snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -237,12 +236,7 @@ class LabelSpreading(BaseTransformer):
237
236
  )
238
237
  return selected_cols
239
238
 
240
- @telemetry.send_api_usage_telemetry(
241
- project=_PROJECT,
242
- subproject=_SUBPROJECT,
243
- custom_tags=dict([("autogen", True)]),
244
- )
245
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelSpreading":
239
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelSpreading":
246
240
  """Fit a semi-supervised label propagation model to X
247
241
  For more details on this function, see [sklearn.semi_supervised.LabelSpreading.fit]
248
242
  (https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html#sklearn.semi_supervised.LabelSpreading.fit)
@@ -269,12 +263,14 @@ class LabelSpreading(BaseTransformer):
269
263
 
270
264
  self._snowpark_cols = dataset.select(self.input_cols).columns
271
265
 
272
- # If we are already in a stored procedure, no need to kick off another one.
266
+ # If we are already in a stored procedure, no need to kick off another one.
273
267
  if SNOWML_SPROC_ENV in os.environ:
274
268
  statement_params = telemetry.get_function_usage_statement_params(
275
269
  project=_PROJECT,
276
270
  subproject=_SUBPROJECT,
277
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LabelSpreading.__class__.__name__),
271
+ function_name=telemetry.get_statement_params_full_func_name(
272
+ inspect.currentframe(), LabelSpreading.__class__.__name__
273
+ ),
278
274
  api_calls=[Session.call],
279
275
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
280
276
  )
@@ -295,7 +291,7 @@ class LabelSpreading(BaseTransformer):
295
291
  )
296
292
  self._sklearn_object = model_trainer.train()
297
293
  self._is_fitted = True
298
- self._get_model_signatures(dataset)
294
+ self._generate_model_signatures(dataset)
299
295
  return self
300
296
 
301
297
  def _batch_inference_validate_snowpark(
@@ -371,7 +367,9 @@ class LabelSpreading(BaseTransformer):
371
367
  # when it is classifier, infer the datatype from label columns
372
368
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
373
369
  # Batch inference takes a single expected output column type. Use the first columns type for now.
374
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
370
+ label_cols_signatures = [
371
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
372
+ ]
375
373
  if len(label_cols_signatures) == 0:
376
374
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
377
375
  raise exceptions.SnowflakeMLException(
@@ -379,25 +377,22 @@ class LabelSpreading(BaseTransformer):
379
377
  original_exception=ValueError(error_str),
380
378
  )
381
379
 
382
- expected_type_inferred = convert_sp_to_sf_type(
383
- label_cols_signatures[0].as_snowpark_type()
384
- )
380
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
385
381
 
386
382
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
387
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
383
+ assert isinstance(
384
+ dataset._session, Session
385
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
388
386
 
389
387
  transform_kwargs = dict(
390
- session = dataset._session,
391
- dependencies = self._deps,
392
- drop_input_cols = self._drop_input_cols,
393
- expected_output_cols_type = expected_type_inferred,
388
+ session=dataset._session,
389
+ dependencies=self._deps,
390
+ drop_input_cols=self._drop_input_cols,
391
+ expected_output_cols_type=expected_type_inferred,
394
392
  )
395
393
 
396
394
  elif isinstance(dataset, pd.DataFrame):
397
- transform_kwargs = dict(
398
- snowpark_input_cols = self._snowpark_cols,
399
- drop_input_cols = self._drop_input_cols
400
- )
395
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
401
396
 
402
397
  transform_handlers = ModelTransformerBuilder.build(
403
398
  dataset=dataset,
@@ -437,7 +432,7 @@ class LabelSpreading(BaseTransformer):
437
432
  Transformed dataset.
438
433
  """
439
434
  super()._check_dataset_type(dataset)
440
- inference_method="transform"
435
+ inference_method = "transform"
441
436
 
442
437
  # This dictionary contains optional kwargs for batch inference. These kwargs
443
438
  # are specific to the type of dataset used.
@@ -474,17 +469,14 @@ class LabelSpreading(BaseTransformer):
474
469
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
475
470
 
