snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -213,12 +212,7 @@ class NearestCentroid(BaseTransformer):
213
212
  )
214
213
  return selected_cols
215
214
 
216
- @telemetry.send_api_usage_telemetry(
217
- project=_PROJECT,
218
- subproject=_SUBPROJECT,
219
- custom_tags=dict([("autogen", True)]),
220
- )
221
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NearestCentroid":
215
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NearestCentroid":
222
216
  """Fit the NearestCentroid model according to the given training data
223
217
  For more details on this function, see [sklearn.neighbors.NearestCentroid.fit]
224
218
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestCentroid.html#sklearn.neighbors.NearestCentroid.fit)
@@ -245,12 +239,14 @@ class NearestCentroid(BaseTransformer):
245
239
 
246
240
  self._snowpark_cols = dataset.select(self.input_cols).columns
247
241
 
248
- # If we are already in a stored procedure, no need to kick off another one.
242
+ # If we are already in a stored procedure, no need to kick off another one.
249
243
  if SNOWML_SPROC_ENV in os.environ:
250
244
  statement_params = telemetry.get_function_usage_statement_params(
251
245
  project=_PROJECT,
252
246
  subproject=_SUBPROJECT,
253
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NearestCentroid.__class__.__name__),
247
+ function_name=telemetry.get_statement_params_full_func_name(
248
+ inspect.currentframe(), NearestCentroid.__class__.__name__
249
+ ),
254
250
  api_calls=[Session.call],
255
251
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
256
252
  )
@@ -271,7 +267,7 @@ class NearestCentroid(BaseTransformer):
271
267
  )
272
268
  self._sklearn_object = model_trainer.train()
273
269
  self._is_fitted = True
274
- self._get_model_signatures(dataset)
270
+ self._generate_model_signatures(dataset)
275
271
  return self
276
272
 
277
273
  def _batch_inference_validate_snowpark(
@@ -347,7 +343,9 @@ class NearestCentroid(BaseTransformer):
347
343
  # when it is classifier, infer the datatype from label columns
348
344
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
349
345
  # Batch inference takes a single expected output column type. Use the first columns type for now.
350
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
346
+ label_cols_signatures = [
347
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
348
+ ]
351
349
  if len(label_cols_signatures) == 0:
352
350
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
353
351
  raise exceptions.SnowflakeMLException(
@@ -355,25 +353,22 @@ class NearestCentroid(BaseTransformer):
355
353
  original_exception=ValueError(error_str),
356
354
  )
357
355
 
358
- expected_type_inferred = convert_sp_to_sf_type(
359
- label_cols_signatures[0].as_snowpark_type()
360
- )
356
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
361
357
 
362
358
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
363
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
359
+ assert isinstance(
360
+ dataset._session, Session
361
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
364
362
 
365
363
  transform_kwargs = dict(
366
- session = dataset._session,
367
- dependencies = self._deps,
368
- drop_input_cols = self._drop_input_cols,
369
- expected_output_cols_type = expected_type_inferred,
364
+ session=dataset._session,
365
+ dependencies=self._deps,
366
+ drop_input_cols=self._drop_input_cols,
367
+ expected_output_cols_type=expected_type_inferred,
370
368
  )
371
369
 
372
370
  elif isinstance(dataset, pd.DataFrame):
373
- transform_kwargs = dict(
374
- snowpark_input_cols = self._snowpark_cols,
375
- drop_input_cols = self._drop_input_cols
376
- )
371
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
377
372
 
378
373
  transform_handlers = ModelTransformerBuilder.build(
379
374
  dataset=dataset,
@@ -413,7 +408,7 @@ class NearestCentroid(BaseTransformer):
413
408
  Transformed dataset.
414
409
  """
415
410
  super()._check_dataset_type(dataset)
416
- inference_method="transform"
411
+ inference_method = "transform"
417
412
 
418
413
  # This dictionary contains optional kwargs for batch inference. These kwargs
419
414
  # are specific to the type of dataset used.
@@ -450,17 +445,14 @@ class NearestCentroid(BaseTransformer):
450
445
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
451
446
 
