snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -16,6 +16,7 @@ from numpy import typing as npt
|
|
16
16
|
|
17
17
|
|
18
18
|
import numpy
|
19
|
+
import sklearn
|
19
20
|
import lightgbm
|
20
21
|
from sklearn.utils.metaestimators import available_if
|
21
22
|
|
@@ -32,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
32
33
|
BatchInferenceKwargsTypedDict,
|
33
34
|
ScoreKwargsTypedDict
|
34
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
35
45
|
|
36
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
37
47
|
|
@@ -42,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
42
52
|
validate_sklearn_args,
|
43
53
|
)
|
44
54
|
|
45
|
-
from snowflake.ml.model.model_signature import (
|
46
|
-
DataType,
|
47
|
-
FeatureSpec,
|
48
|
-
ModelSignature,
|
49
|
-
_infer_signature,
|
50
|
-
_rename_signature_with_snowflake_identifiers,
|
51
|
-
BaseFeatureSpec,
|
52
|
-
)
|
53
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
54
|
-
|
55
55
|
_PROJECT = "ModelDevelopment"
|
56
56
|
# Derive subproject from module name by removing "sklearn"
|
57
57
|
# and converting module name from underscore to CamelCase
|
@@ -160,7 +160,7 @@ class LGBMRegressor(BaseTransformer):
|
|
160
160
|
self.set_sample_weight_col(sample_weight_col)
|
161
161
|
self._use_external_memory_version = False
|
162
162
|
self._batch_size = -1
|
163
|
-
deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}'])
|
163
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'lightgbm=={lightgbm.__version__}', f'cloudpickle=={cp.__version__}', f'scikit-learn=={sklearn.__version__}'])
|
164
164
|
|
165
165
|
self._deps = list(deps)
|
166
166
|
|
@@ -232,12 +232,7 @@ class LGBMRegressor(BaseTransformer):
|
|
232
232
|
)
|
233
233
|
return selected_cols
|
234
234
|
|
235
|
-
|
236
|
-
project=_PROJECT,
|
237
|
-
subproject=_SUBPROJECT,
|
238
|
-
custom_tags=dict([("autogen", True)]),
|
239
|
-
)
|
240
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
|
235
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
|
241
236
|
"""Build a gradient boosting model from the training set (X, y)
|
242
237
|
For more details on this function, see [lightgbm.LGBMRegressor.fit]
|
243
238
|
(https://lightgbm.readthedocs.io/en/v3.3.2/pythonapi/lightgbm.LGBMRegressor.html#lightgbm.LGBMRegressor.fit)
|
@@ -264,12 +259,14 @@ class LGBMRegressor(BaseTransformer):
|
|
264
259
|
|
265
260
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
266
261
|
|
267
|
-
|
262
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
268
263
|
if SNOWML_SPROC_ENV in os.environ:
|
269
264
|
statement_params = telemetry.get_function_usage_statement_params(
|
270
265
|
project=_PROJECT,
|
271
266
|
subproject=_SUBPROJECT,
|
272
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
267
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
268
|
+
inspect.currentframe(), LGBMRegressor.__class__.__name__
|
269
|
+
),
|
273
270
|
api_calls=[Session.call],
|
274
271
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
275
272
|
)
|
@@ -290,7 +287,7 @@ class LGBMRegressor(BaseTransformer):
|
|
290
287
|
)
|
291
288
|
self._sklearn_object = model_trainer.train()
|
292
289
|
self._is_fitted = True
|
293
|
-
self.
