snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -262,12 +261,7 @@ class Lasso(BaseTransformer):
262
261
  )
263
262
  return selected_cols
264
263
 
265
- @telemetry.send_api_usage_telemetry(
266
- project=_PROJECT,
267
- subproject=_SUBPROJECT,
268
- custom_tags=dict([("autogen", True)]),
269
- )
270
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Lasso":
264
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Lasso":
271
265
  """Fit model with coordinate descent
272
266
  For more details on this function, see [sklearn.linear_model.Lasso.fit]
273
267
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso.fit)
@@ -294,12 +288,14 @@ class Lasso(BaseTransformer):
294
288
 
295
289
  self._snowpark_cols = dataset.select(self.input_cols).columns
296
290
 
297
- # If we are already in a stored procedure, no need to kick off another one.
291
+ # If we are already in a stored procedure, no need to kick off another one.
298
292
  if SNOWML_SPROC_ENV in os.environ:
299
293
  statement_params = telemetry.get_function_usage_statement_params(
300
294
  project=_PROJECT,
301
295
  subproject=_SUBPROJECT,
302
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Lasso.__class__.__name__),
296
+ function_name=telemetry.get_statement_params_full_func_name(
297
+ inspect.currentframe(), Lasso.__class__.__name__
298
+ ),
303
299
  api_calls=[Session.call],
304
300
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
305
301
  )
@@ -320,7 +316,7 @@ class Lasso(BaseTransformer):
320
316
  )
321
317
  self._sklearn_object = model_trainer.train()
322
318
  self._is_fitted = True
323
- self._get_model_signatures(dataset)
319
+ self._generate_model_signatures(dataset)
324
320
  return self
325
321
 
326
322
  def _batch_inference_validate_snowpark(
@@ -396,7 +392,9 @@ class Lasso(BaseTransformer):
396
392
  # when it is classifier, infer the datatype from label columns
397
393
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
398
394
  # Batch inference takes a single expected output column type. Use the first columns type for now.
399
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
395
+ label_cols_signatures = [
396
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
397
+ ]
400
398
  if len(label_cols_signatures) == 0:
401
399
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
402
400
  raise exceptions.SnowflakeMLException(
@@ -404,25 +402,22 @@ class Lasso(BaseTransformer):
404
402
  original_exception=ValueError(error_str),
405
403
  )
406
404
 
407
- expected_type_inferred = convert_sp_to_sf_type(
408
- label_cols_signatures[0].as_snowpark_type()
409
- )
405
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
410
406
 
411
407
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
412
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
408
+ assert isinstance(
409
+ dataset._session, Session
410
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
413
411
 
414
412
  transform_kwargs = dict(
415
- session = dataset._session,
416
- dependencies = self._deps,
417
- drop_input_cols = self._drop_input_cols,
418
- expected_output_cols_type = expected_type_inferred,
413
+ session=dataset._session,
414
+ dependencies=self._deps,
415
+ drop_input_cols=self._drop_input_cols,
416
+ expected_output_cols_type=expected_type_inferred,
419
417
  )
420
418
 
421
419
  elif isinstance(dataset, pd.DataFrame):
422
- transform_kwargs = dict(
423
- snowpark_input_cols = self._snowpark_cols,
424
- drop_input_cols = self._drop_input_cols
425
- )
420
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
426
421
 
427
422
  transform_handlers = ModelTransformerBuilder.build(
428
423
  dataset=dataset,
@@ -462,7 +457,7 @@ class Lasso(BaseTransformer):
462
457
  Transformed dataset.
463
458
  """
464
459
  super()._check_dataset_type(dataset)
465
- inference_method="transform"
460
+ inference_method = "transform"
466
461
 
467
462
  # This dictionary contains optional kwargs for batch inference. These kwargs
468
463
  # are specific to the type of dataset used.
@@ -499,17 +494,14 @@ class Lasso(BaseTransformer):
499
494
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
500
495
 
