snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -16,6 +16,7 @@ from numpy import typing as npt
16
16
 
17
17
 
18
18
  import numpy
19
+ import sklearn
19
20
  import lightgbm
20
21
  from sklearn.utils.metaestimators import available_if
21
22
 
@@ -32,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
32
33
  BatchInferenceKwargsTypedDict,
33
34
  ScoreKwargsTypedDict
34
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
35
45
 
36
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
37
47
 
@@ -42,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
42
52
  validate_sklearn_args,
43
53
  )
44
54
 
45
- from snowflake.ml.model.model_signature import (
46
- DataType,
47
- FeatureSpec,
48
- ModelSignature,
49
- _infer_signature,
50
- _rename_signature_with_snowflake_identifiers,
51
- BaseFeatureSpec,
52
- )
53
- from snowflake.ml.model._signatures import utils as model_signature_utils
54
-
55
55
  _PROJECT = "ModelDevelopment"
56
56
  # Derive subproject from module name by removing "sklearn"
57
57
  # and converting module name from underscore to CamelCase
@@ -160,7 +160,7 @@ class LGBMRegressor(BaseTransformer):
160
160
  self.set_sample_weight_col(sample_weight_col)
161
161
  self._use_external_memory_version = False
162
162
  self._batch_size = -1
163
- deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
163
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}', f'scikit-learn=={sklearn.__version__}'])
164
164
 
165
165
  self._deps = list(deps)
166
166
 
@@ -232,12 +232,7 @@ class LGBMRegressor(BaseTransformer):
232
232
  )
233
233
  return selected_cols
234
234
 
235
- @telemetry.send_api_usage_telemetry(
236
- project=_PROJECT,
237
- subproject=_SUBPROJECT,
238
- custom_tags=dict([("autogen", True)]),
239
- )
240
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
235
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
241
236
  """Build a gradient boosting model from the training set (X, y)
242
237
  For more details on this function, see [lightgbm.LGBMRegressor.fit]
243
238
  (https://lightgbm.readthedocs.io/en/v3.3.2/pythonapi/lightgbm.LGBMRegressor.html#lightgbm.LGBMRegressor.fit)
@@ -264,12 +259,14 @@ class LGBMRegressor(BaseTransformer):
264
259
 
265
260
  self._snowpark_cols = dataset.select(self.input_cols).columns
266
261
 
267
- # If we are already in a stored procedure, no need to kick off another one.
262
+ # If we are already in a stored procedure, no need to kick off another one.
268
263
  if SNOWML_SPROC_ENV in os.environ:
269
264
  statement_params = telemetry.get_function_usage_statement_params(
270
265
  project=_PROJECT,
271
266
  subproject=_SUBPROJECT,
272
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMRegressor.__class__.__name__),
267
+ function_name=telemetry.get_statement_params_full_func_name(
268
+ inspect.currentframe(), LGBMRegressor.__class__.__name__
269
+ ),
273
270
  api_calls=[Session.call],
274
271
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
275
272
  )
@@ -290,7 +287,7 @@ class LGBMRegressor(BaseTransformer):
290
287
  )
291
288
  self._sklearn_object = model_trainer.train()
292
289
  self._is_fitted = True
293
- self._get_model_signatures(dataset)
290
+ self._generate_model_signatures(dataset)
294
291
  return self
295
292
 
296
293
  def _batch_inference_validate_snowpark(
@@ -366,7 +363,9 @@ class LGBMRegressor(BaseTransformer):
366
363
  # when it is classifier, infer the datatype from label columns
367
364
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
368
365
  # Batch inference takes a single expected output column type. Use the first columns type for now.
369
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
366
+ label_cols_signatures = [
367
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
368
+ ]
370
369
  if len(label_cols_signatures) == 0:
371
370
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
372
371
  raise exceptions.SnowflakeMLException(
@@ -374,25 +373,22 @@ class LGBMRegressor(BaseTransformer):
374
373
  original_exception=ValueError(error_str),
375
374
  )
376
375
 
377
- expected_type_inferred = convert_sp_to_sf_type(
378
- label_cols_signatures[0].as_snowpark_type()
379
- )
376
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
380
377
 
381
378
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
382
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
379
+ assert isinstance(
380
+ dataset._session, Session
381
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
383
382
 