|
290
|
+
self._generate_model_signatures(dataset)
|
294
291
|
return self
|
295
292
|
|
296
293
|
def _batch_inference_validate_snowpark(
|
@@ -366,7 +363,9 @@ class LGBMRegressor(BaseTransformer):
|
|
366
363
|
# when it is classifier, infer the datatype from label columns
|
367
364
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
368
365
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
369
|
-
label_cols_signatures = [
|
366
|
+
label_cols_signatures = [
|
367
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
368
|
+
]
|
370
369
|
if len(label_cols_signatures) == 0:
|
371
370
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
372
371
|
raise exceptions.SnowflakeMLException(
|
@@ -374,25 +373,22 @@ class LGBMRegressor(BaseTransformer):
|
|
374
373
|
original_exception=ValueError(error_str),
|
375
374
|
)
|
376
375
|
|
377
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
378
|
-
label_cols_signatures[0].as_snowpark_type()
|
379
|
-
)
|
376
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
380
377
|
|
381
378
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
382
|
-
assert isinstance(
|
379
|
+
assert isinstance(
|
380
|
+
dataset._session, Session
|
381
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
383
382
|
|
384
383
|
transform_kwargs = dict(
|
385
|
-
session
|
386
|
-
dependencies
|
387
|
-
drop_input_cols
|
388
|
-
expected_output_cols_type
|
384
|
+
session=dataset._session,
|
385
|
+
dependencies=self._deps,
|
386
|
+
drop_input_cols=self._drop_input_cols,
|
387
|
+
expected_output_cols_type=expected_type_inferred,
|
389
388
|
)
|
390
389
|
|
391
390
|
elif isinstance(dataset, pd.DataFrame):
|
392
|
-
transform_kwargs = dict(
|
393
|
-
snowpark_input_cols = self._snowpark_cols,
|
394
|
-
drop_input_cols = self._drop_input_cols
|
395
|
-
)
|
391
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
396
392
|
|
397
393
|
transform_handlers = ModelTransformerBuilder.build(
|
398
394
|
dataset=dataset,
|
@@ -432,7 +428,7 @@ class LGBMRegressor(BaseTransformer):
|
|
432
428
|
Transformed dataset.
|
433
429
|
"""
|
434
430
|
super()._check_dataset_type(dataset)
|
435
|
-
inference_method="transform"
|
431
|
+
inference_method = "transform"
|
436
432
|
|
437
433
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
438
434
|
# are specific to the type of dataset used.
|
@@ -469,17 +465,14 @@ class LGBMRegressor(BaseTransformer):
|
|
469
465
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
470
466
|
|
471
467
|
transform_kwargs = dict(
|
472
|
-
session
|
473
|
-
dependencies
|
474
|
-
drop_input_cols
|
475
|
-
expected_output_cols_type
|
468
|
+
session=dataset._session,
|
469
|
+
dependencies=self._deps,
|
470
|
+
drop_input_cols=self._drop_input_cols,
|
471
|
+
expected_output_cols_type=expected_dtype,
|
476
472
|
)
|
477
473
|
|
478
474
|
elif isinstance(dataset, pd.DataFrame):
|
479
|
-
transform_kwargs = dict(
|
480
|
-
snowpark_input_cols = self._snowpark_cols,
|
481
|
-
drop_input_cols = self._drop_input_cols
|
482
|
-
)
|
475
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
483
476
|
|
484
477
|
transform_handlers = ModelTransformerBuilder.build(
|
485
478
|
dataset=dataset,
|
@@ -498,7 +491,11 @@ class LGBMRegressor(BaseTransformer):
|
|
498
491
|
return output_df
|
499
492
|
|
500
493
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
501
|
-
def fit_predict(
|
494
|
+
def fit_predict(
|
495
|
+
self,
|
496
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
497
|
+
output_cols_prefix: str = "fit_predict_",
|
498
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
502
499
|
""" Method not supported for this class.