501
496
  transform_kwargs = dict(
502
- session = dataset._session,
503
- dependencies = self._deps,
504
- drop_input_cols = self._drop_input_cols,
505
- expected_output_cols_type = expected_dtype,
497
+ session=dataset._session,
498
+ dependencies=self._deps,
499
+ drop_input_cols=self._drop_input_cols,
500
+ expected_output_cols_type=expected_dtype,
506
501
  )
507
502
 
508
503
  elif isinstance(dataset, pd.DataFrame):
509
- transform_kwargs = dict(
510
- snowpark_input_cols = self._snowpark_cols,
511
- drop_input_cols = self._drop_input_cols
512
- )
504
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
513
505
 
514
506
  transform_handlers = ModelTransformerBuilder.build(
515
507
  dataset=dataset,
@@ -528,7 +520,11 @@ class Lasso(BaseTransformer):
528
520
  return output_df
529
521
 
530
522
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
531
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
523
+ def fit_predict(
524
+ self,
525
+ dataset: Union[DataFrame, pd.DataFrame],
526
+ output_cols_prefix: str = "fit_predict_",
527
+ ) -> Union[DataFrame, pd.DataFrame]:
532
528
  """ Method not supported for this class.
533
529
 
534
530
 
@@ -553,7 +549,9 @@ class Lasso(BaseTransformer):
553
549
  )
554
550
  output_result, fitted_estimator = model_trainer.train_fit_predict(
555
551
  drop_input_cols=self._drop_input_cols,
556
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
552
+ expected_output_cols_list=(
553
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
554
+ ),
557
555
  )
558
556
  self._sklearn_object = fitted_estimator
559
557
  self._is_fitted = True
@@ -570,6 +568,62 @@ class Lasso(BaseTransformer):
570
568
  assert self._sklearn_object is not None
571
569
  return self._sklearn_object.embedding_
572
570
 
571
+
572
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
573
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
574
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
575
+ """
576
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
577
+ # The following condition is introduced for kneighbors methods, and not used in other methods
578
+ if output_cols:
579
+ output_cols = [
580
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
581
+ for c in output_cols
582
+ ]
583
+ elif getattr(self._sklearn_object, "classes_", None) is None:
584
+ output_cols = [output_cols_prefix]
585
+ elif self._sklearn_object is not None:
586
+ classes = self._sklearn_object.classes_
587
+ if isinstance(classes, numpy.ndarray):
588
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
589
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
590
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
591
+ output_cols = []
592
+ for i, cl in enumerate(classes):
593
+ # For binary classification, there is only one output column for each class
594
+ # ndarray as the two classes are complementary.
595
+ if len(cl) == 2:
596
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
597
+ else:
598
+ output_cols.extend([
599
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
600
+ ])
601
+ else:
602
+ output_cols = []
603
+
604
+ # Make sure column names are valid snowflake identifiers.
605
+ assert output_cols is not None # Make MyPy happy
606
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
607
+
608
+ return rv
609
+
610
+ def _align_expected_output_names(
611
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
612
+ ) -> List[str]:
613
+ # in case the inferred output column names dimension is different
614
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
615
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
616
+ output_df_columns = list(output_df_pd.columns)
617
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
618
+ if self.sample_weight_col:
619
+ output_df_columns_set -= set(self.sample_weight_col)
620
+ # if the dimension of inferred output column names is correct; use it
621
+ if len(expected_output_cols_list) == len(output_df_columns_set):
622
+ return expected_output_cols_list
623
+ # otherwise, use the sklearn estimator's output
624
+ else:
625
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
626
+
573
627
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
574
628
  @telemetry.send_api_usage_telemetry(
575
629
  project=_PROJECT,
@@ -600,24 +654,28 @@ class Lasso(BaseTransformer):
600
654
  # are specific to the type of dataset used.
601
655
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
602
656
 
