snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -265,12 +264,7 @@ class LinearSVR(BaseTransformer):
265
264
  )
266
265
  return selected_cols
267
266
 
268
- @telemetry.send_api_usage_telemetry(
269
- project=_PROJECT,
270
- subproject=_SUBPROJECT,
271
- custom_tags=dict([("autogen", True)]),
272
- )
273
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearSVR":
267
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearSVR":
274
268
  """Fit the model according to the given training data
275
269
  For more details on this function, see [sklearn.svm.LinearSVR.fit]
276
270
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html#sklearn.svm.LinearSVR.fit)
@@ -297,12 +291,14 @@ class LinearSVR(BaseTransformer):
297
291
 
298
292
  self._snowpark_cols = dataset.select(self.input_cols).columns
299
293
 
300
- # If we are already in a stored procedure, no need to kick off another one.
294
+ # If we are already in a stored procedure, no need to kick off another one.
301
295
  if SNOWML_SPROC_ENV in os.environ:
302
296
  statement_params = telemetry.get_function_usage_statement_params(
303
297
  project=_PROJECT,
304
298
  subproject=_SUBPROJECT,
305
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearSVR.__class__.__name__),
299
+ function_name=telemetry.get_statement_params_full_func_name(
300
+ inspect.currentframe(), LinearSVR.__class__.__name__
301
+ ),
306
302
  api_calls=[Session.call],
307
303
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
308
304
  )
@@ -323,7 +319,7 @@ class LinearSVR(BaseTransformer):
323
319
  )
324
320
  self._sklearn_object = model_trainer.train()
325
321
  self._is_fitted = True
326
- self._get_model_signatures(dataset)
322
+ self._generate_model_signatures(dataset)
327
323
  return self
328
324
 
329
325
  def _batch_inference_validate_snowpark(
@@ -399,7 +395,9 @@ class LinearSVR(BaseTransformer):
399
395
  # when it is classifier, infer the datatype from label columns
400
396
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
401
397
  # Batch inference takes a single expected output column type. Use the first columns type for now.
402
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
398
+ label_cols_signatures = [
399
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
400
+ ]
403
401
  if len(label_cols_signatures) == 0:
404
402
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
405
403
  raise exceptions.SnowflakeMLException(
@@ -407,25 +405,22 @@ class LinearSVR(BaseTransformer):
407
405
  original_exception=ValueError(error_str),
408
406
  )
409
407
 
410
- expected_type_inferred = convert_sp_to_sf_type(
411
- label_cols_signatures[0].as_snowpark_type()
412
- )
408
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
413
409
 
414
410
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
415
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
411
+ assert isinstance(
412
+ dataset._session, Session
413
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
416
414
 
417
415
  transform_kwargs = dict(
418
- session = dataset._session,
419
- dependencies = self._deps,
420
- drop_input_cols = self._drop_input_cols,
421
- expected_output_cols_type = expected_type_inferred,
416
+ session=dataset._session,
417
+ dependencies=self._deps,
418
+ drop_input_cols=self._drop_input_cols,
419
+ expected_output_cols_type=expected_type_inferred,
422
420
  )
423
421
 
424
422
  elif isinstance(dataset, pd.DataFrame):
425
- transform_kwargs = dict(
426
- snowpark_input_cols = self._snowpark_cols,
427
- drop_input_cols = self._drop_input_cols
428
- )
423
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
429
424
 
430
425
  transform_handlers = ModelTransformerBuilder.build(
431
426
  dataset=dataset,
@@ -465,7 +460,7 @@ class LinearSVR(BaseTransformer):
465
460
  Transformed dataset.
466
461
  """
467
462
  super()._check_dataset_type(dataset)
468
- inference_method="transform"
463
+ inference_method = "transform"
469
464
 
470
465
  # This dictionary contains optional kwargs for batch inference. These kwargs
471
466
  # are specific to the type of dataset used.
@@ -502,17 +497,14 @@ class LinearSVR(BaseTransformer):
502
497
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
503
498
 
