snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -228,12 +227,7 @@ class CategoricalNB(BaseTransformer):
|
|
228
227
|
)
|
229
228
|
return selected_cols
|
230
229
|
|
231
|
-
|
232
|
-
project=_PROJECT,
|
233
|
-
subproject=_SUBPROJECT,
|
234
|
-
custom_tags=dict([("autogen", True)]),
|
235
|
-
)
|
236
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "CategoricalNB":
|
230
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "CategoricalNB":
|
237
231
|
"""Fit Naive Bayes classifier according to X, y
|
238
232
|
For more details on this function, see [sklearn.naive_bayes.CategoricalNB.fit]
|
239
233
|
(https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html#sklearn.naive_bayes.CategoricalNB.fit)
|
@@ -260,12 +254,14 @@ class CategoricalNB(BaseTransformer):
|
|
260
254
|
|
261
255
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
262
256
|
|
263
|
-
|
257
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
264
258
|
if SNOWML_SPROC_ENV in os.environ:
|
265
259
|
statement_params = telemetry.get_function_usage_statement_params(
|
266
260
|
project=_PROJECT,
|
267
261
|
subproject=_SUBPROJECT,
|
268
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
262
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
263
|
+
inspect.currentframe(), CategoricalNB.__class__.__name__
|
264
|
+
),
|
269
265
|
api_calls=[Session.call],
|
270
266
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
271
267
|
)
|
@@ -286,7 +282,7 @@ class CategoricalNB(BaseTransformer):
|
|
286
282
|
)
|
287
283
|
self._sklearn_object = model_trainer.train()
|
288
284
|
self._is_fitted = True
|
289
|
-
self.
|
285
|
+
self._generate_model_signatures(dataset)
|
290
286
|
return self
|
291
287
|
|
292
288
|
def _batch_inference_validate_snowpark(
|
@@ -362,7 +358,9 @@ class CategoricalNB(BaseTransformer):
|
|
362
358
|
# when it is classifier, infer the datatype from label columns
|
363
359
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
364
360
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
365
|
-
label_cols_signatures = [
|
361
|
+
label_cols_signatures = [
|
362
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
363
|
+
]
|
366
364
|
if len(label_cols_signatures) == 0:
|
367
365
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
368
366
|
raise exceptions.SnowflakeMLException(
|
@@ -370,25 +368,22 @@ class CategoricalNB(BaseTransformer):
|
|
370
368
|
original_exception=ValueError(error_str),
|
371
369
|
)
|
372
370
|
|
373
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
374
|
-
label_cols_signatures[0].as_snowpark_type()
|
375
|
-
)
|
371
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
376
372
|
|
377
373
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
378
|
-
assert isinstance(
|
374
|
+
assert isinstance(
|
375
|
+
dataset._session, Session
|
376
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
379
377
|
|
380
378
|
transform_kwargs = dict(
|
381
|
-
session
|
382
|
-
dependencies
|
383
|
-
drop_input_cols
|
384
|
-
expected_output_cols_type
|
379
|
+
session=dataset._session,
|
380
|
+
dependencies=self._deps,
|
381
|
+
drop_input_cols=self._drop_input_cols,
|
382
|
+
expected_output_cols_type=expected_type_inferred,
|
385
383
|
)
|
386
384
|
|
387
385
|
elif isinstance(dataset, pd.DataFrame):
|
388
|
-
transform_kwargs = dict(
|
389
|
-
snowpark_input_cols = self._snowpark_cols,
|
390
|
-
drop_input_cols = self._drop_input_cols
|
391
|
-
)
|
386
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
392
387
|
|
393
388
|
transform_handlers = ModelTransformerBuilder.build(
|
394
389
|
dataset=dataset,
|
@@ -428,7 +423,7 @@ class CategoricalNB(BaseTransformer):
|
|
428
423
|
Transformed dataset.
