snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -221,12 +220,7 @@ class IncrementalPCA(BaseTransformer):
221
220
  )
222
221
  return selected_cols
223
222
 
224
- @telemetry.send_api_usage_telemetry(
225
- project=_PROJECT,
226
- subproject=_SUBPROJECT,
227
- custom_tags=dict([("autogen", True)]),
228
- )
229
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IncrementalPCA":
223
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IncrementalPCA":
230
224
  """Fit the model with X, using minibatches of size batch_size
231
225
  For more details on this function, see [sklearn.decomposition.IncrementalPCA.fit]
232
226
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.IncrementalPCA.html#sklearn.decomposition.IncrementalPCA.fit)
@@ -253,12 +247,14 @@ class IncrementalPCA(BaseTransformer):
253
247
 
254
248
  self._snowpark_cols = dataset.select(self.input_cols).columns
255
249
 
256
- # If we are already in a stored procedure, no need to kick off another one.
250
+ # If we are already in a stored procedure, no need to kick off another one.
257
251
  if SNOWML_SPROC_ENV in os.environ:
258
252
  statement_params = telemetry.get_function_usage_statement_params(
259
253
  project=_PROJECT,
260
254
  subproject=_SUBPROJECT,
261
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IncrementalPCA.__class__.__name__),
255
+ function_name=telemetry.get_statement_params_full_func_name(
256
+ inspect.currentframe(), IncrementalPCA.__class__.__name__
257
+ ),
262
258
  api_calls=[Session.call],
263
259
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
264
260
  )
@@ -279,7 +275,7 @@ class IncrementalPCA(BaseTransformer):
279
275
  )
280
276
  self._sklearn_object = model_trainer.train()
281
277
  self._is_fitted = True
282
- self._get_model_signatures(dataset)
278
+ self._generate_model_signatures(dataset)
283
279
  return self
284
280
 
285
281
  def _batch_inference_validate_snowpark(
@@ -353,7 +349,9 @@ class IncrementalPCA(BaseTransformer):
353
349
  # when it is classifier, infer the datatype from label columns
354
350
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
355
351
  # Batch inference takes a single expected output column type. Use the first columns type for now.
356
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
352
+ label_cols_signatures = [
353
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
354
+ ]
357
355
  if len(label_cols_signatures) == 0:
358
356
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
359
357
  raise exceptions.SnowflakeMLException(
@@ -361,25 +359,22 @@ class IncrementalPCA(BaseTransformer):
361
359
  original_exception=ValueError(error_str),
362
360
  )
363
361
 
364
- expected_type_inferred = convert_sp_to_sf_type(
365
- label_cols_signatures[0].as_snowpark_type()
366
- )
362
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
367
363
 
368
364
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
369
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
365
+ assert isinstance(
366
+ dataset._session, Session
367
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
370
368
 
371
369
  transform_kwargs = dict(
372
- session = dataset._session,
373
- dependencies = self._deps,
374
- drop_input_cols = self._drop_input_cols,
375
- expected_output_cols_type = expected_type_inferred,
370
+ session=dataset._session,
371
+ dependencies=self._deps,
372
+ drop_input_cols=self._drop_input_cols,
373
+ expected_output_cols_type=expected_type_inferred,
376
374
  )
377
375
 
378
376
  elif isinstance(dataset, pd.DataFrame):
379
- transform_kwargs = dict(
380
- snowpark_input_cols = self._snowpark_cols,
381
- drop_input_cols = self._drop_input_cols
382
- )
377
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
383
378
 
384
379
  transform_handlers = ModelTransformerBuilder.build(
385
380
  dataset=dataset,
@@ -421,7 +416,7 @@ class IncrementalPCA(BaseTransformer):
421
416
  Transformed dataset.
422
417
  """
423
418
  super()._check_dataset_type(dataset)
424
- inference_method="transform"
419
+ inference_method = "transform"
425
420
 
426
421
  # This dictionary contains optional kwargs for batch inference. These kwargs
427
422
  # are specific to the type of dataset used.
@@ -458,17 +453,14 @@ class IncrementalPCA(BaseTransformer):
458
453
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
459
454
 
460
455
  transform_kwargs = dict(
461
- session = dataset._session,
462
- dependencies = self._deps,
463
- drop_input_cols = self._drop_input_cols,
464
- expected_output_cols_type = expected_dtype,
456
+ session=dataset._session,
457
+ dependencies=self._deps,
458
+ drop_input_cols=self._drop_input_cols,
459
+ expected_output_cols_type=expected_dtype,
465
460
  )
466
461
 
467
462
  elif isinstance(dataset, pd.DataFrame):
468
- transform_kwargs = dict(
469
- snowpark_input_cols = self._snowpark_cols,
470
- drop_input_cols = self._drop_input_cols
471
- )
463
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
472
464
 