504
499
  transform_kwargs = dict(
505
- session = dataset._session,
506
- dependencies = self._deps,
507
- drop_input_cols = self._drop_input_cols,
508
- expected_output_cols_type = expected_dtype,
500
+ session=dataset._session,
501
+ dependencies=self._deps,
502
+ drop_input_cols=self._drop_input_cols,
503
+ expected_output_cols_type=expected_dtype,
509
504
  )
510
505
 
511
506
  elif isinstance(dataset, pd.DataFrame):
512
- transform_kwargs = dict(
513
- snowpark_input_cols = self._snowpark_cols,
514
- drop_input_cols = self._drop_input_cols
515
- )
507
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
516
508
 
517
509
  transform_handlers = ModelTransformerBuilder.build(
518
510
  dataset=dataset,
@@ -531,7 +523,11 @@ class LinearSVR(BaseTransformer):
531
523
  return output_df
532
524
 
533
525
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
534
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
526
+ def fit_predict(
527
+ self,
528
+ dataset: Union[DataFrame, pd.DataFrame],
529
+ output_cols_prefix: str = "fit_predict_",
530
+ ) -> Union[DataFrame, pd.DataFrame]:
535
531
  """ Method not supported for this class.
536
532
 
537
533
 
@@ -556,7 +552,9 @@ class LinearSVR(BaseTransformer):
556
552
  )
557
553
  output_result, fitted_estimator = model_trainer.train_fit_predict(
558
554
  drop_input_cols=self._drop_input_cols,
559
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
555
+ expected_output_cols_list=(
556
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
557
+ ),
560
558
  )
561
559
  self._sklearn_object = fitted_estimator
562
560
  self._is_fitted = True
@@ -573,6 +571,62 @@ class LinearSVR(BaseTransformer):
573
571
  assert self._sklearn_object is not None
574
572
  return self._sklearn_object.embedding_
575
573
 
574
+
575
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
576
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
577
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
578
+ """
579
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
580
+ # The following condition is introduced for kneighbors methods, and not used in other methods
581
+ if output_cols:
582
+ output_cols = [
583
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
584
+ for c in output_cols
585
+ ]
586
+ elif getattr(self._sklearn_object, "classes_", None) is None:
587
+ output_cols = [output_cols_prefix]
588
+ elif self._sklearn_object is not None:
589
+ classes = self._sklearn_object.classes_
590
+ if isinstance(classes, numpy.ndarray):
591
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
592
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
593
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
594
+ output_cols = []
595
+ for i, cl in enumerate(classes):
596
+ # For binary classification, there is only one output column for each class
597
+ # ndarray as the two classes are complementary.
598
+ if len(cl) == 2:
599
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
600
+ else:
601
+ output_cols.extend([
602
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
603
+ ])
604
+ else:
605
+ output_cols = []
606
+
607
+ # Make sure column names are valid snowflake identifiers.
608
+ assert output_cols is not None # Make MyPy happy
609
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
610
+
611
+ return rv
612
+
613
+ def _align_expected_output_names(
614
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
615
+ ) -> List[str]:
616
+ # in case the inferred output column names dimension is different
617
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
618
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
619
+ output_df_columns = list(output_df_pd.columns)
620
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
621
+ if self.sample_weight_col:
622
+ output_df_columns_set -= set(self.sample_weight_col)
623
+ # if the dimension of inferred output column names is correct; use it
624
+ if len(expected_output_cols_list) == len(output_df_columns_set):
625
+ return expected_output_cols_list
626
+ # otherwise, use the sklearn estimator's output
627
+ else:
628
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
629
+
576
630
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
577
631
  @telemetry.send_api_usage_telemetry(
578
632
  project=_PROJECT,
@@ -603,24 +657,28 @@ class LinearSVR(BaseTransformer):
603
657
  # are specific to the type of dataset used.
604
658
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
605
659
 