384
383
  transform_kwargs = dict(
385
- session = dataset._session,
386
- dependencies = self._deps,
387
- drop_input_cols = self._drop_input_cols,
388
- expected_output_cols_type = expected_type_inferred,
384
+ session=dataset._session,
385
+ dependencies=self._deps,
386
+ drop_input_cols=self._drop_input_cols,
387
+ expected_output_cols_type=expected_type_inferred,
389
388
  )
390
389
 
391
390
  elif isinstance(dataset, pd.DataFrame):
392
- transform_kwargs = dict(
393
- snowpark_input_cols = self._snowpark_cols,
394
- drop_input_cols = self._drop_input_cols
395
- )
391
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
396
392
 
397
393
  transform_handlers = ModelTransformerBuilder.build(
398
394
  dataset=dataset,
@@ -432,7 +428,7 @@ class LGBMRegressor(BaseTransformer):
432
428
  Transformed dataset.
433
429
  """
434
430
  super()._check_dataset_type(dataset)
435
- inference_method="transform"
431
+ inference_method = "transform"
436
432
 
437
433
  # This dictionary contains optional kwargs for batch inference. These kwargs
438
434
  # are specific to the type of dataset used.
@@ -469,17 +465,14 @@ class LGBMRegressor(BaseTransformer):
469
465
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
470
466
 
471
467
  transform_kwargs = dict(
472
- session = dataset._session,
473
- dependencies = self._deps,
474
- drop_input_cols = self._drop_input_cols,
475
- expected_output_cols_type = expected_dtype,
468
+ session=dataset._session,
469
+ dependencies=self._deps,
470
+ drop_input_cols=self._drop_input_cols,
471
+ expected_output_cols_type=expected_dtype,
476
472
  )
477
473
 
478
474
  elif isinstance(dataset, pd.DataFrame):
479
- transform_kwargs = dict(
480
- snowpark_input_cols = self._snowpark_cols,
481
- drop_input_cols = self._drop_input_cols
482
- )
475
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
483
476
 
484
477
  transform_handlers = ModelTransformerBuilder.build(
485
478
  dataset=dataset,
@@ -498,7 +491,11 @@ class LGBMRegressor(BaseTransformer):
498
491
  return output_df
499
492
 
500
493
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
501
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
494
+ def fit_predict(
495
+ self,
496
+ dataset: Union[DataFrame, pd.DataFrame],
497
+ output_cols_prefix: str = "fit_predict_",
498
+ ) -> Union[DataFrame, pd.DataFrame]:
502
499
  """ Method not supported for this class.
503
500
 
504
501
 
@@ -523,7 +520,9 @@ class LGBMRegressor(BaseTransformer):
523
520
  )
524
521
  output_result, fitted_estimator = model_trainer.train_fit_predict(
525
522
  drop_input_cols=self._drop_input_cols,
526
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
523
+ expected_output_cols_list=(
524
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
525
+ ),
527
526
  )
528
527
  self._sklearn_object = fitted_estimator
529
528
  self._is_fitted = True
@@ -540,6 +539,62 @@ class LGBMRegressor(BaseTransformer):
540
539
  assert self._sklearn_object is not None
541
540
  return self._sklearn_object.embedding_
542
541
 
542
+
543
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
544
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
545
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
546
+ """
547
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
548
+ # The following condition is introduced for kneighbors methods, and not used in other methods
549
+ if output_cols:
550
+ output_cols = [
551
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
552
+ for c in output_cols
553
+ ]
554
+ elif getattr(self._sklearn_object, "classes_", None) is None:
555
+ output_cols = [output_cols_prefix]
556
+ elif self._sklearn_object is not None:
557
+ classes = self._sklearn_object.classes_
558
+ if isinstance(classes, numpy.ndarray):
559
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
560
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
561
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
562
+ output_cols = []
563
+ for i, cl in enumerate(classes):
564
+ # For binary classification, there is only one output column for each class
565
+ # ndarray as the two classes are complementary.
566
+ if len(cl) == 2:
567
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
568
+ else:
569
+ output_cols.extend([
570
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
571
+ ])
572
+ else:
573
+ output_cols = []
574
+
575
+ # Make sure column names are valid snowflake identifiers.
576
+ assert output_cols is not None # Make MyPy happy
577
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
578
+
579
+ return rv
580
+
581
+ def _align_expected_output_names(
582
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
583
+ ) -> List[str]:
584
+ # in case the inferred output column names dimension is different
585
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
586
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
587
+ output_df_columns = list(output_df_pd.columns)
588
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
589
+ if self.sample_weight_col:
590
+ output_df_columns_set -= set(self.sample_weight_col)
591
+ # if the dimension of inferred output column names is correct; use it
592
+ if len(expected_output_cols_list) == len(output_df_columns_set):
593
+ return expected_output_cols_list
594
+ # otherwise, use the sklearn estimator's output
595
+ else:
596
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
597
+
543
598
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
544
599
  @telemetry.send_api_usage_telemetry(
545
600
  project=_PROJECT,
@@ -570,24 +625,28 @@ class LGBMRegressor(BaseTransformer):
570
625
  # are specific to the type of dataset used.
571
626
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
572
627
 