|
503
500
|
|
504
501
|
|
@@ -523,7 +520,9 @@ class LGBMRegressor(BaseTransformer):
|
|
523
520
|
)
|
524
521
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
525
522
|
drop_input_cols=self._drop_input_cols,
|
526
|
-
expected_output_cols_list=
|
523
|
+
expected_output_cols_list=(
|
524
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
525
|
+
),
|
527
526
|
)
|
528
527
|
self._sklearn_object = fitted_estimator
|
529
528
|
self._is_fitted = True
|
@@ -540,6 +539,62 @@ class LGBMRegressor(BaseTransformer):
|
|
540
539
|
assert self._sklearn_object is not None
|
541
540
|
return self._sklearn_object.embedding_
|
542
541
|
|
542
|
+
|
543
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
544
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
545
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
546
|
+
"""
|
547
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
548
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
549
|
+
if output_cols:
|
550
|
+
output_cols = [
|
551
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
552
|
+
for c in output_cols
|
553
|
+
]
|
554
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
555
|
+
output_cols = [output_cols_prefix]
|
556
|
+
elif self._sklearn_object is not None:
|
557
|
+
classes = self._sklearn_object.classes_
|
558
|
+
if isinstance(classes, numpy.ndarray):
|
559
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
560
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
561
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
562
|
+
output_cols = []
|
563
|
+
for i, cl in enumerate(classes):
|
564
|
+
# For binary classification, there is only one output column for each class
|
565
|
+
# ndarray as the two classes are complementary.
|
566
|
+
if len(cl) == 2:
|
567
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
568
|
+
else:
|
569
|
+
output_cols.extend([
|
570
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
571
|
+
])
|
572
|
+
else:
|
573
|
+
output_cols = []
|
574
|
+
|
575
|
+
# Make sure column names are valid snowflake identifiers.
|
576
|
+
assert output_cols is not None # Make MyPy happy
|
577
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
578
|
+
|
579
|
+
return rv
|
580
|
+
|
581
|
+
def _align_expected_output_names(
|
582
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
583
|
+
) -> List[str]:
|
584
|
+
# in case the inferred output column names dimension is different
|
585
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
586
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
587
|
+
output_df_columns = list(output_df_pd.columns)
|
588
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
589
|
+
if self.sample_weight_col:
|
590
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
591
|
+
# if the dimension of inferred output column names is correct; use it
|
592
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
593
|
+
return expected_output_cols_list
|
594
|
+
# otherwise, use the sklearn estimator's output
|
595
|
+
else:
|
596
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
597
|
+
|
543
598
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
544
599
|
@telemetry.send_api_usage_telemetry(
|
545
600
|
project=_PROJECT,
|
@@ -570,24 +625,28 @@ class LGBMRegressor(BaseTransformer):
|
|
570
625
|
# are specific to the type of dataset used.
|
571
626
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
572
627
|
|
628
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
629
|
+
|
573
630
|
if isinstance(dataset, DataFrame):
|
574
631
|
self._deps = self._batch_inference_validate_snowpark(
|
575
632
|
dataset=dataset,
|
576
633
|
inference_method=inference_method,
|
577
634
|
)
|
578
|
-
assert isinstance(
|
635
|
+
assert isinstance(
|
636
|
+
dataset._session, Session
|
637
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
579
638
|
transform_kwargs = dict(
|
580
639
|
session=dataset._session,
|
581
640
|
dependencies=self._deps,
|
582
|
-
drop_input_cols
|
641
|
+
drop_input_cols=self._drop_input_cols,
|
583
642
|
expected_output_cols_type="float",
|
584
643
|
)
|
644
|
+
expected_output_cols = self._align_expected_output_names(
|
645
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
646
|
+
)
|
585
647
|
|
586
648
|
elif isinstance(dataset, pd.DataFrame):
|
587
|
-
transform_kwargs = dict(
|
588
|
-
snowpark_input_cols = self._snowpark_cols,
|
589
|
-
drop_input_cols = self._drop_input_cols
|
590
|
-
)
|
649
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
591
650
|
|
592
651
|
transform_handlers = ModelTransformerBuilder.build(
|
593
652
|
dataset=dataset,
|
@@ -599,7 +658,7 @@ class LGBMRegressor(BaseTransformer):
|
|
599
658
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
600
659
|
inference_method=inference_method,
|
601
660
|
input_cols=self.input_cols,
|
602
|
-
expected_output_cols=
|
661
|
+
expected_output_cols=expected_output_cols,
|
603
662
|
**transform_kwargs
|
604
663
|
)
|
605
664
|
return output_df
|
@@ -629,7 +688,8 @@ class LGBMRegressor(BaseTransformer):
|
|
629
688
|
Output dataset with log probability of the sample for each class in the model.