|
429
424
|
"""
|
430
425
|
super()._check_dataset_type(dataset)
|
431
|
-
inference_method="transform"
|
426
|
+
inference_method = "transform"
|
432
427
|
|
433
428
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
434
429
|
# are specific to the type of dataset used.
|
@@ -465,17 +460,14 @@ class CategoricalNB(BaseTransformer):
|
|
465
460
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
466
461
|
|
467
462
|
transform_kwargs = dict(
|
468
|
-
session
|
469
|
-
dependencies
|
470
|
-
drop_input_cols
|
471
|
-
expected_output_cols_type
|
463
|
+
session=dataset._session,
|
464
|
+
dependencies=self._deps,
|
465
|
+
drop_input_cols=self._drop_input_cols,
|
466
|
+
expected_output_cols_type=expected_dtype,
|
472
467
|
)
|
473
468
|
|
474
469
|
elif isinstance(dataset, pd.DataFrame):
|
475
|
-
transform_kwargs = dict(
|
476
|
-
snowpark_input_cols = self._snowpark_cols,
|
477
|
-
drop_input_cols = self._drop_input_cols
|
478
|
-
)
|
470
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
479
471
|
|
480
472
|
transform_handlers = ModelTransformerBuilder.build(
|
481
473
|
dataset=dataset,
|
@@ -494,7 +486,11 @@ class CategoricalNB(BaseTransformer):
|
|
494
486
|
return output_df
|
495
487
|
|
496
488
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
497
|
-
def fit_predict(
|
489
|
+
def fit_predict(
|
490
|
+
self,
|
491
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
492
|
+
output_cols_prefix: str = "fit_predict_",
|
493
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
498
494
|
""" Method not supported for this class.
|
499
495
|
|
500
496
|
|
@@ -519,7 +515,9 @@ class CategoricalNB(BaseTransformer):
|
|
519
515
|
)
|
520
516
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
521
517
|
drop_input_cols=self._drop_input_cols,
|
522
|
-
expected_output_cols_list=
|
518
|
+
expected_output_cols_list=(
|
519
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
520
|
+
),
|
523
521
|
)
|
524
522
|
self._sklearn_object = fitted_estimator
|
525
523
|
self._is_fitted = True
|
@@ -536,6 +534,62 @@ class CategoricalNB(BaseTransformer):
|
|
536
534
|
assert self._sklearn_object is not None
|
537
535
|
return self._sklearn_object.embedding_
|
538
536
|
|
537
|
+
|
538
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
539
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
540
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
541
|
+
"""
|
542
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
543
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
544
|
+
if output_cols:
|
545
|
+
output_cols = [
|
546
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
547
|
+
for c in output_cols
|
548
|
+
]
|
549
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
550
|
+
output_cols = [output_cols_prefix]
|
551
|
+
elif self._sklearn_object is not None:
|
552
|
+
classes = self._sklearn_object.classes_
|
553
|
+
if isinstance(classes, numpy.ndarray):
|
554
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
555
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
556
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
557
|
+
output_cols = []
|
558
|
+
for i, cl in enumerate(classes):
|
559
|
+
# For binary classification, there is only one output column for each class
|
560
|
+
# ndarray as the two classes are complementary.
|
561
|
+
if len(cl) == 2:
|
562
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
563
|
+
else:
|
564
|
+
output_cols.extend([
|
565
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
566
|
+
])
|
567
|
+
else:
|
568
|
+
output_cols = []
|
569
|
+
|
570
|
+
# Make sure column names are valid snowflake identifiers.
|
571
|
+
assert output_cols is not None # Make MyPy happy
|
572
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
573
|
+
|
574
|
+
return rv
|
575
|
+
|
576
|
+
def _align_expected_output_names(
|
577
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
578
|
+
) -> List[str]:
|
579
|
+
# in case the inferred output column names dimension is different
|
580
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
581
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
582
|
+
output_df_columns = list(output_df_pd.columns)
|
583
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
584
|
+
if self.sample_weight_col:
|
585
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
586
|
+
# if the dimension of inferred output column names is correct; use it
|
587
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
588
|
+
return expected_output_cols_list
|
589
|
+
# otherwise, use the sklearn estimator's output
|
590
|
+
else:
|
591
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
592
|
+
|
539
593
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
540
594
|
@telemetry.send_api_usage_telemetry(
|
541
595
|
project=_PROJECT,
|
@@ -568,24 +622,28 @@ class CategoricalNB(BaseTransformer):
