snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -237,12 +236,7 @@ class LabelSpreading(BaseTransformer):
|
|
237
236
|
)
|
238
237
|
return selected_cols
|
239
238
|
|
240
|
-
|
241
|
-
project=_PROJECT,
|
242
|
-
subproject=_SUBPROJECT,
|
243
|
-
custom_tags=dict([("autogen", True)]),
|
244
|
-
)
|
245
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelSpreading":
|
239
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelSpreading":
|
246
240
|
"""Fit a semi-supervised label propagation model to X
|
247
241
|
For more details on this function, see [sklearn.semi_supervised.LabelSpreading.fit]
|
248
242
|
(https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html#sklearn.semi_supervised.LabelSpreading.fit)
|
@@ -269,12 +263,14 @@ class LabelSpreading(BaseTransformer):
|
|
269
263
|
|
270
264
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
271
265
|
|
272
|
-
|
266
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
273
267
|
if SNOWML_SPROC_ENV in os.environ:
|
274
268
|
statement_params = telemetry.get_function_usage_statement_params(
|
275
269
|
project=_PROJECT,
|
276
270
|
subproject=_SUBPROJECT,
|
277
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
271
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
272
|
+
inspect.currentframe(), LabelSpreading.__class__.__name__
|
273
|
+
),
|
278
274
|
api_calls=[Session.call],
|
279
275
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
280
276
|
)
|
@@ -295,7 +291,7 @@ class LabelSpreading(BaseTransformer):
|
|
295
291
|
)
|
296
292
|
self._sklearn_object = model_trainer.train()
|
297
293
|
self._is_fitted = True
|
298
|
-
self.
|
294
|
+
self._generate_model_signatures(dataset)
|
299
295
|
return self
|
300
296
|
|
301
297
|
def _batch_inference_validate_snowpark(
|
@@ -371,7 +367,9 @@ class LabelSpreading(BaseTransformer):
|
|
371
367
|
# when it is classifier, infer the datatype from label columns
|
372
368
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
373
369
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
374
|
-
label_cols_signatures = [
|
370
|
+
label_cols_signatures = [
|
371
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
372
|
+
]
|
375
373
|
if len(label_cols_signatures) == 0:
|
376
374
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
377
375
|
raise exceptions.SnowflakeMLException(
|
@@ -379,25 +377,22 @@ class LabelSpreading(BaseTransformer):
|
|
379
377
|
original_exception=ValueError(error_str),
|
380
378
|
)
|
381
379
|
|
382
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
383
|
-
label_cols_signatures[0].as_snowpark_type()
|
384
|
-
)
|
380
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
385
381
|
|
386
382
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
387
|
-
assert isinstance(
|
383
|
+
assert isinstance(
|
384
|
+
dataset._session, Session
|
385
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
388
386
|
|
389
387
|
transform_kwargs = dict(
|
390
|
-
session
|
391
|
-
dependencies
|
392
|
-
drop_input_cols
|
393
|
-
expected_output_cols_type
|
388
|
+
session=dataset._session,
|
389
|
+
dependencies=self._deps,
|
390
|
+
drop_input_cols=self._drop_input_cols,
|
391
|
+
expected_output_cols_type=expected_type_inferred,
|
394
392
|
)
|
395
393
|
|
396
394
|
elif isinstance(dataset, pd.DataFrame):
|
397
|
-
transform_kwargs = dict(
|
398
|
-
snowpark_input_cols = self._snowpark_cols,
|
399
|
-
drop_input_cols = self._drop_input_cols
|
400
|
-
)
|
395
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
401
396
|
|
402
397
|
transform_handlers = ModelTransformerBuilder.build(
|
403
398
|
dataset=dataset,
|
@@ -437,7 +432,7 @@ class LabelSpreading(BaseTransformer):
|
|
437
432
|
Transformed dataset.