657
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
658
+
603
659
  if isinstance(dataset, DataFrame):
604
660
  self._deps = self._batch_inference_validate_snowpark(
605
661
  dataset=dataset,
606
662
  inference_method=inference_method,
607
663
  )
608
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
664
+ assert isinstance(
665
+ dataset._session, Session
666
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
609
667
  transform_kwargs = dict(
610
668
  session=dataset._session,
611
669
  dependencies=self._deps,
612
- drop_input_cols = self._drop_input_cols,
670
+ drop_input_cols=self._drop_input_cols,
613
671
  expected_output_cols_type="float",
614
672
  )
673
+ expected_output_cols = self._align_expected_output_names(
674
+ inference_method, dataset, expected_output_cols, output_cols_prefix
675
+ )
615
676
 
616
677
  elif isinstance(dataset, pd.DataFrame):
617
- transform_kwargs = dict(
618
- snowpark_input_cols = self._snowpark_cols,
619
- drop_input_cols = self._drop_input_cols
620
- )
678
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
621
679
 
622
680
  transform_handlers = ModelTransformerBuilder.build(
623
681
  dataset=dataset,
@@ -629,7 +687,7 @@ class Lasso(BaseTransformer):
629
687
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
630
688
  inference_method=inference_method,
631
689
  input_cols=self.input_cols,
632
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
690
+ expected_output_cols=expected_output_cols,
633
691
  **transform_kwargs
634
692
  )
635
693
  return output_df
@@ -659,7 +717,8 @@ class Lasso(BaseTransformer):
659
717
  Output dataset with log probability of the sample for each class in the model.
660
718
  """
661
719
  super()._check_dataset_type(dataset)
662
- inference_method="predict_log_proba"
720
+ inference_method = "predict_log_proba"
721
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
663
722
 
664
723
  # This dictionary contains optional kwargs for batch inference. These kwargs
665
724
  # are specific to the type of dataset used.
@@ -670,18 +729,20 @@ class Lasso(BaseTransformer):
670
729
  dataset=dataset,
671
730
  inference_method=inference_method,
672
731
  )
673
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
732
+ assert isinstance(
733
+ dataset._session, Session
734
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
674
735
  transform_kwargs = dict(
675
736
  session=dataset._session,
676
737
  dependencies=self._deps,
677
- drop_input_cols = self._drop_input_cols,
738
+ drop_input_cols=self._drop_input_cols,
678
739
  expected_output_cols_type="float",
679
740
  )
741
+ expected_output_cols = self._align_expected_output_names(
742
+ inference_method, dataset, expected_output_cols, output_cols_prefix
743
+ )
680
744
  elif isinstance(dataset, pd.DataFrame):
681
- transform_kwargs = dict(
682
- snowpark_input_cols = self._snowpark_cols,
683
- drop_input_cols = self._drop_input_cols
684
- )
745
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
685
746
 
686
747
  transform_handlers = ModelTransformerBuilder.build(
687
748
  dataset=dataset,
@@ -694,7 +755,7 @@ class Lasso(BaseTransformer):
694
755
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
695
756
  inference_method=inference_method,
696
757
  input_cols=self.input_cols,
697
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
758
+ expected_output_cols=expected_output_cols,
698
759
  **transform_kwargs
699
760
  )
700
761
  return output_df
@@ -720,30 +781,34 @@ class Lasso(BaseTransformer):
720
781
  Output dataset with results of the decision function for the samples in input dataset.
721
782
  """
722
783
  super()._check_dataset_type(dataset)
723
- inference_method="decision_function"
784
+ inference_method = "decision_function"
724
785
 
725
786
  # This dictionary contains optional kwargs for batch inference. These kwargs
726
787
  # are specific to the type of dataset used.
727
788
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
728
789
 
790
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
791
+
729
792
  if isinstance(dataset, DataFrame):
730
793
  self._deps = self._batch_inference_validate_snowpark(
731
794
  dataset=dataset,
732
795
  inference_method=inference_method,
733
796
  )
734
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
797
+ assert isinstance(
798
+ dataset._session, Session
799
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
735
800
  transform_kwargs = dict(
736
801
  session=dataset._session,
737
802
  dependencies=self._deps,
738
- drop_input_cols = self._drop_input_cols,
803
+ drop_input_cols=self._drop_input_cols,
739
804
  expected_output_cols_type="float",
740
805
  )
806
+ expected_output_cols = self._align_expected_output_names(
807
+ inference_method, dataset, expected_output_cols, output_cols_prefix
808
+ )
741
809
 