|
|
568
622
|
# are specific to the type of dataset used.
|
569
623
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
570
624
|
|
625
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
626
|
+
|
571
627
|
if isinstance(dataset, DataFrame):
|
572
628
|
self._deps = self._batch_inference_validate_snowpark(
|
573
629
|
dataset=dataset,
|
574
630
|
inference_method=inference_method,
|
575
631
|
)
|
576
|
-
assert isinstance(
|
632
|
+
assert isinstance(
|
633
|
+
dataset._session, Session
|
634
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
577
635
|
transform_kwargs = dict(
|
578
636
|
session=dataset._session,
|
579
637
|
dependencies=self._deps,
|
580
|
-
drop_input_cols
|
638
|
+
drop_input_cols=self._drop_input_cols,
|
581
639
|
expected_output_cols_type="float",
|
582
640
|
)
|
641
|
+
expected_output_cols = self._align_expected_output_names(
|
642
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
643
|
+
)
|
583
644
|
|
584
645
|
elif isinstance(dataset, pd.DataFrame):
|
585
|
-
transform_kwargs = dict(
|
586
|
-
snowpark_input_cols = self._snowpark_cols,
|
587
|
-
drop_input_cols = self._drop_input_cols
|
588
|
-
)
|
646
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
589
647
|
|
590
648
|
transform_handlers = ModelTransformerBuilder.build(
|
591
649
|
dataset=dataset,
|
@@ -597,7 +655,7 @@ class CategoricalNB(BaseTransformer):
|
|
597
655
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
598
656
|
inference_method=inference_method,
|
599
657
|
input_cols=self.input_cols,
|
600
|
-
expected_output_cols=
|
658
|
+
expected_output_cols=expected_output_cols,
|
601
659
|
**transform_kwargs
|
602
660
|
)
|
603
661
|
return output_df
|
@@ -629,7 +687,8 @@ class CategoricalNB(BaseTransformer):
|
|
629
687
|
Output dataset with log probability of the sample for each class in the model.
|
630
688
|
"""
|
631
689
|
super()._check_dataset_type(dataset)
|
632
|
-
inference_method="predict_log_proba"
|
690
|
+
inference_method = "predict_log_proba"
|
691
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
633
692
|
|
634
693
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
635
694
|
# are specific to the type of dataset used.
|
@@ -640,18 +699,20 @@ class CategoricalNB(BaseTransformer):
|
|
640
699
|
dataset=dataset,
|
641
700
|
inference_method=inference_method,
|
642
701
|
)
|
643
|
-
assert isinstance(
|
702
|
+
assert isinstance(
|
703
|
+
dataset._session, Session
|
704
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
644
705
|
transform_kwargs = dict(
|
645
706
|
session=dataset._session,
|
646
707
|
dependencies=self._deps,
|
647
|
-
drop_input_cols
|
708
|
+
drop_input_cols=self._drop_input_cols,
|
648
709
|
expected_output_cols_type="float",
|
649
710
|
)
|
711
|
+
expected_output_cols = self._align_expected_output_names(
|
712
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
713
|
+
)
|
650
714
|
elif isinstance(dataset, pd.DataFrame):
|
651
|
-
transform_kwargs = dict(
|
652
|
-
snowpark_input_cols = self._snowpark_cols,
|
653
|
-
drop_input_cols = self._drop_input_cols
|
654
|
-
)
|
715
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
655
716
|
|
656
717
|
transform_handlers = ModelTransformerBuilder.build(
|
657
718
|
dataset=dataset,
|
@@ -664,7 +725,7 @@ class CategoricalNB(BaseTransformer):
|
|
664
725
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
665
726
|
inference_method=inference_method,
|
666
727
|
input_cols=self.input_cols,
|
667
|
-
expected_output_cols=
|
728
|
+
expected_output_cols=expected_output_cols,
|
668
729
|
**transform_kwargs
|
669
730
|
)
|
670
731
|
return output_df
|
@@ -690,30 +751,34 @@ class CategoricalNB(BaseTransformer):
|
|
690
751
|
Output dataset with results of the decision function for the samples in input dataset.