452
447
  transform_kwargs = dict(
453
- session = dataset._session,
454
- dependencies = self._deps,
455
- drop_input_cols = self._drop_input_cols,
456
- expected_output_cols_type = expected_dtype,
448
+ session=dataset._session,
449
+ dependencies=self._deps,
450
+ drop_input_cols=self._drop_input_cols,
451
+ expected_output_cols_type=expected_dtype,
457
452
  )
458
453
 
459
454
  elif isinstance(dataset, pd.DataFrame):
460
- transform_kwargs = dict(
461
- snowpark_input_cols = self._snowpark_cols,
462
- drop_input_cols = self._drop_input_cols
463
- )
455
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
464
456
 
465
457
  transform_handlers = ModelTransformerBuilder.build(
466
458
  dataset=dataset,
@@ -479,7 +471,11 @@ class NearestCentroid(BaseTransformer):
479
471
  return output_df
480
472
 
481
473
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
482
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
474
+ def fit_predict(
475
+ self,
476
+ dataset: Union[DataFrame, pd.DataFrame],
477
+ output_cols_prefix: str = "fit_predict_",
478
+ ) -> Union[DataFrame, pd.DataFrame]:
483
479
  """ Method not supported for this class.
484
480
 
485
481
 
@@ -504,7 +500,9 @@ class NearestCentroid(BaseTransformer):
504
500
  )
505
501
  output_result, fitted_estimator = model_trainer.train_fit_predict(
506
502
  drop_input_cols=self._drop_input_cols,
507
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
503
+ expected_output_cols_list=(
504
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
505
+ ),
508
506
  )
509
507
  self._sklearn_object = fitted_estimator
510
508
  self._is_fitted = True
@@ -521,6 +519,62 @@ class NearestCentroid(BaseTransformer):
521
519
  assert self._sklearn_object is not None
522
520
  return self._sklearn_object.embedding_
523
521
 
522
+
523
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
524
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
525
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
526
+ """
527
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
528
+ # The following condition is introduced for kneighbors methods, and not used in other methods
529
+ if output_cols:
530
+ output_cols = [
531
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
532
+ for c in output_cols
533
+ ]
534
+ elif getattr(self._sklearn_object, "classes_", None) is None:
535
+ output_cols = [output_cols_prefix]
536
+ elif self._sklearn_object is not None:
537
+ classes = self._sklearn_object.classes_
538
+ if isinstance(classes, numpy.ndarray):
539
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
540
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
541
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
542
+ output_cols = []
543
+ for i, cl in enumerate(classes):
544
+ # For binary classification, there is only one output column for each class
545
+ # ndarray as the two classes are complementary.
546
+ if len(cl) == 2:
547
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
548
+ else:
549
+ output_cols.extend([
550
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
551
+ ])
552
+ else:
553
+ output_cols = []
554
+
555
+ # Make sure column names are valid snowflake identifiers.
556
+ assert output_cols is not None # Make MyPy happy
557
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
558
+
559
+ return rv
560
+
561
+ def _align_expected_output_names(
562
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
563
+ ) -> List[str]:
564
+ # in case the inferred output column names dimension is different
565
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
566
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
567
+ output_df_columns = list(output_df_pd.columns)
568
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
569
+ if self.sample_weight_col:
570
+ output_df_columns_set -= set(self.sample_weight_col)
571
+ # if the dimension of inferred output column names is correct; use it
572
+ if len(expected_output_cols_list) == len(output_df_columns_set):
573
+ return expected_output_cols_list
574
+ # otherwise, use the sklearn estimator's output
575
+ else:
576
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
577
+
524
578
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
525
579
  @telemetry.send_api_usage_telemetry(
526
580
  project=_PROJECT,
@@ -551,24 +605,28 @@ class NearestCentroid(BaseTransformer):
551
605
  # are specific to the type of dataset used.
552
606
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
553
607
 