476
471
  transform_kwargs = dict(
477
- session = dataset._session,
478
- dependencies = self._deps,
479
- drop_input_cols = self._drop_input_cols,
480
- expected_output_cols_type = expected_dtype,
472
+ session=dataset._session,
473
+ dependencies=self._deps,
474
+ drop_input_cols=self._drop_input_cols,
475
+ expected_output_cols_type=expected_dtype,
481
476
  )
482
477
 
483
478
  elif isinstance(dataset, pd.DataFrame):
484
- transform_kwargs = dict(
485
- snowpark_input_cols = self._snowpark_cols,
486
- drop_input_cols = self._drop_input_cols
487
- )
479
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
488
480
 
489
481
  transform_handlers = ModelTransformerBuilder.build(
490
482
  dataset=dataset,
@@ -503,7 +495,11 @@ class LabelSpreading(BaseTransformer):
503
495
  return output_df
504
496
 
505
497
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
506
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
498
+ def fit_predict(
499
+ self,
500
+ dataset: Union[DataFrame, pd.DataFrame],
501
+ output_cols_prefix: str = "fit_predict_",
502
+ ) -> Union[DataFrame, pd.DataFrame]:
507
503
  """ Method not supported for this class.
508
504
 
509
505
 
@@ -528,7 +524,9 @@ class LabelSpreading(BaseTransformer):
528
524
  )
529
525
  output_result, fitted_estimator = model_trainer.train_fit_predict(
530
526
  drop_input_cols=self._drop_input_cols,
531
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
527
+ expected_output_cols_list=(
528
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
529
+ ),
532
530
  )
533
531
  self._sklearn_object = fitted_estimator
534
532
  self._is_fitted = True
@@ -545,6 +543,62 @@ class LabelSpreading(BaseTransformer):
545
543
  assert self._sklearn_object is not None
546
544
  return self._sklearn_object.embedding_
547
545
 
546
+
547
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
548
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
549
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
550
+ """
551
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
552
+ # The following condition is introduced for kneighbors methods, and not used in other methods
553
+ if output_cols:
554
+ output_cols = [
555
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
556
+ for c in output_cols
557
+ ]
558
+ elif getattr(self._sklearn_object, "classes_", None) is None:
559
+ output_cols = [output_cols_prefix]
560
+ elif self._sklearn_object is not None:
561
+ classes = self._sklearn_object.classes_
562
+ if isinstance(classes, numpy.ndarray):
563
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
564
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
565
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
566
+ output_cols = []
567
+ for i, cl in enumerate(classes):
568
+ # For binary classification, there is only one output column for each class
569
+ # ndarray as the two classes are complementary.
570
+ if len(cl) == 2:
571
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
572
+ else:
573
+ output_cols.extend([
574
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
575
+ ])
576
+ else:
577
+ output_cols = []
578
+
579
+ # Make sure column names are valid snowflake identifiers.
580
+ assert output_cols is not None # Make MyPy happy
581
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
582
+
583
+ return rv
584
+
585
+ def _align_expected_output_names(
586
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
587
+ ) -> List[str]:
588
+ # in case the inferred output column names dimension is different
589
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
590
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
591
+ output_df_columns = list(output_df_pd.columns)
592
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
593
+ if self.sample_weight_col:
594
+ output_df_columns_set -= set(self.sample_weight_col)
595
+ # if the dimension of inferred output column names is correct; use it
596
+ if len(expected_output_cols_list) == len(output_df_columns_set):
597
+ return expected_output_cols_list
598
+ # otherwise, use the sklearn estimator's output
599
+ else:
600
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
601
+
548
602
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
549
603
  @telemetry.send_api_usage_telemetry(
550
604
  project=_PROJECT,
@@ -577,24 +631,28 @@ class LabelSpreading(BaseTransformer):
577
631
  # are specific to the type of dataset used.
578
632
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
579
633
 