|
630
689
|
"""
|
631
690
|
super()._check_dataset_type(dataset)
|
632
|
-
inference_method="predict_log_proba"
|
691
|
+
inference_method = "predict_log_proba"
|
692
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
633
693
|
|
634
694
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
635
695
|
# are specific to the type of dataset used.
|
@@ -640,18 +700,20 @@ class LGBMRegressor(BaseTransformer):
|
|
640
700
|
dataset=dataset,
|
641
701
|
inference_method=inference_method,
|
642
702
|
)
|
643
|
-
assert isinstance(
|
703
|
+
assert isinstance(
|
704
|
+
dataset._session, Session
|
705
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
644
706
|
transform_kwargs = dict(
|
645
707
|
session=dataset._session,
|
646
708
|
dependencies=self._deps,
|
647
|
-
drop_input_cols
|
709
|
+
drop_input_cols=self._drop_input_cols,
|
648
710
|
expected_output_cols_type="float",
|
649
711
|
)
|
712
|
+
expected_output_cols = self._align_expected_output_names(
|
713
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
714
|
+
)
|
650
715
|
elif isinstance(dataset, pd.DataFrame):
|
651
|
-
transform_kwargs = dict(
|
652
|
-
snowpark_input_cols = self._snowpark_cols,
|
653
|
-
drop_input_cols = self._drop_input_cols
|
654
|
-
)
|
716
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
655
717
|
|
656
718
|
transform_handlers = ModelTransformerBuilder.build(
|
657
719
|
dataset=dataset,
|
@@ -664,7 +726,7 @@ class LGBMRegressor(BaseTransformer):
|
|
664
726
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
665
727
|
inference_method=inference_method,
|
666
728
|
input_cols=self.input_cols,
|
667
|
-
expected_output_cols=
|
729
|
+
expected_output_cols=expected_output_cols,
|
668
730
|
**transform_kwargs
|
669
731
|
)
|
670
732
|
return output_df
|
@@ -690,30 +752,34 @@ class LGBMRegressor(BaseTransformer):
|
|
690
752
|
Output dataset with results of the decision function for the samples in input dataset.
|
691
753
|
"""
|
692
754
|
super()._check_dataset_type(dataset)
|
693
|
-
inference_method="decision_function"
|
755
|
+
inference_method = "decision_function"
|
694
756
|
|
695
757
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
696
758
|
# are specific to the type of dataset used.
|
697
759
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
698
760
|
|
761
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
762
|
+
|
699
763
|
if isinstance(dataset, DataFrame):
|
700
764
|
self._deps = self._batch_inference_validate_snowpark(
|
701
765
|
dataset=dataset,
|
702
766
|
inference_method=inference_method,
|
703
767
|
)
|
704
|
-
assert isinstance(
|
768
|
+
assert isinstance(
|
769
|
+
dataset._session, Session
|
770
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
705
771
|
transform_kwargs = dict(
|
706
772
|
session=dataset._session,
|
707
773
|
dependencies=self._deps,
|
708
|
-
drop_input_cols
|
774
|
+
drop_input_cols=self._drop_input_cols,
|
709
775
|
expected_output_cols_type="float",
|
710
776
|
)
|
777
|
+
expected_output_cols = self._align_expected_output_names(
|
778
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
779
|
+
)
|
711
780
|
|
712
781
|
elif isinstance(dataset, pd.DataFrame):
|
713
|
-
transform_kwargs = dict(
|
714
|
-
snowpark_input_cols = self._snowpark_cols,
|
715
|
-
drop_input_cols = self._drop_input_cols
|
716
|
-
)
|
782
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
717
783
|
|
718
784
|
transform_handlers = ModelTransformerBuilder.build(
|
719
785
|
dataset=dataset,
|
@@ -726,7 +792,7 @@ class LGBMRegressor(BaseTransformer):
|
|
726
792
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
727
793
|
inference_method=inference_method,
|
728
794
|
input_cols=self.input_cols,
|
729
|
-
expected_output_cols=
|
795
|
+
expected_output_cols=expected_output_cols,
|
730
796
|
**transform_kwargs
|
731
797
|
)
|
732
798
|
return output_df
|
@@ -755,12 +821,14 @@ class LGBMRegressor(BaseTransformer):
|
|
755
821
|
Output dataset with probability of the sample for each class in the model.