|
438
433
|
"""
|
439
434
|
super()._check_dataset_type(dataset)
|
440
|
-
inference_method="transform"
|
435
|
+
inference_method = "transform"
|
441
436
|
|
442
437
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
443
438
|
# are specific to the type of dataset used.
|
@@ -474,17 +469,14 @@ class LabelSpreading(BaseTransformer):
|
|
474
469
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
475
470
|
|
476
471
|
transform_kwargs = dict(
|
477
|
-
session
|
478
|
-
dependencies
|
479
|
-
drop_input_cols
|
480
|
-
expected_output_cols_type
|
472
|
+
session=dataset._session,
|
473
|
+
dependencies=self._deps,
|
474
|
+
drop_input_cols=self._drop_input_cols,
|
475
|
+
expected_output_cols_type=expected_dtype,
|
481
476
|
)
|
482
477
|
|
483
478
|
elif isinstance(dataset, pd.DataFrame):
|
484
|
-
transform_kwargs = dict(
|
485
|
-
snowpark_input_cols = self._snowpark_cols,
|
486
|
-
drop_input_cols = self._drop_input_cols
|
487
|
-
)
|
479
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
488
480
|
|
489
481
|
transform_handlers = ModelTransformerBuilder.build(
|
490
482
|
dataset=dataset,
|
@@ -503,7 +495,11 @@ class LabelSpreading(BaseTransformer):
|
|
503
495
|
return output_df
|
504
496
|
|
505
497
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
506
|
-
def fit_predict(
|
498
|
+
def fit_predict(
|
499
|
+
self,
|
500
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
501
|
+
output_cols_prefix: str = "fit_predict_",
|
502
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
507
503
|
""" Method not supported for this class.
|
508
504
|
|
509
505
|
|
@@ -528,7 +524,9 @@ class LabelSpreading(BaseTransformer):
|
|
528
524
|
)
|
529
525
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
530
526
|
drop_input_cols=self._drop_input_cols,
|
531
|
-
expected_output_cols_list=
|
527
|
+
expected_output_cols_list=(
|
528
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
529
|
+
),
|
532
530
|
)
|
533
531
|
self._sklearn_object = fitted_estimator
|
534
532
|
self._is_fitted = True
|
@@ -545,6 +543,62 @@ class LabelSpreading(BaseTransformer):
|
|
545
543
|
assert self._sklearn_object is not None
|
546
544
|
return self._sklearn_object.embedding_
|
547
545
|
|
546
|
+
|
547
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
548
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
549
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
550
|
+
"""
|
551
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
552
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
553
|
+
if output_cols:
|
554
|
+
output_cols = [
|
555
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
556
|
+
for c in output_cols
|
557
|
+
]
|
558
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
559
|
+
output_cols = [output_cols_prefix]
|
560
|
+
elif self._sklearn_object is not None:
|
561
|
+
classes = self._sklearn_object.classes_
|
562
|
+
if isinstance(classes, numpy.ndarray):
|
563
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
564
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
565
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
566
|
+
output_cols = []
|
567
|
+
for i, cl in enumerate(classes):
|
568
|
+
# For binary classification, there is only one output column for each class
|
569
|
+
# ndarray as the two classes are complementary.
|
570
|
+
if len(cl) == 2:
|
571
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
572
|
+
else:
|
573
|
+
output_cols.extend([
|
574
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
575
|
+
])
|
576
|
+
else:
|
577
|
+
output_cols = []
|
578
|
+
|
579
|
+
# Make sure column names are valid snowflake identifiers.
|
580
|
+
assert output_cols is not None # Make MyPy happy
|
581
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
582
|
+
|
583
|
+
return rv
|
584
|
+
|
585
|
+
def _align_expected_output_names(
|
586
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
587
|
+
) -> List[str]:
|
588
|
+
# in case the inferred output column names dimension is different
|
589
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
590
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
591
|
+
output_df_columns = list(output_df_pd.columns)
|
592
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
593
|
+
if self.sample_weight_col:
|
594
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
595
|
+
# if the dimension of inferred output column names is correct; use it
|
596
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
597
|
+
return expected_output_cols_list
|
598
|
+
# otherwise, use the sklearn estimator's output
|
599
|
+
else:
|
600
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
601
|
+
|
548
602
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
549
603
|
@telemetry.send_api_usage_telemetry(
|
550
604
|
project=_PROJECT,
|
@@ -577,24 +631,28 @@ class LabelSpreading(BaseTransformer):