608
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
609
+
554
610
  if isinstance(dataset, DataFrame):
555
611
  self._deps = self._batch_inference_validate_snowpark(
556
612
  dataset=dataset,
557
613
  inference_method=inference_method,
558
614
  )
559
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
615
+ assert isinstance(
616
+ dataset._session, Session
617
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
560
618
  transform_kwargs = dict(
561
619
  session=dataset._session,
562
620
  dependencies=self._deps,
563
- drop_input_cols = self._drop_input_cols,
621
+ drop_input_cols=self._drop_input_cols,
564
622
  expected_output_cols_type="float",
565
623
  )
624
+ expected_output_cols = self._align_expected_output_names(
625
+ inference_method, dataset, expected_output_cols, output_cols_prefix
626
+ )
566
627
 
567
628
  elif isinstance(dataset, pd.DataFrame):
568
- transform_kwargs = dict(
569
- snowpark_input_cols = self._snowpark_cols,
570
- drop_input_cols = self._drop_input_cols
571
- )
629
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
572
630
 
573
631
  transform_handlers = ModelTransformerBuilder.build(
574
632
  dataset=dataset,
@@ -580,7 +638,7 @@ class NearestCentroid(BaseTransformer):
580
638
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
581
639
  inference_method=inference_method,
582
640
  input_cols=self.input_cols,
583
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
641
+ expected_output_cols=expected_output_cols,
584
642
  **transform_kwargs
585
643
  )
586
644
  return output_df
@@ -610,7 +668,8 @@ class NearestCentroid(BaseTransformer):
610
668
  Output dataset with log probability of the sample for each class in the model.
611
669
  """
612
670
  super()._check_dataset_type(dataset)
613
- inference_method="predict_log_proba"
671
+ inference_method = "predict_log_proba"
672
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
614
673
 
615
674
  # This dictionary contains optional kwargs for batch inference. These kwargs
616
675
  # are specific to the type of dataset used.
@@ -621,18 +680,20 @@ class NearestCentroid(BaseTransformer):
621
680
  dataset=dataset,
622
681
  inference_method=inference_method,
623
682
  )
624
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
683
+ assert isinstance(
684
+ dataset._session, Session
685
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
625
686
  transform_kwargs = dict(
626
687
  session=dataset._session,
627
688
  dependencies=self._deps,
628
- drop_input_cols = self._drop_input_cols,
689
+ drop_input_cols=self._drop_input_cols,
629
690
  expected_output_cols_type="float",
630
691
  )
692
+ expected_output_cols = self._align_expected_output_names(
693
+ inference_method, dataset, expected_output_cols, output_cols_prefix
694
+ )
631
695
  elif isinstance(dataset, pd.DataFrame):
632
- transform_kwargs = dict(
633
- snowpark_input_cols = self._snowpark_cols,
634
- drop_input_cols = self._drop_input_cols
635
- )
696
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
636
697
 
637
698
  transform_handlers = ModelTransformerBuilder.build(
638
699
  dataset=dataset,
@@ -645,7 +706,7 @@ class NearestCentroid(BaseTransformer):
645
706
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
646
707
  inference_method=inference_method,
647
708
  input_cols=self.input_cols,
648
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
709
+ expected_output_cols=expected_output_cols,
649
710
  **transform_kwargs
650
711
  )
651
712
  return output_df
@@ -671,30 +732,34 @@ class NearestCentroid(BaseTransformer):
671
732
  Output dataset with results of the decision function for the samples in input dataset.
672
733
  """
673
734
  super()._check_dataset_type(dataset)
674
- inference_method="decision_function"
735
+ inference_method = "decision_function"
675
736
 
676
737
  # This dictionary contains optional kwargs for batch inference. These kwargs
677
738
  # are specific to the type of dataset used.
678
739
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
679
740
 