742
810
  elif isinstance(dataset, pd.DataFrame):
743
- transform_kwargs = dict(
744
- snowpark_input_cols = self._snowpark_cols,
745
- drop_input_cols = self._drop_input_cols
746
- )
811
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
747
812
 
748
813
  transform_handlers = ModelTransformerBuilder.build(
749
814
  dataset=dataset,
@@ -756,7 +821,7 @@ class Lasso(BaseTransformer):
756
821
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
757
822
  inference_method=inference_method,
758
823
  input_cols=self.input_cols,
759
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
824
+ expected_output_cols=expected_output_cols,
760
825
  **transform_kwargs
761
826
  )
762
827
  return output_df
@@ -785,12 +850,14 @@ class Lasso(BaseTransformer):
785
850
  Output dataset with probability of the sample for each class in the model.
786
851
  """
787
852
  super()._check_dataset_type(dataset)
788
- inference_method="score_samples"
853
+ inference_method = "score_samples"
789
854
 
790
855
  # This dictionary contains optional kwargs for batch inference. These kwargs
791
856
  # are specific to the type of dataset used.
792
857
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
793
858
 
859
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
860
+
794
861
  if isinstance(dataset, DataFrame):
795
862
  self._deps = self._batch_inference_validate_snowpark(
796
863
  dataset=dataset,
@@ -803,6 +870,9 @@ class Lasso(BaseTransformer):
803
870
  drop_input_cols = self._drop_input_cols,
804
871
  expected_output_cols_type="float",
805
872
  )
873
+ expected_output_cols = self._align_expected_output_names(
874
+ inference_method, dataset, expected_output_cols, output_cols_prefix
875
+ )
806
876
 
807
877
  elif isinstance(dataset, pd.DataFrame):
808
878
  transform_kwargs = dict(
@@ -821,7 +891,7 @@ class Lasso(BaseTransformer):
821
891
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
822
892
  inference_method=inference_method,
823
893
  input_cols=self.input_cols,
824
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
894
+ expected_output_cols=expected_output_cols,
825
895
  **transform_kwargs
826
896
  )
827
897
  return output_df
@@ -968,50 +1038,84 @@ class Lasso(BaseTransformer):
968
1038
  )
969
1039
  return output_df
970
1040
 
1041
+
1042
+
1043
+ def to_sklearn(self) -> Any:
1044
+ """Get sklearn.linear_model.Lasso object.
1045
+ """
1046
+ if self._sklearn_object is None:
1047
+ self._sklearn_object = self._create_sklearn_object()
1048
+ return self._sklearn_object
1049
+
1050
+ def to_xgboost(self) -> Any:
1051
+ raise exceptions.SnowflakeMLException(
1052
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1053
+ original_exception=AttributeError(
1054
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1055
+ "to_xgboost()",
1056
+ "to_sklearn()"
1057
+ )
1058
+ ),
1059
+ )
1060
+
1061
+ def to_lightgbm(self) -> Any:
1062
+ raise exceptions.SnowflakeMLException(
1063
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1064
+ original_exception=AttributeError(
1065
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1066
+ "to_lightgbm()",
1067
+ "to_sklearn()"
1068
+ )
1069
+ ),
1070
+ )
971
1071
 
972
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1072
+ def _get_dependencies(self) -> List[str]:
1073
+ return self._deps
1074
+
1075
+
1076
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
973
1077
  self._model_signature_dict = dict()
974
1078
 