634
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
635
+
580
636
  if isinstance(dataset, DataFrame):
581
637
  self._deps = self._batch_inference_validate_snowpark(
582
638
  dataset=dataset,
583
639
  inference_method=inference_method,
584
640
  )
585
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
641
+ assert isinstance(
642
+ dataset._session, Session
643
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
586
644
  transform_kwargs = dict(
587
645
  session=dataset._session,
588
646
  dependencies=self._deps,
589
- drop_input_cols = self._drop_input_cols,
647
+ drop_input_cols=self._drop_input_cols,
590
648
  expected_output_cols_type="float",
591
649
  )
650
+ expected_output_cols = self._align_expected_output_names(
651
+ inference_method, dataset, expected_output_cols, output_cols_prefix
652
+ )
592
653
 
593
654
  elif isinstance(dataset, pd.DataFrame):
594
- transform_kwargs = dict(
595
- snowpark_input_cols = self._snowpark_cols,
596
- drop_input_cols = self._drop_input_cols
597
- )
655
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
598
656
 
599
657
  transform_handlers = ModelTransformerBuilder.build(
600
658
  dataset=dataset,
@@ -606,7 +664,7 @@ class LabelSpreading(BaseTransformer):
606
664
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
607
665
  inference_method=inference_method,
608
666
  input_cols=self.input_cols,
609
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
667
+ expected_output_cols=expected_output_cols,
610
668
  **transform_kwargs
611
669
  )
612
670
  return output_df
@@ -638,7 +696,8 @@ class LabelSpreading(BaseTransformer):
638
696
  Output dataset with log probability of the sample for each class in the model.
639
697
  """
640
698
  super()._check_dataset_type(dataset)
641
- inference_method="predict_log_proba"
699
+ inference_method = "predict_log_proba"
700
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
642
701
 
643
702
  # This dictionary contains optional kwargs for batch inference. These kwargs
644
703
  # are specific to the type of dataset used.
@@ -649,18 +708,20 @@ class LabelSpreading(BaseTransformer):
649
708
  dataset=dataset,
650
709
  inference_method=inference_method,
651
710
  )
652
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
711
+ assert isinstance(
712
+ dataset._session, Session
713
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
653
714
  transform_kwargs = dict(
654
715
  session=dataset._session,
655
716
  dependencies=self._deps,
656
- drop_input_cols = self._drop_input_cols,
717
+ drop_input_cols=self._drop_input_cols,
657
718
  expected_output_cols_type="float",
658
719
  )
720
+ expected_output_cols = self._align_expected_output_names(
721
+ inference_method, dataset, expected_output_cols, output_cols_prefix
722
+ )
659
723
  elif isinstance(dataset, pd.DataFrame):
660
- transform_kwargs = dict(
661
- snowpark_input_cols = self._snowpark_cols,
662
- drop_input_cols = self._drop_input_cols
663
- )
724
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
664
725
 
665
726
  transform_handlers = ModelTransformerBuilder.build(
666
727
  dataset=dataset,
@@ -673,7 +734,7 @@ class LabelSpreading(BaseTransformer):
673
734
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
674
735
  inference_method=inference_method,
675
736
  input_cols=self.input_cols,
676
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
737
+ expected_output_cols=expected_output_cols,
677
738
  **transform_kwargs
678
739
  )
679
740
  return output_df
@@ -699,30 +760,34 @@ class LabelSpreading(BaseTransformer):
699
760
  Output dataset with results of the decision function for the samples in input dataset.
700
761
  """
701
762
  super()._check_dataset_type(dataset)
702
- inference_method="decision_function"
763
+ inference_method = "decision_function"
703
764
 
704
765
  # This dictionary contains optional kwargs for batch inference. These kwargs
705
766
  # are specific to the type of dataset used.
706
767
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
707
768
 