628
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
629
+
573
630
  if isinstance(dataset, DataFrame):
574
631
  self._deps = self._batch_inference_validate_snowpark(
575
632
  dataset=dataset,
576
633
  inference_method=inference_method,
577
634
  )
578
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
635
+ assert isinstance(
636
+ dataset._session, Session
637
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
579
638
  transform_kwargs = dict(
580
639
  session=dataset._session,
581
640
  dependencies=self._deps,
582
- drop_input_cols = self._drop_input_cols,
641
+ drop_input_cols=self._drop_input_cols,
583
642
  expected_output_cols_type="float",
584
643
  )
644
+ expected_output_cols = self._align_expected_output_names(
645
+ inference_method, dataset, expected_output_cols, output_cols_prefix
646
+ )
585
647
 
586
648
  elif isinstance(dataset, pd.DataFrame):
587
- transform_kwargs = dict(
588
- snowpark_input_cols = self._snowpark_cols,
589
- drop_input_cols = self._drop_input_cols
590
- )
649
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
591
650
 
592
651
  transform_handlers = ModelTransformerBuilder.build(
593
652
  dataset=dataset,
@@ -599,7 +658,7 @@ class LGBMRegressor(BaseTransformer):
599
658
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
600
659
  inference_method=inference_method,
601
660
  input_cols=self.input_cols,
602
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
661
+ expected_output_cols=expected_output_cols,
603
662
  **transform_kwargs
604
663
  )
605
664
  return output_df
@@ -629,7 +688,8 @@ class LGBMRegressor(BaseTransformer):
629
688
  Output dataset with log probability of the sample for each class in the model.
630
689
  """
631
690
  super()._check_dataset_type(dataset)
632
- inference_method="predict_log_proba"
691
+ inference_method = "predict_log_proba"
692
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
633
693
 
634
694
  # This dictionary contains optional kwargs for batch inference. These kwargs
635
695
  # are specific to the type of dataset used.
@@ -640,18 +700,20 @@ class LGBMRegressor(BaseTransformer):
640
700
  dataset=dataset,
641
701
  inference_method=inference_method,
642
702
  )
643
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
703
+ assert isinstance(
704
+ dataset._session, Session
705
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
644
706
  transform_kwargs = dict(
645
707
  session=dataset._session,
646
708
  dependencies=self._deps,
647
- drop_input_cols = self._drop_input_cols,
709
+ drop_input_cols=self._drop_input_cols,
648
710
  expected_output_cols_type="float",
649
711
  )
712
+ expected_output_cols = self._align_expected_output_names(
713
+ inference_method, dataset, expected_output_cols, output_cols_prefix
714
+ )
650
715
  elif isinstance(dataset, pd.DataFrame):
651
- transform_kwargs = dict(
652
- snowpark_input_cols = self._snowpark_cols,
653
- drop_input_cols = self._drop_input_cols
654
- )
716
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
655
717
 
656
718
  transform_handlers = ModelTransformerBuilder.build(
657
719
  dataset=dataset,
@@ -664,7 +726,7 @@ class LGBMRegressor(BaseTransformer):
664
726
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
665
727
  inference_method=inference_method,
666
728
  input_cols=self.input_cols,
667
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
729
+ expected_output_cols=expected_output_cols,
668
730
  **transform_kwargs
669
731
  )
670
732
  return output_df
@@ -690,30 +752,34 @@ class LGBMRegressor(BaseTransformer):
690
752
  Output dataset with results of the decision function for the samples in input dataset.
691
753
  """
692
754
  super()._check_dataset_type(dataset)
693
- inference_method="decision_function"
755
+ inference_method = "decision_function"
694
756
 
695
757
  # This dictionary contains optional kwargs for batch inference. These kwargs
696
758
  # are specific to the type of dataset used.
697
759
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
698
760
 