473
465
  transform_handlers = ModelTransformerBuilder.build(
474
466
  dataset=dataset,
@@ -487,7 +479,11 @@ class IncrementalPCA(BaseTransformer):
487
479
  return output_df
488
480
 
489
481
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
490
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
482
+ def fit_predict(
483
+ self,
484
+ dataset: Union[DataFrame, pd.DataFrame],
485
+ output_cols_prefix: str = "fit_predict_",
486
+ ) -> Union[DataFrame, pd.DataFrame]:
491
487
  """ Method not supported for this class.
492
488
 
493
489
 
@@ -512,7 +508,9 @@ class IncrementalPCA(BaseTransformer):
512
508
  )
513
509
  output_result, fitted_estimator = model_trainer.train_fit_predict(
514
510
  drop_input_cols=self._drop_input_cols,
515
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
511
+ expected_output_cols_list=(
512
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
513
+ ),
516
514
  )
517
515
  self._sklearn_object = fitted_estimator
518
516
  self._is_fitted = True
@@ -529,6 +527,62 @@ class IncrementalPCA(BaseTransformer):
529
527
  assert self._sklearn_object is not None
530
528
  return self._sklearn_object.embedding_
531
529
 
530
+
531
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
532
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
533
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
534
+ """
535
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
536
+ # The following condition is introduced for kneighbors methods, and not used in other methods
537
+ if output_cols:
538
+ output_cols = [
539
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
540
+ for c in output_cols
541
+ ]
542
+ elif getattr(self._sklearn_object, "classes_", None) is None:
543
+ output_cols = [output_cols_prefix]
544
+ elif self._sklearn_object is not None:
545
+ classes = self._sklearn_object.classes_
546
+ if isinstance(classes, numpy.ndarray):
547
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
548
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
549
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
550
+ output_cols = []
551
+ for i, cl in enumerate(classes):
552
+ # For binary classification, there is only one output column for each class
553
+ # ndarray as the two classes are complementary.
554
+ if len(cl) == 2:
555
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
556
+ else:
557
+ output_cols.extend([
558
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
559
+ ])
560
+ else:
561
+ output_cols = []
562
+
563
+ # Make sure column names are valid snowflake identifiers.
564
+ assert output_cols is not None # Make MyPy happy
565
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
566
+
567
+ return rv
568
+
569
+ def _align_expected_output_names(
570
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
571
+ ) -> List[str]:
572
+ # in case the inferred output column names dimension is different
573
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
574
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
575
+ output_df_columns = list(output_df_pd.columns)
576
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
577
+ if self.sample_weight_col:
578
+ output_df_columns_set -= set(self.sample_weight_col)
579
+ # if the dimension of inferred output column names is correct; use it
580
+ if len(expected_output_cols_list) == len(output_df_columns_set):
581
+ return expected_output_cols_list
582
+ # otherwise, use the sklearn estimator's output
583
+ else:
584
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
585
+
532
586
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
533
587
  @telemetry.send_api_usage_telemetry(
534
588
  project=_PROJECT,
@@ -559,24 +613,28 @@ class IncrementalPCA(BaseTransformer):
559
613
  # are specific to the type of dataset used.
560
614
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
561
615
 
616
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
617
+
562
618
  if isinstance(dataset, DataFrame):
563
619
  self._deps = self._batch_inference_validate_snowpark(
564
620
  dataset=dataset,
565
621
  inference_method=inference_method,
566
622
  )
567
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
623
+ assert isinstance(
624
+ dataset._session, Session
625
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
568
626
  transform_kwargs = dict(
569
627
  session=dataset._session,
570
628
  dependencies=self._deps,
571
- drop_input_cols = self._drop_input_cols,
629
+ drop_input_cols=self._drop_input_cols,
572
630
  expected_output_cols_type="float",
573
631
  )
632
+ expected_output_cols = self._align_expected_output_names(
633
+ inference_method, dataset, expected_output_cols, output_cols_prefix
634
+ )
574
635
 
575
636
  elif isinstance(dataset, pd.DataFrame):
576
- transform_kwargs = dict(
577
- snowpark_input_cols = self._snowpark_cols,
578
- drop_input_cols = self._drop_input_cols
579
- )
637
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
580
638
 