741
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
742
+
680
743
  if isinstance(dataset, DataFrame):
681
744
  self._deps = self._batch_inference_validate_snowpark(
682
745
  dataset=dataset,
683
746
  inference_method=inference_method,
684
747
  )
685
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
748
+ assert isinstance(
749
+ dataset._session, Session
750
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
686
751
  transform_kwargs = dict(
687
752
  session=dataset._session,
688
753
  dependencies=self._deps,
689
- drop_input_cols = self._drop_input_cols,
754
+ drop_input_cols=self._drop_input_cols,
690
755
  expected_output_cols_type="float",
691
756
  )
757
+ expected_output_cols = self._align_expected_output_names(
758
+ inference_method, dataset, expected_output_cols, output_cols_prefix
759
+ )
692
760
 
693
761
  elif isinstance(dataset, pd.DataFrame):
694
- transform_kwargs = dict(
695
- snowpark_input_cols = self._snowpark_cols,
696
- drop_input_cols = self._drop_input_cols
697
- )
762
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
698
763
 
699
764
  transform_handlers = ModelTransformerBuilder.build(
700
765
  dataset=dataset,
@@ -707,7 +772,7 @@ class NearestCentroid(BaseTransformer):
707
772
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
708
773
  inference_method=inference_method,
709
774
  input_cols=self.input_cols,
710
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
775
+ expected_output_cols=expected_output_cols,
711
776
  **transform_kwargs
712
777
  )
713
778
  return output_df
@@ -736,12 +801,14 @@ class NearestCentroid(BaseTransformer):
736
801
  Output dataset with probability of the sample for each class in the model.
737
802
  """
738
803
  super()._check_dataset_type(dataset)
739
- inference_method="score_samples"
804
+ inference_method = "score_samples"
740
805
 
741
806
  # This dictionary contains optional kwargs for batch inference. These kwargs
742
807
  # are specific to the type of dataset used.
743
808
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
744
809
 
810
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
811
+
745
812
  if isinstance(dataset, DataFrame):
746
813
  self._deps = self._batch_inference_validate_snowpark(
747
814
  dataset=dataset,
@@ -754,6 +821,9 @@ class NearestCentroid(BaseTransformer):
754
821
  drop_input_cols = self._drop_input_cols,
755
822
  expected_output_cols_type="float",
756
823
  )
824
+ expected_output_cols = self._align_expected_output_names(
825
+ inference_method, dataset, expected_output_cols, output_cols_prefix
826
+ )
757
827
 
758
828
  elif isinstance(dataset, pd.DataFrame):
759
829
  transform_kwargs = dict(
@@ -772,7 +842,7 @@ class NearestCentroid(BaseTransformer):
772
842
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
773
843
  inference_method=inference_method,
774
844
  input_cols=self.input_cols,
775
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
845
+ expected_output_cols=expected_output_cols,
776
846
  **transform_kwargs
777
847
  )
778
848
  return output_df
@@ -919,50 +989,84 @@ class NearestCentroid(BaseTransformer):
919
989
  )
920
990
  return output_df
921
991
 
992
+
993
+
994
+ def to_sklearn(self) -> Any:
995
+ """Get sklearn.neighbors.NearestCentroid object.
996
+ """
997
+ if self._sklearn_object is None:
998
+ self._sklearn_object = self._create_sklearn_object()
999
+ return self._sklearn_object
1000
+
1001
+ def to_xgboost(self) -> Any:
1002
+ raise exceptions.SnowflakeMLException(
1003
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1004
+ original_exception=AttributeError(
1005
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1006
+ "to_xgboost()",
1007
+ "to_sklearn()"
1008
+ )
1009
+ ),
1010
+ )
1011
+
1012
+ def to_lightgbm(self) -> Any:
1013
+ raise exceptions.SnowflakeMLException(
1014
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1015
+ original_exception=AttributeError(
1016
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1017
+ "to_lightgbm()",
1018
+ "to_sklearn()"
1019
+ )
1020
+ ),
1021
+ )
922
1022
 
923
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1023
+ def _get_dependencies(self) -> List[str]:
1024
+ return self._deps
1025
+
1026
+
1027
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
924
1028
  self._model_signature_dict = dict()
925
1029
 