769
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
770
+
708
771
  if isinstance(dataset, DataFrame):
709
772
  self._deps = self._batch_inference_validate_snowpark(
710
773
  dataset=dataset,
711
774
  inference_method=inference_method,
712
775
  )
713
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
776
+ assert isinstance(
777
+ dataset._session, Session
778
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
714
779
  transform_kwargs = dict(
715
780
  session=dataset._session,
716
781
  dependencies=self._deps,
717
- drop_input_cols = self._drop_input_cols,
782
+ drop_input_cols=self._drop_input_cols,
718
783
  expected_output_cols_type="float",
719
784
  )
785
+ expected_output_cols = self._align_expected_output_names(
786
+ inference_method, dataset, expected_output_cols, output_cols_prefix
787
+ )
720
788
 
721
789
  elif isinstance(dataset, pd.DataFrame):
722
- transform_kwargs = dict(
723
- snowpark_input_cols = self._snowpark_cols,
724
- drop_input_cols = self._drop_input_cols
725
- )
790
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
726
791
 
727
792
  transform_handlers = ModelTransformerBuilder.build(
728
793
  dataset=dataset,
@@ -735,7 +800,7 @@ class LabelSpreading(BaseTransformer):
735
800
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
736
801
  inference_method=inference_method,
737
802
  input_cols=self.input_cols,
738
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
803
+ expected_output_cols=expected_output_cols,
739
804
  **transform_kwargs
740
805
  )
741
806
  return output_df
@@ -764,12 +829,14 @@ class LabelSpreading(BaseTransformer):
764
829
  Output dataset with probability of the sample for each class in the model.
765
830
  """
766
831
  super()._check_dataset_type(dataset)
767
- inference_method="score_samples"
832
+ inference_method = "score_samples"
768
833
 
769
834
  # This dictionary contains optional kwargs for batch inference. These kwargs
770
835
  # are specific to the type of dataset used.
771
836
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
772
837
 
838
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
839
+
773
840
  if isinstance(dataset, DataFrame):
774
841
  self._deps = self._batch_inference_validate_snowpark(
775
842
  dataset=dataset,
@@ -782,6 +849,9 @@ class LabelSpreading(BaseTransformer):
782
849
  drop_input_cols = self._drop_input_cols,
783
850
  expected_output_cols_type="float",
784
851
  )
852
+ expected_output_cols = self._align_expected_output_names(
853
+ inference_method, dataset, expected_output_cols, output_cols_prefix
854
+ )
785
855
 
786
856
  elif isinstance(dataset, pd.DataFrame):
787
857
  transform_kwargs = dict(
@@ -800,7 +870,7 @@ class LabelSpreading(BaseTransformer):
800
870
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
801
871
  inference_method=inference_method,
802
872
  input_cols=self.input_cols,
803
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
873
+ expected_output_cols=expected_output_cols,
804
874
  **transform_kwargs
805
875
  )
806
876
  return output_df
@@ -947,50 +1017,84 @@ class LabelSpreading(BaseTransformer):
947
1017
  )
948
1018
  return output_df
949
1019
 
1020
+
1021
+
1022
+ def to_sklearn(self) -> Any:
1023
+ """Get sklearn.semi_supervised.LabelSpreading object.
1024
+ """
1025
+ if self._sklearn_object is None:
1026
+ self._sklearn_object = self._create_sklearn_object()
1027
+ return self._sklearn_object
1028
+
1029
+ def to_xgboost(self) -> Any:
1030
+ raise exceptions.SnowflakeMLException(
1031
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1032
+ original_exception=AttributeError(
1033
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1034
+ "to_xgboost()",
1035
+ "to_sklearn()"
1036
+ )
1037
+ ),
1038
+ )
1039
+
1040
+ def to_lightgbm(self) -> Any:
1041
+ raise exceptions.SnowflakeMLException(
1042
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1043
+ original_exception=AttributeError(
1044
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1045
+ "to_lightgbm()",
1046
+ "to_sklearn()"
1047
+ )
1048
+ ),
1049
+ )
950
1050
 
951
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1051
+ def _get_dependencies(self) -> List[str]:
1052
+ return self._deps
1053
+
1054
+
1055
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
952
1056
  self._model_signature_dict = dict()
953
1057
 