975
1079
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
976
1080
 
977
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1081
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
978
1082
  outputs: List[BaseFeatureSpec] = []
979
1083
  if hasattr(self, "predict"):
980
1084
  # keep mypy happy
981
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1085
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
982
1086
  # For classifier, the type of predict is the same as the type of label
983
- if self._sklearn_object._estimator_type == 'classifier':
984
- # label columns is the desired type for output
1087
+ if self._sklearn_object._estimator_type == "classifier":
1088
+ # label columns is the desired type for output
985
1089
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
986
1090
  # rename the output columns
987
1091
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
988
- self._model_signature_dict["predict"] = ModelSignature(inputs,
989
- ([] if self._drop_input_cols else inputs)
990
- + outputs)
1092
+ self._model_signature_dict["predict"] = ModelSignature(
1093
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1094
+ )
991
1095
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
992
1096
  # For outlier models, returns -1 for outliers and 1 for inliers.
993
- # Clusterer returns int64 cluster labels.
1097
+ # Clusterer returns int64 cluster labels.
994
1098
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
995
1099
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
996
- self._model_signature_dict["predict"] = ModelSignature(inputs,
997
- ([] if self._drop_input_cols else inputs)
998
- + outputs)
999
-
1100
+ self._model_signature_dict["predict"] = ModelSignature(
1101
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1102
+ )
1103
+
1000
1104
  # For regressor, the type of predict is float64
1001
- elif self._sklearn_object._estimator_type == 'regressor':
1105
+ elif self._sklearn_object._estimator_type == "regressor":
1002
1106
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1003
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1004
- ([] if self._drop_input_cols else inputs)
1005
- + outputs)
1006
-
1107
+ self._model_signature_dict["predict"] = ModelSignature(
1108
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1109
+ )
1110
+
1007
1111
  for prob_func in PROB_FUNCTIONS:
1008
1112
  if hasattr(self, prob_func):
1009
1113
  output_cols_prefix: str = f"{prob_func}_"
1010
1114
  output_column_names = self._get_output_column_names(output_cols_prefix)
1011
1115
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1012
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1013
- ([] if self._drop_input_cols else inputs)
1014
- + outputs)
1116
+ self._model_signature_dict[prob_func] = ModelSignature(
1117
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1118
+ )
1015
1119
 
1016
1120
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1017
1121
  items = list(self._model_signature_dict.items())
@@ -1024,10 +1128,10 @@ class Lasso(BaseTransformer):
1024
1128
  """Returns model signature of current class.
1025
1129
 
1026
1130
  Raises:
1027
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1131
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1028
1132
 
1029
1133
  Returns:
1030
- Dict[str, ModelSignature]: each method and its input output signature
1134
+ Dict with each method and its input output signature
1031
1135
  """
1032
1136
  if self._model_signature_dict is None:
1033
1137
  raise exceptions.SnowflakeMLException(
@@ -1035,35 +1139,3 @@ class Lasso(BaseTransformer):
1035
1139
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1036
1140
  )
1037
1141
  return self._model_signature_dict
1038
-
1039
- def to_sklearn(self) -> Any:
1040
- """Get sklearn.linear_model.Lasso object.
1041
- """
1042
- if self._sklearn_object is None:
1043
- self._sklearn_object = self._create_sklearn_object()
1044
- return self._sklearn_object
1045
-
1046
- def to_xgboost(self) -> Any:
1047
- raise exceptions.SnowflakeMLException(
1048
- error_code=error_codes.METHOD_NOT_ALLOWED,
1049
- original_exception=AttributeError(
1050
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1051
- "to_xgboost()",
1052
- "to_sklearn()"
1053
- )
1054
- ),
1055
- )
1056
-
1057
- def to_lightgbm(self) -> Any:
1058
- raise exceptions.SnowflakeMLException(
1059
- error_code=error_codes.METHOD_NOT_ALLOWED,
1060
- original_exception=AttributeError(
1061
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1062
- "to_lightgbm()",
1063
- "to_sklearn()"
1064
- )
1065
- ),
1066
- )
1067
-
1068
- def _get_dependencies(self) -> List[str]:
1069
- return self._deps