926
1030
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
927
1031
 
928
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1032
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
929
1033
  outputs: List[BaseFeatureSpec] = []
930
1034
  if hasattr(self, "predict"):
931
1035
  # keep mypy happy
932
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1036
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
933
1037
  # For classifier, the type of predict is the same as the type of label
934
- if self._sklearn_object._estimator_type == 'classifier':
935
- # label columns is the desired type for output
1038
+ if self._sklearn_object._estimator_type == "classifier":
1039
+ # label columns is the desired type for output
936
1040
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
937
1041
  # rename the output columns
938
1042
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
939
- self._model_signature_dict["predict"] = ModelSignature(inputs,
940
- ([] if self._drop_input_cols else inputs)
941
- + outputs)
1043
+ self._model_signature_dict["predict"] = ModelSignature(
1044
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1045
+ )
942
1046
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
943
1047
  # For outlier models, returns -1 for outliers and 1 for inliers.
944
- # Clusterer returns int64 cluster labels.
1048
+ # Clusterer returns int64 cluster labels.
945
1049
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
946
1050
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
947
- self._model_signature_dict["predict"] = ModelSignature(inputs,
948
- ([] if self._drop_input_cols else inputs)
949
- + outputs)
950
-
1051
+ self._model_signature_dict["predict"] = ModelSignature(
1052
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1053
+ )
1054
+
951
1055
  # For regressor, the type of predict is float64
952
- elif self._sklearn_object._estimator_type == 'regressor':
1056
+ elif self._sklearn_object._estimator_type == "regressor":
953
1057
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
954
- self._model_signature_dict["predict"] = ModelSignature(inputs,
955
- ([] if self._drop_input_cols else inputs)
956
- + outputs)
957
-
1058
+ self._model_signature_dict["predict"] = ModelSignature(
1059
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1060
+ )
1061
+
958
1062
  for prob_func in PROB_FUNCTIONS:
959
1063
  if hasattr(self, prob_func):
960
1064
  output_cols_prefix: str = f"{prob_func}_"
961
1065
  output_column_names = self._get_output_column_names(output_cols_prefix)
962
1066
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
963
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
964
- ([] if self._drop_input_cols else inputs)
965
- + outputs)
1067
+ self._model_signature_dict[prob_func] = ModelSignature(
1068
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1069
+ )
966
1070
 
967
1071
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
968
1072
  items = list(self._model_signature_dict.items())
@@ -975,10 +1079,10 @@ class NearestCentroid(BaseTransformer):
975
1079
  """Returns model signature of current class.
976
1080
 
977
1081
  Raises:
978
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1082
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
979
1083
 
980
1084
  Returns:
981
- Dict[str, ModelSignature]: each method and its input output signature
1085
+ Dict with each method and its input output signature
982
1086
  """
983
1087
  if self._model_signature_dict is None:
984
1088
  raise exceptions.SnowflakeMLException(
@@ -986,35 +1090,3 @@ class NearestCentroid(BaseTransformer):
986
1090
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
987
1091
  )
988
1092
  return self._model_signature_dict
989
-
990
- def to_sklearn(self) -> Any:
991
- """Get sklearn.neighbors.NearestCentroid object.
992
- """
993
- if self._sklearn_object is None:
994
- self._sklearn_object = self._create_sklearn_object()
995
- return self._sklearn_object
996
-
997
- def to_xgboost(self) -> Any:
998
- raise exceptions.SnowflakeMLException(
999
- error_code=error_codes.METHOD_NOT_ALLOWED,
1000
- original_exception=AttributeError(
1001
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1002
- "to_xgboost()",
1003
- "to_sklearn()"
1004
- )
1005
- ),
1006
- )
1007
-
1008
- def to_lightgbm(self) -> Any:
1009
- raise exceptions.SnowflakeMLException(
1010
- error_code=error_codes.METHOD_NOT_ALLOWED,
1011
- original_exception=AttributeError(
1012
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1013
- "to_lightgbm()",
1014
- "to_sklearn()"
1015
- )
1016
- ),
1017
- )
1018
-
1019
- def _get_dependencies(self) -> List[str]:
1020
- return self._deps