954
1058
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
955
1059
 
956
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1060
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
957
1061
  outputs: List[BaseFeatureSpec] = []
958
1062
  if hasattr(self, "predict"):
959
1063
  # keep mypy happy
960
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1064
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
961
1065
  # For classifier, the type of predict is the same as the type of label
962
- if self._sklearn_object._estimator_type == 'classifier':
963
- # label columns is the desired type for output
1066
+ if self._sklearn_object._estimator_type == "classifier":
1067
+ # label columns is the desired type for output
964
1068
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
965
1069
  # rename the output columns
966
1070
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
967
- self._model_signature_dict["predict"] = ModelSignature(inputs,
968
- ([] if self._drop_input_cols else inputs)
969
- + outputs)
1071
+ self._model_signature_dict["predict"] = ModelSignature(
1072
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1073
+ )
970
1074
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
971
1075
  # For outlier models, returns -1 for outliers and 1 for inliers.
972
- # Clusterer returns int64 cluster labels.
1076
+ # Clusterer returns int64 cluster labels.
973
1077
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
974
1078
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
975
- self._model_signature_dict["predict"] = ModelSignature(inputs,
976
- ([] if self._drop_input_cols else inputs)
977
- + outputs)
978
-
1079
+ self._model_signature_dict["predict"] = ModelSignature(
1080
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1081
+ )
1082
+
979
1083
  # For regressor, the type of predict is float64
980
- elif self._sklearn_object._estimator_type == 'regressor':
1084
+ elif self._sklearn_object._estimator_type == "regressor":
981
1085
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
982
- self._model_signature_dict["predict"] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
985
-
1086
+ self._model_signature_dict["predict"] = ModelSignature(
1087
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1088
+ )
1089
+
986
1090
  for prob_func in PROB_FUNCTIONS:
987
1091
  if hasattr(self, prob_func):
988
1092
  output_cols_prefix: str = f"{prob_func}_"
989
1093
  output_column_names = self._get_output_column_names(output_cols_prefix)
990
1094
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
991
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
1095
+ self._model_signature_dict[prob_func] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
994
1098
 
995
1099
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
996
1100
  items = list(self._model_signature_dict.items())
@@ -1003,10 +1107,10 @@ class LabelSpreading(BaseTransformer):
1003
1107
  """Returns model signature of current class.
1004
1108
 
1005
1109
  Raises:
1006
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1110
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1007
1111
 
1008
1112
  Returns:
1009
- Dict[str, ModelSignature]: each method and its input output signature
1113
+ Dict with each method and its input output signature
1010
1114
  """
1011
1115
  if self._model_signature_dict is None:
1012
1116
  raise exceptions.SnowflakeMLException(
@@ -1014,35 +1118,3 @@ class LabelSpreading(BaseTransformer):
1014
1118
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1015
1119
  )
1016
1120
  return self._model_signature_dict
1017
-
1018
- def to_sklearn(self) -> Any:
1019
- """Get sklearn.semi_supervised.LabelSpreading object.
1020
- """
1021
- if self._sklearn_object is None:
1022
- self._sklearn_object = self._create_sklearn_object()
1023
- return self._sklearn_object
1024
-
1025
- def to_xgboost(self) -> Any:
1026
- raise exceptions.SnowflakeMLException(
1027
- error_code=error_codes.METHOD_NOT_ALLOWED,
1028
- original_exception=AttributeError(
1029
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1030
- "to_xgboost()",
1031
- "to_sklearn()"
1032
- )
1033
- ),
1034
- )
1035
-
1036
- def to_lightgbm(self) -> Any:
1037
- raise exceptions.SnowflakeMLException(
1038
- error_code=error_codes.METHOD_NOT_ALLOWED,
1039
- original_exception=AttributeError(
1040
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1041
- "to_lightgbm()",
1042
- "to_sklearn()"
1043
- )
1044
- ),
1045
- )
1046
-
1047
- def _get_dependencies(self) -> List[str]:
1048
- return self._deps