|
691
752
|
"""
|
692
753
|
super()._check_dataset_type(dataset)
|
693
|
-
inference_method="decision_function"
|
754
|
+
inference_method = "decision_function"
|
694
755
|
|
695
756
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
696
757
|
# are specific to the type of dataset used.
|
697
758
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
698
759
|
|
760
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
761
|
+
|
699
762
|
if isinstance(dataset, DataFrame):
|
700
763
|
self._deps = self._batch_inference_validate_snowpark(
|
701
764
|
dataset=dataset,
|
702
765
|
inference_method=inference_method,
|
703
766
|
)
|
704
|
-
assert isinstance(
|
767
|
+
assert isinstance(
|
768
|
+
dataset._session, Session
|
769
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
705
770
|
transform_kwargs = dict(
|
706
771
|
session=dataset._session,
|
707
772
|
dependencies=self._deps,
|
708
|
-
drop_input_cols
|
773
|
+
drop_input_cols=self._drop_input_cols,
|
709
774
|
expected_output_cols_type="float",
|
710
775
|
)
|
776
|
+
expected_output_cols = self._align_expected_output_names(
|
777
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
778
|
+
)
|
711
779
|
|
712
780
|
elif isinstance(dataset, pd.DataFrame):
|
713
|
-
transform_kwargs = dict(
|
714
|
-
snowpark_input_cols = self._snowpark_cols,
|
715
|
-
drop_input_cols = self._drop_input_cols
|
716
|
-
)
|
781
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
717
782
|
|
718
783
|
transform_handlers = ModelTransformerBuilder.build(
|
719
784
|
dataset=dataset,
|
@@ -726,7 +791,7 @@ class CategoricalNB(BaseTransformer):
|
|
726
791
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
727
792
|
inference_method=inference_method,
|
728
793
|
input_cols=self.input_cols,
|
729
|
-
expected_output_cols=
|
794
|
+
expected_output_cols=expected_output_cols,
|
730
795
|
**transform_kwargs
|
731
796
|
)
|
732
797
|
return output_df
|
@@ -755,12 +820,14 @@ class CategoricalNB(BaseTransformer):
|
|
755
820
|
Output dataset with probability of the sample for each class in the model.
|
756
821
|
"""
|
757
822
|
super()._check_dataset_type(dataset)
|
758
|
-
inference_method="score_samples"
|
823
|
+
inference_method = "score_samples"
|
759
824
|
|
760
825
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
761
826
|
# are specific to the type of dataset used.
|
762
827
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
763
828
|
|
829
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
830
|
+
|
764
831
|
if isinstance(dataset, DataFrame):
|
765
832
|
self._deps = self._batch_inference_validate_snowpark(
|
766
833
|
dataset=dataset,
|
@@ -773,6 +840,9 @@ class CategoricalNB(BaseTransformer):
|
|
773
840
|
drop_input_cols = self._drop_input_cols,
|
774
841
|
expected_output_cols_type="float",
|
775
842
|
)
|
843
|
+
expected_output_cols = self._align_expected_output_names(
|
844
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
845
|
+
)
|
776
846
|
|
777
847
|
elif isinstance(dataset, pd.DataFrame):
|
778
848
|
transform_kwargs = dict(
|
@@ -791,7 +861,7 @@ class CategoricalNB(BaseTransformer):
|
|
791
861
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
792
862
|
inference_method=inference_method,
|
793
863
|
input_cols=self.input_cols,
|
794
|
-
expected_output_cols=
|
864
|
+
expected_output_cols=expected_output_cols,
|
795
865
|
**transform_kwargs
|
796
866
|
)
|
797
867
|
return output_df
|
@@ -938,50 +1008,84 @@ class CategoricalNB(BaseTransformer):
|
|
938
1008
|
)
|
939
1009
|
return output_df
|
940
1010
|
|
1011
|
+
|
1012
|
+
|
1013
|
+
def to_sklearn(self) -> Any:
|
1014
|
+
"""Get sklearn.naive_bayes.CategoricalNB object.