761
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
762
+
699
763
  if isinstance(dataset, DataFrame):
700
764
  self._deps = self._batch_inference_validate_snowpark(
701
765
  dataset=dataset,
702
766
  inference_method=inference_method,
703
767
  )
704
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
768
+ assert isinstance(
769
+ dataset._session, Session
770
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
705
771
  transform_kwargs = dict(
706
772
  session=dataset._session,
707
773
  dependencies=self._deps,
708
- drop_input_cols = self._drop_input_cols,
774
+ drop_input_cols=self._drop_input_cols,
709
775
  expected_output_cols_type="float",
710
776
  )
777
+ expected_output_cols = self._align_expected_output_names(
778
+ inference_method, dataset, expected_output_cols, output_cols_prefix
779
+ )
711
780
 
712
781
  elif isinstance(dataset, pd.DataFrame):
713
- transform_kwargs = dict(
714
- snowpark_input_cols = self._snowpark_cols,
715
- drop_input_cols = self._drop_input_cols
716
- )
782
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
717
783
 
718
784
  transform_handlers = ModelTransformerBuilder.build(
719
785
  dataset=dataset,
@@ -726,7 +792,7 @@ class LGBMRegressor(BaseTransformer):
726
792
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
727
793
  inference_method=inference_method,
728
794
  input_cols=self.input_cols,
729
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
795
+ expected_output_cols=expected_output_cols,
730
796
  **transform_kwargs
731
797
  )
732
798
  return output_df
@@ -755,12 +821,14 @@ class LGBMRegressor(BaseTransformer):
755
821
  Output dataset with probability of the sample for each class in the model.
756
822
  """
757
823
  super()._check_dataset_type(dataset)
758
- inference_method="score_samples"
824
+ inference_method = "score_samples"
759
825
 
760
826
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
827
  # are specific to the type of dataset used.
762
828
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
763
829
 
830
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
831
+
764
832
  if isinstance(dataset, DataFrame):
765
833
  self._deps = self._batch_inference_validate_snowpark(
766
834
  dataset=dataset,
@@ -773,6 +841,9 @@ class LGBMRegressor(BaseTransformer):
773
841
  drop_input_cols = self._drop_input_cols,
774
842
  expected_output_cols_type="float",
775
843
  )
844
+ expected_output_cols = self._align_expected_output_names(
845
+ inference_method, dataset, expected_output_cols, output_cols_prefix
846
+ )
776
847
 
777
848
  elif isinstance(dataset, pd.DataFrame):
778
849
  transform_kwargs = dict(
@@ -791,7 +862,7 @@ class LGBMRegressor(BaseTransformer):
791
862
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
792
863
  inference_method=inference_method,
793
864
  input_cols=self.input_cols,
794
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
865
+ expected_output_cols=expected_output_cols,
795
866
  **transform_kwargs
796
867
  )
797
868
  return output_df
@@ -837,7 +908,7 @@ class LGBMRegressor(BaseTransformer):
837
908
  transform_kwargs = dict(
838
909
  session=dataset._session,
839
910
  dependencies=["snowflake-snowpark-python"] + self._deps,
840
- score_sproc_imports=['lightgbm'],
911
+ score_sproc_imports=['lightgbm', 'sklearn'],
841
912
  )
842
913
  elif isinstance(dataset, pd.DataFrame):
843
914
  # pandas_handler.score() does not require any extra kwargs.
@@ -938,50 +1009,84 @@ class LGBMRegressor(BaseTransformer):
938
1009
  )
939
1010
  return output_df
940
1011
 
1012
+
1013
+
1014
+ def to_lightgbm(self) -> Any:
1015
+ """Get lightgbm.LGBMRegressor object.
1016
+ """
1017
+ if self._sklearn_object is None:
1018
+ self._sklearn_object = self._create_sklearn_object()
1019
+ return self._sklearn_object
1020
+
1021
+ def to_sklearn(self) -> Any:
1022
+ raise exceptions.SnowflakeMLException(
1023
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1024
+ original_exception=AttributeError(
1025
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1026
+ "to_sklearn()",
1027
+ "to_lightgbm()"
1028
+ )
1029
+ ),
1030
+ )
1031
+
1032
+ def to_xgboost(self) -> Any:
1033
+ raise exceptions.SnowflakeMLException(
1034
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1035
+ original_exception=AttributeError(
1036
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
+ "to_xgboost()",
1038
+ "to_lightgbm()"
1039
+ )
1040
+ ),
1041
+ )
941
1042
 