660
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
661
+
606
662
  if isinstance(dataset, DataFrame):
607
663
  self._deps = self._batch_inference_validate_snowpark(
608
664
  dataset=dataset,
609
665
  inference_method=inference_method,
610
666
  )
611
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
667
+ assert isinstance(
668
+ dataset._session, Session
669
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
612
670
  transform_kwargs = dict(
613
671
  session=dataset._session,
614
672
  dependencies=self._deps,
615
- drop_input_cols = self._drop_input_cols,
673
+ drop_input_cols=self._drop_input_cols,
616
674
  expected_output_cols_type="float",
617
675
  )
676
+ expected_output_cols = self._align_expected_output_names(
677
+ inference_method, dataset, expected_output_cols, output_cols_prefix
678
+ )
618
679
 
619
680
  elif isinstance(dataset, pd.DataFrame):
620
- transform_kwargs = dict(
621
- snowpark_input_cols = self._snowpark_cols,
622
- drop_input_cols = self._drop_input_cols
623
- )
681
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
624
682
 
625
683
  transform_handlers = ModelTransformerBuilder.build(
626
684
  dataset=dataset,
@@ -632,7 +690,7 @@ class LinearSVR(BaseTransformer):
632
690
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
633
691
  inference_method=inference_method,
634
692
  input_cols=self.input_cols,
635
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
693
+ expected_output_cols=expected_output_cols,
636
694
  **transform_kwargs
637
695
  )
638
696
  return output_df
@@ -662,7 +720,8 @@ class LinearSVR(BaseTransformer):
662
720
  Output dataset with log probability of the sample for each class in the model.
663
721
  """
664
722
  super()._check_dataset_type(dataset)
665
- inference_method="predict_log_proba"
723
+ inference_method = "predict_log_proba"
724
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
666
725
 
667
726
  # This dictionary contains optional kwargs for batch inference. These kwargs
668
727
  # are specific to the type of dataset used.
@@ -673,18 +732,20 @@ class LinearSVR(BaseTransformer):
673
732
  dataset=dataset,
674
733
  inference_method=inference_method,
675
734
  )
676
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
735
+ assert isinstance(
736
+ dataset._session, Session
737
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
677
738
  transform_kwargs = dict(
678
739
  session=dataset._session,
679
740
  dependencies=self._deps,
680
- drop_input_cols = self._drop_input_cols,
741
+ drop_input_cols=self._drop_input_cols,
681
742
  expected_output_cols_type="float",
682
743
  )
744
+ expected_output_cols = self._align_expected_output_names(
745
+ inference_method, dataset, expected_output_cols, output_cols_prefix
746
+ )
683
747
  elif isinstance(dataset, pd.DataFrame):
684
- transform_kwargs = dict(
685
- snowpark_input_cols = self._snowpark_cols,
686
- drop_input_cols = self._drop_input_cols
687
- )
748
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
688
749
 
689
750
  transform_handlers = ModelTransformerBuilder.build(
690
751
  dataset=dataset,
@@ -697,7 +758,7 @@ class LinearSVR(BaseTransformer):
697
758
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
698
759
  inference_method=inference_method,
699
760
  input_cols=self.input_cols,
700
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
761
+ expected_output_cols=expected_output_cols,
701
762
  **transform_kwargs
702
763
  )
703
764
  return output_df
@@ -723,30 +784,34 @@ class LinearSVR(BaseTransformer):
723
784
  Output dataset with results of the decision function for the samples in input dataset.
724
785
  """
725
786
  super()._check_dataset_type(dataset)
726
- inference_method="decision_function"
787
+ inference_method = "decision_function"
727
788
 
728
789
  # This dictionary contains optional kwargs for batch inference. These kwargs
729
790
  # are specific to the type of dataset used.
730
791
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
731
792
 