|
756
822
|
"""
|
757
823
|
super()._check_dataset_type(dataset)
|
758
|
-
inference_method="score_samples"
|
824
|
+
inference_method = "score_samples"
|
759
825
|
|
760
826
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
761
827
|
# are specific to the type of dataset used.
|
762
828
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
763
829
|
|
830
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
831
|
+
|
764
832
|
if isinstance(dataset, DataFrame):
|
765
833
|
self._deps = self._batch_inference_validate_snowpark(
|
766
834
|
dataset=dataset,
|
@@ -773,6 +841,9 @@ class LGBMRegressor(BaseTransformer):
|
|
773
841
|
drop_input_cols = self._drop_input_cols,
|
774
842
|
expected_output_cols_type="float",
|
775
843
|
)
|
844
|
+
expected_output_cols = self._align_expected_output_names(
|
845
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
846
|
+
)
|
776
847
|
|
777
848
|
elif isinstance(dataset, pd.DataFrame):
|
778
849
|
transform_kwargs = dict(
|
@@ -791,7 +862,7 @@ class LGBMRegressor(BaseTransformer):
|
|
791
862
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
792
863
|
inference_method=inference_method,
|
793
864
|
input_cols=self.input_cols,
|
794
|
-
expected_output_cols=
|
865
|
+
expected_output_cols=expected_output_cols,
|
795
866
|
**transform_kwargs
|
796
867
|
)
|
797
868
|
return output_df
|
@@ -837,7 +908,7 @@ class LGBMRegressor(BaseTransformer):
|
|
837
908
|
transform_kwargs = dict(
|
838
909
|
session=dataset._session,
|
839
910
|
dependencies=["snowflake-snowpark-python"] + self._deps,
|
840
|
-
score_sproc_imports=['lightgbm'],
|
911
|
+
score_sproc_imports=['lightgbm', 'sklearn'],
|
841
912
|
)
|
842
913
|
elif isinstance(dataset, pd.DataFrame):
|
843
914
|
# pandas_handler.score() does not require any extra kwargs.
|
@@ -938,50 +1009,84 @@ class LGBMRegressor(BaseTransformer):
|
|
938
1009
|
)
|
939
1010
|
return output_df
|
940
1011
|
|
1012
|
+
|
1013
|
+
|
1014
|
+
def to_lightgbm(self) -> Any:
|
1015
|
+
"""Get lightgbm.LGBMRegressor object.
|
1016
|
+
"""
|
1017
|
+
if self._sklearn_object is None:
|
1018
|
+
self._sklearn_object = self._create_sklearn_object()
|
1019
|
+
return self._sklearn_object
|
1020
|
+
|
1021
|
+
def to_sklearn(self) -> Any:
|
1022
|
+
raise exceptions.SnowflakeMLException(
|
1023
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1024
|
+
original_exception=AttributeError(
|
1025
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1026
|
+
"to_sklearn()",
|
1027
|
+
"to_lightgbm()"
|
1028
|
+
)
|
1029
|
+
),
|
1030
|
+
)
|
1031
|
+
|
1032
|
+
def to_xgboost(self) -> Any:
|
1033
|
+
raise exceptions.SnowflakeMLException(
|
1034
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1035
|
+
original_exception=AttributeError(
|
1036
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1037
|
+
"to_xgboost()",
|
1038
|
+
"to_lightgbm()"
|
1039
|
+
)
|
1040
|
+
),
|
1041
|
+
)
|
941
1042
|
|
942
|
-
def
|
1043
|
+
def _get_dependencies(self) -> List[str]:
|
1044
|
+
return self._deps
|
1045
|
+
|
1046
|
+
|
1047
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
943
1048
|
self._model_signature_dict = dict()
|
944
1049
|
|
945
1050
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
946
1051
|
|
947
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1052
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
948
1053
|
outputs: List[BaseFeatureSpec] = []
|
949
1054
|
if hasattr(self, "predict"):
|
950
1055
|
# keep mypy happy
|
951
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1056
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
952
1057
|
# For classifier, the type of predict is the same as the type of label
|
953
|
-
if self._sklearn_object._estimator_type ==
|
954
|
-
|
1058
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1059
|
+
# label columns is the desired type for output
|
955
1060
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
956
1061
|
# rename the output columns
|
957
1062
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
958
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
959
|
-
|
960
|
-
|
1063
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1064
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1065
|
+
)
