628
  )
629
+ expected_output_cols = self._align_expected_output_names(
630
+ inference_method, dataset, expected_output_cols, output_cols_prefix
631
+ )
571
632
 
572
633
  elif isinstance(dataset, pd.DataFrame):
573
- transform_kwargs = dict(
574
- snowpark_input_cols = self._snowpark_cols,
575
- drop_input_cols = self._drop_input_cols
576
- )
634
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
577
635
 
578
636
  transform_handlers = ModelTransformerBuilder.build(
579
637
  dataset=dataset,
@@ -585,7 +643,7 @@ class MultinomialNB(BaseTransformer):
585
643
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
586
644
  inference_method=inference_method,
587
645
  input_cols=self.input_cols,
588
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
646
+ expected_output_cols=expected_output_cols,
589
647
  **transform_kwargs
590
648
  )
591
649
  return output_df
@@ -617,7 +675,8 @@ class MultinomialNB(BaseTransformer):
617
675
  Output dataset with log probability of the sample for each class in the model.
618
676
  """
619
677
  super()._check_dataset_type(dataset)
620
- inference_method="predict_log_proba"
678
+ inference_method = "predict_log_proba"
679
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
621
680
 
622
681
  # This dictionary contains optional kwargs for batch inference. These kwargs
623
682
  # are specific to the type of dataset used.
@@ -628,18 +687,20 @@ class MultinomialNB(BaseTransformer):
628
687
  dataset=dataset,
629
688
  inference_method=inference_method,
630
689
  )
631
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
690
+ assert isinstance(
691
+ dataset._session, Session
692
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
632
693
  transform_kwargs = dict(
633
694
  session=dataset._session,
634
695
  dependencies=self._deps,
635
- drop_input_cols = self._drop_input_cols,
696
+ drop_input_cols=self._drop_input_cols,
636
697
  expected_output_cols_type="float",
637
698
  )
699
+ expected_output_cols = self._align_expected_output_names(
700
+ inference_method, dataset, expected_output_cols, output_cols_prefix
701
+ )
638
702
  elif isinstance(dataset, pd.DataFrame):
639
- transform_kwargs = dict(
640
- snowpark_input_cols = self._snowpark_cols,
641
- drop_input_cols = self._drop_input_cols
642
- )
703
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
643
704
 
644
705
  transform_handlers = ModelTransformerBuilder.build(
645
706
  dataset=dataset,
@@ -652,7 +713,7 @@ class MultinomialNB(BaseTransformer):
652
713
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
653
714
  inference_method=inference_method,
654
715
  input_cols=self.input_cols,
655
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
716
+ expected_output_cols=expected_output_cols,
656
717
  **transform_kwargs
657
718
  )
658
719
  return output_df
@@ -678,30 +739,34 @@ class MultinomialNB(BaseTransformer):
678
739
  Output dataset with results of the decision function for the samples in input dataset.
679
740
  """
680
741
  super()._check_dataset_type(dataset)
681
- inference_method="decision_function"
742
+ inference_method = "decision_function"
682
743
 
683
744
  # This dictionary contains optional kwargs for batch inference. These kwargs
684
745
  # are specific to the type of dataset used.
685
746
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
686
747
 
748
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
749
+
687
750
  if isinstance(dataset, DataFrame):
688
751
  self._deps = self._batch_inference_validate_snowpark(
689
752
  dataset=dataset,
690
753
  inference_method=inference_method,
691
754
  )
692
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
755
+ assert isinstance(
756
+ dataset._session, Session
757
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
693
758
  transform_kwargs = dict(
694
759
  session=dataset._session,
695
760
  dependencies=self._deps,
696
- drop_input_cols = self._drop_input_cols,
761
+ drop_input_cols=self._drop_input_cols,
697
762
  expected_output_cols_type="float",
698
763
  )
764
+ expected_output_cols = self._align_expected_output_names(
765
+ inference_method, dataset, expected_output_cols, output_cols_prefix
766
+ )
699
767
 
700
768
  elif isinstance(dataset, pd.DataFrame):
701
- transform_kwargs = dict(
702
- snowpark_input_cols = self._snowpark_cols,
703
- drop_input_cols = self._drop_input_cols
704
- )
769
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
705
770
 
706
771
  transform_handlers = ModelTransformerBuilder.build(
707
772
  dataset=dataset,
@@ -714,7 +779,7 @@ class MultinomialNB(BaseTransformer):
714
779
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
715
780
  inference_method=inference_method,
716
781
  input_cols=self.input_cols,
717
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
782
+ expected_output_cols=expected_output_cols,
718
783
  **transform_kwargs
719
784
  )
720
785
  return output_df
@@ -743,12 +808,14 @@ class MultinomialNB(BaseTransformer):
743
808
  Output dataset with probability of the sample for each class in the model.
744
809
  """
745
810
  super()._check_dataset_type(dataset)
746
- inference_method="score_samples"
811
+ inference_method = "score_samples"
747
812
 
748
813
  # This dictionary contains optional kwargs for batch inference. These kwargs
749
814
  # are specific to the type of dataset used.
750
815
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
751
816
 
817
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
818
+
752
819
  if isinstance(dataset, DataFrame):
753
820
  self._deps = self._batch_inference_validate_snowpark(
754
821
  dataset=dataset,
@@ -761,6 +828,9 @@ class MultinomialNB(BaseTransformer):
761
828
  drop_input_cols = self._drop_input_cols,
762
829
  expected_output_cols_type="float",
763
830
  )
831
+ expected_output_cols = self._align_expected_output_names(
832
+ inference_method, dataset, expected_output_cols, output_cols_prefix
833
+ )
764
834
 