793
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
794
+
732
795
  if isinstance(dataset, DataFrame):
733
796
  self._deps = self._batch_inference_validate_snowpark(
734
797
  dataset=dataset,
735
798
  inference_method=inference_method,
736
799
  )
737
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
800
+ assert isinstance(
801
+ dataset._session, Session
802
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
738
803
  transform_kwargs = dict(
739
804
  session=dataset._session,
740
805
  dependencies=self._deps,
741
- drop_input_cols = self._drop_input_cols,
806
+ drop_input_cols=self._drop_input_cols,
742
807
  expected_output_cols_type="float",
743
808
  )
809
+ expected_output_cols = self._align_expected_output_names(
810
+ inference_method, dataset, expected_output_cols, output_cols_prefix
811
+ )
744
812
 
745
813
  elif isinstance(dataset, pd.DataFrame):
746
- transform_kwargs = dict(
747
- snowpark_input_cols = self._snowpark_cols,
748
- drop_input_cols = self._drop_input_cols
749
- )
814
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
750
815
 
751
816
  transform_handlers = ModelTransformerBuilder.build(
752
817
  dataset=dataset,
@@ -759,7 +824,7 @@ class LinearSVR(BaseTransformer):
759
824
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
760
825
  inference_method=inference_method,
761
826
  input_cols=self.input_cols,
762
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
827
+ expected_output_cols=expected_output_cols,
763
828
  **transform_kwargs
764
829
  )
765
830
  return output_df
@@ -788,12 +853,14 @@ class LinearSVR(BaseTransformer):
788
853
  Output dataset with probability of the sample for each class in the model.
789
854
  """
790
855
  super()._check_dataset_type(dataset)
791
- inference_method="score_samples"
856
+ inference_method = "score_samples"
792
857
 
793
858
  # This dictionary contains optional kwargs for batch inference. These kwargs
794
859
  # are specific to the type of dataset used.
795
860
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
796
861
 
862
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
863
+
797
864
  if isinstance(dataset, DataFrame):
798
865
  self._deps = self._batch_inference_validate_snowpark(
799
866
  dataset=dataset,
@@ -806,6 +873,9 @@ class LinearSVR(BaseTransformer):
806
873
  drop_input_cols = self._drop_input_cols,
807
874
  expected_output_cols_type="float",
808
875
  )
876
+ expected_output_cols = self._align_expected_output_names(
877
+ inference_method, dataset, expected_output_cols, output_cols_prefix
878
+ )
809
879
 
810
880
  elif isinstance(dataset, pd.DataFrame):
811
881
  transform_kwargs = dict(
@@ -824,7 +894,7 @@ class LinearSVR(BaseTransformer):
824
894
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
825
895
  inference_method=inference_method,
826
896
  input_cols=self.input_cols,
827
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
897
+ expected_output_cols=expected_output_cols,
828
898
  **transform_kwargs
829
899
  )
830
900
  return output_df
@@ -971,50 +1041,84 @@ class LinearSVR(BaseTransformer):
971
1041
  )
972
1042
  return output_df
973
1043
 
1044
+
1045
+
1046
+ def to_sklearn(self) -> Any:
1047
+ """Get sklearn.svm.LinearSVR object.
1048
+ """
1049
+ if self._sklearn_object is None:
1050
+ self._sklearn_object = self._create_sklearn_object()
1051
+ return self._sklearn_object
1052
+
1053
+ def to_xgboost(self) -> Any:
1054
+ raise exceptions.SnowflakeMLException(
1055
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1056
+ original_exception=AttributeError(
1057
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1058
+ "to_xgboost()",
1059
+ "to_sklearn()"
1060
+ )
1061
+ ),
1062
+ )
1063
+
1064
+ def to_lightgbm(self) -> Any:
1065
+ raise exceptions.SnowflakeMLException(
1066
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1067
+ original_exception=AttributeError(
1068
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1069
+ "to_lightgbm()",
1070
+ "to_sklearn()"
1071
+ )
1072
+ ),
1073
+ )
974
1074
 