581
639
  transform_handlers = ModelTransformerBuilder.build(
582
640
  dataset=dataset,
@@ -588,7 +646,7 @@ class IncrementalPCA(BaseTransformer):
588
646
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
589
647
  inference_method=inference_method,
590
648
  input_cols=self.input_cols,
591
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
649
+ expected_output_cols=expected_output_cols,
592
650
  **transform_kwargs
593
651
  )
594
652
  return output_df
@@ -618,7 +676,8 @@ class IncrementalPCA(BaseTransformer):
618
676
  Output dataset with log probability of the sample for each class in the model.
619
677
  """
620
678
  super()._check_dataset_type(dataset)
621
- inference_method="predict_log_proba"
679
+ inference_method = "predict_log_proba"
680
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
622
681
 
623
682
  # This dictionary contains optional kwargs for batch inference. These kwargs
624
683
  # are specific to the type of dataset used.
@@ -629,18 +688,20 @@ class IncrementalPCA(BaseTransformer):
629
688
  dataset=dataset,
630
689
  inference_method=inference_method,
631
690
  )
632
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
691
+ assert isinstance(
692
+ dataset._session, Session
693
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
633
694
  transform_kwargs = dict(
634
695
  session=dataset._session,
635
696
  dependencies=self._deps,
636
- drop_input_cols = self._drop_input_cols,
697
+ drop_input_cols=self._drop_input_cols,
637
698
  expected_output_cols_type="float",
638
699
  )
700
+ expected_output_cols = self._align_expected_output_names(
701
+ inference_method, dataset, expected_output_cols, output_cols_prefix
702
+ )
639
703
  elif isinstance(dataset, pd.DataFrame):
640
- transform_kwargs = dict(
641
- snowpark_input_cols = self._snowpark_cols,
642
- drop_input_cols = self._drop_input_cols
643
- )
704
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
644
705
 
645
706
  transform_handlers = ModelTransformerBuilder.build(
646
707
  dataset=dataset,
@@ -653,7 +714,7 @@ class IncrementalPCA(BaseTransformer):
653
714
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
654
715
  inference_method=inference_method,
655
716
  input_cols=self.input_cols,
656
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
717
+ expected_output_cols=expected_output_cols,
657
718
  **transform_kwargs
658
719
  )
659
720
  return output_df
@@ -679,30 +740,34 @@ class IncrementalPCA(BaseTransformer):
679
740
  Output dataset with results of the decision function for the samples in input dataset.
680
741
  """
681
742
  super()._check_dataset_type(dataset)
682
- inference_method="decision_function"
743
+ inference_method = "decision_function"
683
744
 
684
745
  # This dictionary contains optional kwargs for batch inference. These kwargs
685
746
  # are specific to the type of dataset used.
686
747
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
687
748
 
749
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
750
+
688
751
  if isinstance(dataset, DataFrame):
689
752
  self._deps = self._batch_inference_validate_snowpark(
690
753
  dataset=dataset,
691
754
  inference_method=inference_method,
692
755
  )
693
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
756
+ assert isinstance(
757
+ dataset._session, Session
758
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
694
759
  transform_kwargs = dict(
695
760
  session=dataset._session,
696
761
  dependencies=self._deps,
697
- drop_input_cols = self._drop_input_cols,
762
+ drop_input_cols=self._drop_input_cols,
698
763
  expected_output_cols_type="float",
699
764
  )
765
+ expected_output_cols = self._align_expected_output_names(
766
+ inference_method, dataset, expected_output_cols, output_cols_prefix
767
+ )
700
768
 
701
769
  elif isinstance(dataset, pd.DataFrame):
702
- transform_kwargs = dict(
703
- snowpark_input_cols = self._snowpark_cols,
704
- drop_input_cols = self._drop_input_cols
705
- )
770
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
706
771
 
707
772
  transform_handlers = ModelTransformerBuilder.build(
708
773
  dataset=dataset,
@@ -715,7 +780,7 @@ class IncrementalPCA(BaseTransformer):
715
780
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
716
781
  inference_method=inference_method,
717
782
  input_cols=self.input_cols,
718
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
783
+ expected_output_cols=expected_output_cols,
719
784
  **transform_kwargs
720
785
  )
721
786
  return output_df
@@ -744,12 +809,14 @@ class IncrementalPCA(BaseTransformer):
744
809
  Output dataset with probability of the sample for each class in the model.
745
810
  """
746
811
  super()._check_dataset_type(dataset)
747
- inference_method="score_samples"
812
+ inference_method = "score_samples"
748
813
 
749
814
  # This dictionary contains optional kwargs for batch inference. These kwargs
750
815
  # are specific to the type of dataset used.
751
816
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
752
817
 
818
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
819
+
753
820
  if isinstance(dataset, DataFrame):
754
821
  self._deps = self._batch_inference_validate_snowpark(
755
822
  dataset=dataset,
@@ -762,6 +829,9 @@ class IncrementalPCA(BaseTransformer):
762
829
  drop_input_cols = self._drop_input_cols,
763
830
  expected_output_cols_type="float",
764
831
  )
832
+ expected_output_cols = self._align_expected_output_names(
833
+ inference_method, dataset, expected_output_cols, output_cols_prefix
834
+ )
765
835
 