|
961
1066
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
962
1067
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
963
|
-
# Clusterer returns int64 cluster labels.
|
1068
|
+
# Clusterer returns int64 cluster labels.
|
964
1069
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
965
1070
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
966
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
967
|
-
|
968
|
-
|
969
|
-
|
1071
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1072
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1073
|
+
)
|
1074
|
+
|
970
1075
|
# For regressor, the type of predict is float64
|
971
|
-
elif self._sklearn_object._estimator_type ==
|
1076
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
972
1077
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
973
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
974
|
-
|
975
|
-
|
976
|
-
|
1078
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1079
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1080
|
+
)
|
1081
|
+
|
977
1082
|
for prob_func in PROB_FUNCTIONS:
|
978
1083
|
if hasattr(self, prob_func):
|
979
1084
|
output_cols_prefix: str = f"{prob_func}_"
|
980
1085
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
981
1086
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
982
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
983
|
-
|
984
|
-
|
1087
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1088
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1089
|
+
)
|
985
1090
|
|
986
1091
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
987
1092
|
items = list(self._model_signature_dict.items())
|
@@ -994,10 +1099,10 @@ class LGBMRegressor(BaseTransformer):
|
|
994
1099
|
"""Returns model signature of current class.
|
995
1100
|
|
996
1101
|
Raises:
|
997
|
-
|
1102
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
998
1103
|
|
999
1104
|
Returns:
|
1000
|
-
Dict
|
1105
|
+
Dict with each method and its input output signature
|
1001
1106
|
"""
|
1002
1107
|
if self._model_signature_dict is None:
|
1003
1108
|
raise exceptions.SnowflakeMLException(
|
@@ -1005,35 +1110,3 @@ class LGBMRegressor(BaseTransformer):
|
|
1005
1110
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1006
1111
|
)
|
1007
1112
|
return self._model_signature_dict
|
1008
|
-
|
1009
|
-
def to_lightgbm(self) -> Any:
|
1010
|
-
"""Get lightgbm.LGBMRegressor object.
|
1011
|
-
"""
|
1012
|
-
if self._sklearn_object is None:
|
1013
|
-
self._sklearn_object = self._create_sklearn_object()
|
1014
|
-
return self._sklearn_object
|
1015
|
-
|
1016
|
-
def to_sklearn(self) -> Any:
|
1017
|
-
raise exceptions.SnowflakeMLException(
|
1018
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1019
|
-
original_exception=AttributeError(
|
1020
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1021
|
-
"to_sklearn()",
|
1022
|
-
"to_lightgbm()"
|
1023
|
-
)
|
1024
|
-
),
|
1025
|
-
)
|
1026
|
-
|
1027
|
-
def to_xgboost(self) -> Any:
|
1028
|
-
raise exceptions.SnowflakeMLException(
|
1029
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1030
|
-
original_exception=AttributeError(
|
1031
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1032
|
-
"to_xgboost()",
|
1033
|
-
"to_lightgbm()"
|
1034
|
-
)
|
1035
|
-
),
|
1036
|
-
)
|
1037
|
-
|
1038
|
-
def _get_dependencies(self) -> List[str]:
|
1039
|
-
return self._deps
|