765
835
  elif isinstance(dataset, pd.DataFrame):
766
836
  transform_kwargs = dict(
@@ -779,7 +849,7 @@ class MultinomialNB(BaseTransformer):
779
849
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
780
850
  inference_method=inference_method,
781
851
  input_cols=self.input_cols,
782
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
852
+ expected_output_cols=expected_output_cols,
783
853
  **transform_kwargs
784
854
  )
785
855
  return output_df
@@ -926,50 +996,84 @@ class MultinomialNB(BaseTransformer):
926
996
  )
927
997
  return output_df
928
998
 
999
+
1000
+
1001
+ def to_sklearn(self) -> Any:
1002
+ """Get sklearn.naive_bayes.MultinomialNB object.
1003
+ """
1004
+ if self._sklearn_object is None:
1005
+ self._sklearn_object = self._create_sklearn_object()
1006
+ return self._sklearn_object
1007
+
1008
+ def to_xgboost(self) -> Any:
1009
+ raise exceptions.SnowflakeMLException(
1010
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1011
+ original_exception=AttributeError(
1012
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1013
+ "to_xgboost()",
1014
+ "to_sklearn()"
1015
+ )
1016
+ ),
1017
+ )
1018
+
1019
+ def to_lightgbm(self) -> Any:
1020
+ raise exceptions.SnowflakeMLException(
1021
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1022
+ original_exception=AttributeError(
1023
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1024
+ "to_lightgbm()",
1025
+ "to_sklearn()"
1026
+ )
1027
+ ),
1028
+ )
929
1029
 
930
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1030
+ def _get_dependencies(self) -> List[str]:
1031
+ return self._deps
1032
+
1033
+
1034
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
931
1035
  self._model_signature_dict = dict()
932
1036
 
933
1037
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
934
1038
 
935
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1039
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
936
1040
  outputs: List[BaseFeatureSpec] = []
937
1041
  if hasattr(self, "predict"):
938
1042
  # keep mypy happy
939
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1043
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
940
1044
  # For classifier, the type of predict is the same as the type of label
941
- if self._sklearn_object._estimator_type == 'classifier':
942
- # label columns is the desired type for output
1045
+ if self._sklearn_object._estimator_type == "classifier":
1046
+ # label columns is the desired type for output
943
1047
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
944
1048
  # rename the output columns
945
1049
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
946
- self._model_signature_dict["predict"] = ModelSignature(inputs,
947
- ([] if self._drop_input_cols else inputs)
948
- + outputs)
1050
+ self._model_signature_dict["predict"] = ModelSignature(
1051
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1052
+ )
949
1053
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
950
1054
  # For outlier models, returns -1 for outliers and 1 for inliers.
951
- # Clusterer returns int64 cluster labels.
1055
+ # Clusterer returns int64 cluster labels.
952
1056
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
953
1057
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
954
- self._model_signature_dict["predict"] = ModelSignature(inputs,
955
- ([] if self._drop_input_cols else inputs)
956
- + outputs)
957
-
1058
+ self._model_signature_dict["predict"] = ModelSignature(
1059
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1060
+ )
1061
+
958
1062
  # For regressor, the type of predict is float64
959
- elif self._sklearn_object._estimator_type == 'regressor':
1063
+ elif self._sklearn_object._estimator_type == "regressor":
960
1064
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
961
- self._model_signature_dict["predict"] = ModelSignature(inputs,
962
- ([] if self._drop_input_cols else inputs)
963
- + outputs)
964
-
1065
+ self._model_signature_dict["predict"] = ModelSignature(
1066
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1067
+ )
1068
+
965
1069
  for prob_func in PROB_FUNCTIONS:
966
1070
  if hasattr(self, prob_func):
967
1071
  output_cols_prefix: str = f"{prob_func}_"
968
1072
  output_column_names = self._get_output_column_names(output_cols_prefix)
969
1073
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
970
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
971
- ([] if self._drop_input_cols else inputs)
972
- + outputs)
1074
+ self._model_signature_dict[prob_func] = ModelSignature(
1075
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1076
+ )
973
1077
 
974
1078
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
975
1079
  items = list(self._model_signature_dict.items())
@@ -982,10 +1086,10 @@ class MultinomialNB(BaseTransformer):
982
1086
  """Returns model signature of current class.
983
1087
 
984
1088
  Raises:
985
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1089
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
986
1090
 
987
1091
  Returns:
988
- Dict[str, ModelSignature]: each method and its input output signature
1092
+ Dict with each method and its input output signature
989
1093
  """
990
1094
  if self._model_signature_dict is None:
991
1095
  raise exceptions.SnowflakeMLException(
@@ -993,35 +1097,3 @@ class MultinomialNB(BaseTransformer):
993
1097
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
994
1098
  )
995
1099
  return self._model_signature_dict
996
-
997
- def to_sklearn(self) -> Any:
998
- """Get sklearn.naive_bayes.MultinomialNB object.
999
- """
1000
- if self._sklearn_object is None:
1001
- self._sklearn_object = self._create_sklearn_object()
1002
- return self._sklearn_object
1003
-
1004
- def to_xgboost(self) -> Any:
1005
- raise exceptions.SnowflakeMLException(
1006
- error_code=error_codes.METHOD_NOT_ALLOWED,
1007
- original_exception=AttributeError(
1008
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1009
- "to_xgboost()",
1010
- "to_sklearn()"
1011
- )
1012
- ),
1013
- )
1014
-
1015
- def to_lightgbm(self) -> Any:
1016
- raise exceptions.SnowflakeMLException(
1017
- error_code=error_codes.METHOD_NOT_ALLOWED,
1018
- original_exception=AttributeError(
1019
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1020
- "to_lightgbm()",
1021
- "to_sklearn()"
1022
- )
1023
- ),
1024
- )
1025
-
1026
- def _get_dependencies(self) -> List[str]:
1027
- return self._deps