|
|
577
631
|
# are specific to the type of dataset used.
|
578
632
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
579
633
|
|
634
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
635
|
+
|
580
636
|
if isinstance(dataset, DataFrame):
|
581
637
|
self._deps = self._batch_inference_validate_snowpark(
|
582
638
|
dataset=dataset,
|
583
639
|
inference_method=inference_method,
|
584
640
|
)
|
585
|
-
assert isinstance(
|
641
|
+
assert isinstance(
|
642
|
+
dataset._session, Session
|
643
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
586
644
|
transform_kwargs = dict(
|
587
645
|
session=dataset._session,
|
588
646
|
dependencies=self._deps,
|
589
|
-
drop_input_cols
|
647
|
+
drop_input_cols=self._drop_input_cols,
|
590
648
|
expected_output_cols_type="float",
|
591
649
|
)
|
650
|
+
expected_output_cols = self._align_expected_output_names(
|
651
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
652
|
+
)
|
592
653
|
|
593
654
|
elif isinstance(dataset, pd.DataFrame):
|
594
|
-
transform_kwargs = dict(
|
595
|
-
snowpark_input_cols = self._snowpark_cols,
|
596
|
-
drop_input_cols = self._drop_input_cols
|
597
|
-
)
|
655
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
598
656
|
|
599
657
|
transform_handlers = ModelTransformerBuilder.build(
|
600
658
|
dataset=dataset,
|
@@ -606,7 +664,7 @@ class LabelSpreading(BaseTransformer):
|
|
606
664
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
607
665
|
inference_method=inference_method,
|
608
666
|
input_cols=self.input_cols,
|
609
|
-
expected_output_cols=
|
667
|
+
expected_output_cols=expected_output_cols,
|
610
668
|
**transform_kwargs
|
611
669
|
)
|
612
670
|
return output_df
|
@@ -638,7 +696,8 @@ class LabelSpreading(BaseTransformer):
|
|
638
696
|
Output dataset with log probability of the sample for each class in the model.
|
639
697
|
"""
|
640
698
|
super()._check_dataset_type(dataset)
|
641
|
-
inference_method="predict_log_proba"
|
699
|
+
inference_method = "predict_log_proba"
|
700
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
642
701
|
|
643
702
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
644
703
|
# are specific to the type of dataset used.
|
@@ -649,18 +708,20 @@ class LabelSpreading(BaseTransformer):
|
|
649
708
|
dataset=dataset,
|
650
709
|
inference_method=inference_method,
|
651
710
|
)
|
652
|
-
assert isinstance(
|
711
|
+
assert isinstance(
|
712
|
+
dataset._session, Session
|
713
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
653
714
|
transform_kwargs = dict(
|
654
715
|
session=dataset._session,
|
655
716
|
dependencies=self._deps,
|
656
|
-
drop_input_cols
|
717
|
+
drop_input_cols=self._drop_input_cols,
|
657
718
|
expected_output_cols_type="float",
|
658
719
|
)
|
720
|
+
expected_output_cols = self._align_expected_output_names(
|
721
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
722
|
+
)
|
659
723
|
elif isinstance(dataset, pd.DataFrame):
|
660
|
-
transform_kwargs = dict(
|
661
|
-
snowpark_input_cols = self._snowpark_cols,
|
662
|
-
drop_input_cols = self._drop_input_cols
|
663
|
-
)
|
724
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
664
725
|
|
665
726
|
transform_handlers = ModelTransformerBuilder.build(
|
666
727
|
dataset=dataset,
|
@@ -673,7 +734,7 @@ class LabelSpreading(BaseTransformer):
|
|
673
734
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
674
735
|
inference_method=inference_method,
|
675
736
|
input_cols=self.input_cols,
|
676
|
-
expected_output_cols=
|
737
|
+
expected_output_cols=expected_output_cols,
|
677
738
|
**transform_kwargs
|
678
739
|
)
|
679
740
|
return output_df
|
@@ -699,30 +760,34 @@ class LabelSpreading(BaseTransformer):
|
|
699
760
|
Output dataset with results of the decision function for the samples in input dataset.