975
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1075
+ def _get_dependencies(self) -> List[str]:
1076
+ return self._deps
1077
+
1078
+
1079
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
976
1080
  self._model_signature_dict = dict()
977
1081
 
978
1082
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
979
1083
 
980
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1084
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
981
1085
  outputs: List[BaseFeatureSpec] = []
982
1086
  if hasattr(self, "predict"):
983
1087
  # keep mypy happy
984
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1088
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
985
1089
  # For classifier, the type of predict is the same as the type of label
986
- if self._sklearn_object._estimator_type == 'classifier':
987
- # label columns is the desired type for output
1090
+ if self._sklearn_object._estimator_type == "classifier":
1091
+ # label columns is the desired type for output
988
1092
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
989
1093
  # rename the output columns
990
1094
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
1095
+ self._model_signature_dict["predict"] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
994
1098
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
995
1099
  # For outlier models, returns -1 for outliers and 1 for inliers.
996
- # Clusterer returns int64 cluster labels.
1100
+ # Clusterer returns int64 cluster labels.
997
1101
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
998
1102
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
999
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1000
- ([] if self._drop_input_cols else inputs)
1001
- + outputs)
1002
-
1103
+ self._model_signature_dict["predict"] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1106
+
1003
1107
  # For regressor, the type of predict is float64
1004
- elif self._sklearn_object._estimator_type == 'regressor':
1108
+ elif self._sklearn_object._estimator_type == "regressor":
1005
1109
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1006
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1007
- ([] if self._drop_input_cols else inputs)
1008
- + outputs)
1009
-
1110
+ self._model_signature_dict["predict"] = ModelSignature(
1111
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1112
+ )
1113
+
1010
1114
  for prob_func in PROB_FUNCTIONS:
1011
1115
  if hasattr(self, prob_func):
1012
1116
  output_cols_prefix: str = f"{prob_func}_"
1013
1117
  output_column_names = self._get_output_column_names(output_cols_prefix)
1014
1118
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1015
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1016
- ([] if self._drop_input_cols else inputs)
1017
- + outputs)
1119
+ self._model_signature_dict[prob_func] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1018
1122
 
1019
1123
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1020
1124
  items = list(self._model_signature_dict.items())
@@ -1027,10 +1131,10 @@ class LinearSVR(BaseTransformer):
1027
1131
  """Returns model signature of current class.
1028
1132
 
1029
1133
  Raises:
1030
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1134
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1031
1135
 
1032
1136
  Returns:
1033
- Dict[str, ModelSignature]: each method and its input output signature
1137
+ Dict with each method and its input output signature
1034
1138
  """
1035
1139
  if self._model_signature_dict is None:
1036
1140
  raise exceptions.SnowflakeMLException(
@@ -1038,35 +1142,3 @@ class LinearSVR(BaseTransformer):
1038
1142
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1039
1143
  )
1040
1144
  return self._model_signature_dict
1041
-
1042
- def to_sklearn(self) -> Any:
1043
- """Get sklearn.svm.LinearSVR object.
1044
- """
1045
- if self._sklearn_object is None:
1046
- self._sklearn_object = self._create_sklearn_object()
1047
- return self._sklearn_object
1048
-
1049
- def to_xgboost(self) -> Any:
1050
- raise exceptions.SnowflakeMLException(
1051
- error_code=error_codes.METHOD_NOT_ALLOWED,
1052
- original_exception=AttributeError(
1053
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1054
- "to_xgboost()",
1055
- "to_sklearn()"
1056
- )
1057
- ),
1058
- )
1059
-
1060
- def to_lightgbm(self) -> Any:
1061
- raise exceptions.SnowflakeMLException(
1062
- error_code=error_codes.METHOD_NOT_ALLOWED,
1063
- original_exception=AttributeError(
1064
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
- "to_lightgbm()",
1066
- "to_sklearn()"
1067
- )
1068
- ),
1069
- )
1070
-
1071
- def _get_dependencies(self) -> List[str]:
1072
- return self._deps