|
1015
|
+
"""
|
1016
|
+
if self._sklearn_object is None:
|
1017
|
+
self._sklearn_object = self._create_sklearn_object()
|
1018
|
+
return self._sklearn_object
|
1019
|
+
|
1020
|
+
def to_xgboost(self) -> Any:
|
1021
|
+
raise exceptions.SnowflakeMLException(
|
1022
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1023
|
+
original_exception=AttributeError(
|
1024
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1025
|
+
"to_xgboost()",
|
1026
|
+
"to_sklearn()"
|
1027
|
+
)
|
1028
|
+
),
|
1029
|
+
)
|
1030
|
+
|
1031
|
+
def to_lightgbm(self) -> Any:
|
1032
|
+
raise exceptions.SnowflakeMLException(
|
1033
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1034
|
+
original_exception=AttributeError(
|
1035
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1036
|
+
"to_lightgbm()",
|
1037
|
+
"to_sklearn()"
|
1038
|
+
)
|
1039
|
+
),
|
1040
|
+
)
|
941
1041
|
|
942
|
-
def
|
1042
|
+
def _get_dependencies(self) -> List[str]:
|
1043
|
+
return self._deps
|
1044
|
+
|
1045
|
+
|
1046
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
943
1047
|
self._model_signature_dict = dict()
|
944
1048
|
|
945
1049
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
946
1050
|
|
947
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1051
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
948
1052
|
outputs: List[BaseFeatureSpec] = []
|
949
1053
|
if hasattr(self, "predict"):
|
950
1054
|
# keep mypy happy
|
951
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1055
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
952
1056
|
# For classifier, the type of predict is the same as the type of label
|
953
|
-
if self._sklearn_object._estimator_type ==
|
954
|
-
|
1057
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1058
|
+
# label columns is the desired type for output
|
955
1059
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
956
1060
|
# rename the output columns
|
957
1061
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
958
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
959
|
-
|
960
|
-
|
1062
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1063
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1064
|
+
)
|
961
1065
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
962
1066
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
963
|
-
# Clusterer returns int64 cluster labels.
|
1067
|
+
# Clusterer returns int64 cluster labels.
|
964
1068
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
965
1069
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
966
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
967
|
-
|
968
|
-
|
969
|
-
|
1070
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1071
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1072
|
+
)
|
1073
|
+
|
970
1074
|
# For regressor, the type of predict is float64
|
971
|
-
elif self._sklearn_object._estimator_type ==
|
1075
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
972
1076
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
973
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
974
|
-
|
975
|
-
|
976
|
-
|
1077
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1078
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1079
|
+
)
|
1080
|
+
|
977
1081
|
for prob_func in PROB_FUNCTIONS:
|
978
1082
|
if hasattr(self, prob_func):
|
979
1083
|
output_cols_prefix: str = f"{prob_func}_"
|
980
1084
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
981
1085
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
982
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
983
|
-
|
984
|
-
|
1086
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1087
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1088
|
+
)
|
985
1089
|
|
986
1090
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
987
1091
|
items = list(self._model_signature_dict.items())
|
@@ -994,10 +1098,10 @@ class CategoricalNB(BaseTransformer):
|
|
994
1098
|
"""Returns model signature of current class.
|
995
1099
|
|
996
1100
|
Raises:
|
997
|
-
|
1101
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
998
1102
|
|
999
1103
|
Returns:
|
1000
|
-
Dict
|
1104
|
+
Dict with each method and its input output signature
|
1001
1105
|
"""
|
1002
1106
|
if self._model_signature_dict is None:
|
1003
1107
|
raise exceptions.SnowflakeMLException(
|
@@ -1005,35 +1109,3 @@ class CategoricalNB(BaseTransformer):
|
|
1005
1109
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1006
1110
|
)
|
1007
1111
|
return self._model_signature_dict
|
1008
|
-
|
1009
|
-
def to_sklearn(self) -> Any:
|
1010
|
-
"""Get sklearn.naive_bayes.CategoricalNB object.
|
1011
|
-
"""
|
1012
|
-
if self._sklearn_object is None:
|
1013
|
-
self._sklearn_object = self._create_sklearn_object()
|
1014
|
-
return self._sklearn_object
|
1015
|
-
|
1016
|
-
def to_xgboost(self) -> Any:
|
1017
|
-
raise exceptions.SnowflakeMLException(
|
1018
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1019
|
-
original_exception=AttributeError(
|
1020
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1021
|
-
"to_xgboost()",
|
1022
|
-
"to_sklearn()"
|
1023
|
-
)
|
1024
|
-
),
|
1025
|
-
)
|
1026
|
-
|
1027
|
-
def to_lightgbm(self) -> Any:
|
1028
|
-
raise exceptions.SnowflakeMLException(
|
1029
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1030
|
-
original_exception=AttributeError(
|
1031
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1032
|
-
"to_lightgbm()",
|
1033
|
-
"to_sklearn()"
|
1034
|
-
)
|
1035
|
-
),
|
1036
|
-
)
|
1037
|
-
|
1038
|
-
def _get_dependencies(self) -> List[str]:
|
1039
|
-
return self._deps
|