|
700
761
|
"""
|
701
762
|
super()._check_dataset_type(dataset)
|
702
|
-
inference_method="decision_function"
|
763
|
+
inference_method = "decision_function"
|
703
764
|
|
704
765
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
705
766
|
# are specific to the type of dataset used.
|
706
767
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
707
768
|
|
769
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
770
|
+
|
708
771
|
if isinstance(dataset, DataFrame):
|
709
772
|
self._deps = self._batch_inference_validate_snowpark(
|
710
773
|
dataset=dataset,
|
711
774
|
inference_method=inference_method,
|
712
775
|
)
|
713
|
-
assert isinstance(
|
776
|
+
assert isinstance(
|
777
|
+
dataset._session, Session
|
778
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
714
779
|
transform_kwargs = dict(
|
715
780
|
session=dataset._session,
|
716
781
|
dependencies=self._deps,
|
717
|
-
drop_input_cols
|
782
|
+
drop_input_cols=self._drop_input_cols,
|
718
783
|
expected_output_cols_type="float",
|
719
784
|
)
|
785
|
+
expected_output_cols = self._align_expected_output_names(
|
786
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
787
|
+
)
|
720
788
|
|
721
789
|
elif isinstance(dataset, pd.DataFrame):
|
722
|
-
transform_kwargs = dict(
|
723
|
-
snowpark_input_cols = self._snowpark_cols,
|
724
|
-
drop_input_cols = self._drop_input_cols
|
725
|
-
)
|
790
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
726
791
|
|
727
792
|
transform_handlers = ModelTransformerBuilder.build(
|
728
793
|
dataset=dataset,
|
@@ -735,7 +800,7 @@ class LabelSpreading(BaseTransformer):
|
|
735
800
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
736
801
|
inference_method=inference_method,
|
737
802
|
input_cols=self.input_cols,
|
738
|
-
expected_output_cols=
|
803
|
+
expected_output_cols=expected_output_cols,
|
739
804
|
**transform_kwargs
|
740
805
|
)
|
741
806
|
return output_df
|
@@ -764,12 +829,14 @@ class LabelSpreading(BaseTransformer):
|
|
764
829
|
Output dataset with probability of the sample for each class in the model.
|
765
830
|
"""
|
766
831
|
super()._check_dataset_type(dataset)
|
767
|
-
inference_method="score_samples"
|
832
|
+
inference_method = "score_samples"
|
768
833
|
|
769
834
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
770
835
|
# are specific to the type of dataset used.
|
771
836
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
772
837
|
|
838
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
839
|
+
|
773
840
|
if isinstance(dataset, DataFrame):
|
774
841
|
self._deps = self._batch_inference_validate_snowpark(
|
775
842
|
dataset=dataset,
|
@@ -782,6 +849,9 @@ class LabelSpreading(BaseTransformer):
|
|
782
849
|
drop_input_cols = self._drop_input_cols,
|
783
850
|
expected_output_cols_type="float",
|
784
851
|
)
|
852
|
+
expected_output_cols = self._align_expected_output_names(
|
853
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
854
|
+
)
|
785
855
|
|
786
856
|
elif isinstance(dataset, pd.DataFrame):
|
787
857
|
transform_kwargs = dict(
|
@@ -800,7 +870,7 @@ class LabelSpreading(BaseTransformer):
|
|
800
870
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
801
871
|
inference_method=inference_method,
|
802
872
|
input_cols=self.input_cols,
|
803
|
-
expected_output_cols=
|
873
|
+
expected_output_cols=expected_output_cols,
|
804
874
|
**transform_kwargs
|
805
875
|
)
|
806
876
|
return output_df
|
@@ -947,50 +1017,84 @@ class LabelSpreading(BaseTransformer):
|
|
947
1017
|
)
|
948
1018
|
return output_df
|
949
1019
|
|
1020
|
+
|
1021
|
+
|
1022
|
+
def to_sklearn(self) -> Any:
|
1023
|
+
"""Get sklearn.semi_supervised.LabelSpreading object.