942
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1043
+ def _get_dependencies(self) -> List[str]:
1044
+ return self._deps
1045
+
1046
+
1047
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
943
1048
  self._model_signature_dict = dict()
944
1049
 
945
1050
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
946
1051
 
947
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1052
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
948
1053
  outputs: List[BaseFeatureSpec] = []
949
1054
  if hasattr(self, "predict"):
950
1055
  # keep mypy happy
951
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1056
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
952
1057
  # For classifier, the type of predict is the same as the type of label
953
- if self._sklearn_object._estimator_type == 'classifier':
954
- # label columns is the desired type for output
1058
+ if self._sklearn_object._estimator_type == "classifier":
1059
+ # label columns is the desired type for output
955
1060
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
956
1061
  # rename the output columns
957
1062
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
958
- self._model_signature_dict["predict"] = ModelSignature(inputs,
959
- ([] if self._drop_input_cols else inputs)
960
- + outputs)
1063
+ self._model_signature_dict["predict"] = ModelSignature(
1064
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1065
+ )
961
1066
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
962
1067
  # For outlier models, returns -1 for outliers and 1 for inliers.
963
- # Clusterer returns int64 cluster labels.
1068
+ # Clusterer returns int64 cluster labels.
964
1069
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
965
1070
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
966
- self._model_signature_dict["predict"] = ModelSignature(inputs,
967
- ([] if self._drop_input_cols else inputs)
968
- + outputs)
969
-
1071
+ self._model_signature_dict["predict"] = ModelSignature(
1072
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1073
+ )
1074
+
970
1075
  # For regressor, the type of predict is float64
971
- elif self._sklearn_object._estimator_type == 'regressor':
1076
+ elif self._sklearn_object._estimator_type == "regressor":
972
1077
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
973
- self._model_signature_dict["predict"] = ModelSignature(inputs,
974
- ([] if self._drop_input_cols else inputs)
975
- + outputs)
976
-
1078
+ self._model_signature_dict["predict"] = ModelSignature(
1079
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1080
+ )
1081
+
977
1082
  for prob_func in PROB_FUNCTIONS:
978
1083
  if hasattr(self, prob_func):
979
1084
  output_cols_prefix: str = f"{prob_func}_"
980
1085
  output_column_names = self._get_output_column_names(output_cols_prefix)
981
1086
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
982
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
1087
+ self._model_signature_dict[prob_func] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
985
1090
 
986
1091
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
987
1092
  items = list(self._model_signature_dict.items())
@@ -994,10 +1099,10 @@ class LGBMRegressor(BaseTransformer):
994
1099
  """Returns model signature of current class.
995
1100
 
996
1101
  Raises:
997
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1102
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
998
1103
 
999
1104
  Returns:
1000
- Dict[str, ModelSignature]: each method and its input output signature
1105
+ Dict with each method and its input output signature
1001
1106
  """
1002
1107
  if self._model_signature_dict is None:
1003
1108
  raise exceptions.SnowflakeMLException(
@@ -1005,35 +1110,3 @@ class LGBMRegressor(BaseTransformer):
1005
1110
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1006
1111
  )
1007
1112
  return self._model_signature_dict
1008
-
1009
- def to_lightgbm(self) -> Any:
1010
- """Get lightgbm.LGBMRegressor object.
1011
- """
1012
- if self._sklearn_object is None:
1013
- self._sklearn_object = self._create_sklearn_object()
1014
- return self._sklearn_object
1015
-
1016
- def to_sklearn(self) -> Any:
1017
- raise exceptions.SnowflakeMLException(
1018
- error_code=error_codes.METHOD_NOT_ALLOWED,
1019
- original_exception=AttributeError(
1020
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1021
- "to_sklearn()",
1022
- "to_lightgbm()"
1023
- )
1024
- ),
1025
- )
1026
-
1027
- def to_xgboost(self) -> Any:
1028
- raise exceptions.SnowflakeMLException(
1029
- error_code=error_codes.METHOD_NOT_ALLOWED,
1030
- original_exception=AttributeError(
1031
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1032
- "to_xgboost()",
1033
- "to_lightgbm()"
1034
- )
1035
- ),
1036
- )
1037
-
1038
- def _get_dependencies(self) -> List[str]:
1039
- return self._deps