|
1024
|
+
"""
|
1025
|
+
if self._sklearn_object is None:
|
1026
|
+
self._sklearn_object = self._create_sklearn_object()
|
1027
|
+
return self._sklearn_object
|
1028
|
+
|
1029
|
+
def to_xgboost(self) -> Any:
|
1030
|
+
raise exceptions.SnowflakeMLException(
|
1031
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1032
|
+
original_exception=AttributeError(
|
1033
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1034
|
+
"to_xgboost()",
|
1035
|
+
"to_sklearn()"
|
1036
|
+
)
|
1037
|
+
),
|
1038
|
+
)
|
1039
|
+
|
1040
|
+
def to_lightgbm(self) -> Any:
|
1041
|
+
raise exceptions.SnowflakeMLException(
|
1042
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1043
|
+
original_exception=AttributeError(
|
1044
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1045
|
+
"to_lightgbm()",
|
1046
|
+
"to_sklearn()"
|
1047
|
+
)
|
1048
|
+
),
|
1049
|
+
)
|
950
1050
|
|
951
|
-
def
|
1051
|
+
def _get_dependencies(self) -> List[str]:
|
1052
|
+
return self._deps
|
1053
|
+
|
1054
|
+
|
1055
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
952
1056
|
self._model_signature_dict = dict()
|
953
1057
|
|
954
1058
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
955
1059
|
|
956
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1060
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
957
1061
|
outputs: List[BaseFeatureSpec] = []
|
958
1062
|
if hasattr(self, "predict"):
|
959
1063
|
# keep mypy happy
|
960
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1064
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
961
1065
|
# For classifier, the type of predict is the same as the type of label
|
962
|
-
if self._sklearn_object._estimator_type ==
|
963
|
-
|
1066
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1067
|
+
# label columns is the desired type for output
|
964
1068
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
965
1069
|
# rename the output columns
|
966
1070
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
967
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
968
|
-
|
969
|
-
|
1071
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1072
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1073
|
+
)
|
970
1074
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
971
1075
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
972
|
-
# Clusterer returns int64 cluster labels.
|
1076
|
+
# Clusterer returns int64 cluster labels.
|
973
1077
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
974
1078
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
975
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
976
|
-
|
977
|
-
|
978
|
-
|
1079
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1080
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1081
|
+
)
|
1082
|
+
|
979
1083
|
# For regressor, the type of predict is float64
|
980
|
-
elif self._sklearn_object._estimator_type ==
|
1084
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
981
1085
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
982
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
983
|
-
|
984
|
-
|
985
|
-
|
1086
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1087
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1088
|
+
)
|
1089
|
+
|
986
1090
|
for prob_func in PROB_FUNCTIONS:
|
987
1091
|
if hasattr(self, prob_func):
|
988
1092
|
output_cols_prefix: str = f"{prob_func}_"
|
989
1093
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
990
1094
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
991
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
992
|
-
|
993
|
-
|
1095
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1096
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1097
|
+
)
|
994
1098
|
|
995
1099
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
996
1100
|
items = list(self._model_signature_dict.items())
|
@@ -1003,10 +1107,10 @@ class LabelSpreading(BaseTransformer):
|
|
1003
1107
|
"""Returns model signature of current class.
|
1004
1108
|
|
1005
1109
|
Raises:
|
1006
|
-
|
1110
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1007
1111
|
|
1008
1112
|
Returns:
|
1009
|
-
Dict
|
1113
|
+
Dict with each method and its input output signature
|
1010
1114
|
"""
|
1011
1115
|
if self._model_signature_dict is None:
|
1012
1116
|
raise exceptions.SnowflakeMLException(
|
@@ -1014,35 +1118,3 @@ class LabelSpreading(BaseTransformer):
|
|
1014
1118
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1015
1119
|
)
|
1016
1120
|
return self._model_signature_dict
|
1017
|
-
|
1018
|
-
def to_sklearn(self) -> Any:
|
1019
|
-
"""Get sklearn.semi_supervised.LabelSpreading object.
|
1020
|
-
"""
|
1021
|
-
if self._sklearn_object is None:
|
1022
|
-
self._sklearn_object = self._create_sklearn_object()
|
1023
|
-
return self._sklearn_object
|
1024
|
-
|
1025
|
-
def to_xgboost(self) -> Any:
|
1026
|
-
raise exceptions.SnowflakeMLException(
|
1027
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1028
|
-
original_exception=AttributeError(
|
1029
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1030
|
-
"to_xgboost()",
|
1031
|
-
"to_sklearn()"
|
1032
|
-
)
|
1033
|
-
),
|
1034
|
-
)
|
1035
|
-
|
1036
|
-
def to_lightgbm(self) -> Any:
|
1037
|
-
raise exceptions.SnowflakeMLException(
|
1038
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1039
|
-
original_exception=AttributeError(
|
1040
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1041
|
-
"to_lightgbm()",
|
1042
|
-
"to_sklearn()"
|
1043
|
-
)
|
1044
|
-
),
|
1045
|
-
)
|
1046
|
-
|
1047
|
-
def _get_dependencies(self) -> List[str]:
|
1048
|
-
return self._deps
|