766
836
  elif isinstance(dataset, pd.DataFrame):
767
837
  transform_kwargs = dict(
@@ -780,7 +850,7 @@ class IncrementalPCA(BaseTransformer):
780
850
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
781
851
  inference_method=inference_method,
782
852
  input_cols=self.input_cols,
783
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
853
+ expected_output_cols=expected_output_cols,
784
854
  **transform_kwargs
785
855
  )
786
856
  return output_df
@@ -925,50 +995,84 @@ class IncrementalPCA(BaseTransformer):
925
995
  )
926
996
  return output_df
927
997
 
998
+
999
+
1000
+ def to_sklearn(self) -> Any:
1001
+ """Get sklearn.decomposition.IncrementalPCA object.
1002
+ """
1003
+ if self._sklearn_object is None:
1004
+ self._sklearn_object = self._create_sklearn_object()
1005
+ return self._sklearn_object
1006
+
1007
+ def to_xgboost(self) -> Any:
1008
+ raise exceptions.SnowflakeMLException(
1009
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1010
+ original_exception=AttributeError(
1011
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1012
+ "to_xgboost()",
1013
+ "to_sklearn()"
1014
+ )
1015
+ ),
1016
+ )
1017
+
1018
+ def to_lightgbm(self) -> Any:
1019
+ raise exceptions.SnowflakeMLException(
1020
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1021
+ original_exception=AttributeError(
1022
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1023
+ "to_lightgbm()",
1024
+ "to_sklearn()"
1025
+ )
1026
+ ),
1027
+ )
928
1028
 
929
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1029
+ def _get_dependencies(self) -> List[str]:
1030
+ return self._deps
1031
+
1032
+
1033
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
930
1034
  self._model_signature_dict = dict()
931
1035
 
932
1036
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
933
1037
 
934
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1038
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
935
1039
  outputs: List[BaseFeatureSpec] = []
936
1040
  if hasattr(self, "predict"):
937
1041
  # keep mypy happy
938
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1042
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
939
1043
  # For classifier, the type of predict is the same as the type of label
940
- if self._sklearn_object._estimator_type == 'classifier':
941
- # label columns is the desired type for output
1044
+ if self._sklearn_object._estimator_type == "classifier":
1045
+ # label columns is the desired type for output
942
1046
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
943
1047
  # rename the output columns
944
1048
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
945
- self._model_signature_dict["predict"] = ModelSignature(inputs,
946
- ([] if self._drop_input_cols else inputs)
947
- + outputs)
1049
+ self._model_signature_dict["predict"] = ModelSignature(
1050
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1051
+ )
948
1052
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
949
1053
  # For outlier models, returns -1 for outliers and 1 for inliers.
950
- # Clusterer returns int64 cluster labels.
1054
+ # Clusterer returns int64 cluster labels.
951
1055
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
952
1056
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
953
- self._model_signature_dict["predict"] = ModelSignature(inputs,
954
- ([] if self._drop_input_cols else inputs)
955
- + outputs)
956
-
1057
+ self._model_signature_dict["predict"] = ModelSignature(
1058
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1059
+ )
1060
+
957
1061
  # For regressor, the type of predict is float64
958
- elif self._sklearn_object._estimator_type == 'regressor':
1062
+ elif self._sklearn_object._estimator_type == "regressor":
959
1063
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
960
- self._model_signature_dict["predict"] = ModelSignature(inputs,
961
- ([] if self._drop_input_cols else inputs)
962
- + outputs)
963
-
1064
+ self._model_signature_dict["predict"] = ModelSignature(
1065
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1066
+ )
1067
+
964
1068
  for prob_func in PROB_FUNCTIONS:
965
1069
  if hasattr(self, prob_func):
966
1070
  output_cols_prefix: str = f"{prob_func}_"
967
1071
  output_column_names = self._get_output_column_names(output_cols_prefix)
968
1072
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
969
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
970
- ([] if self._drop_input_cols else inputs)
971
- + outputs)
1073
+ self._model_signature_dict[prob_func] = ModelSignature(
1074
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1075
+ )
972
1076
 
973
1077
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
974
1078
  items = list(self._model_signature_dict.items())
@@ -981,10 +1085,10 @@ class IncrementalPCA(BaseTransformer):
981
1085
  """Returns model signature of current class.
982
1086
 
983
1087
  Raises:
984
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1088
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
985
1089
 
986
1090
  Returns:
987
- Dict[str, ModelSignature]: each method and its input output signature
1091
+ Dict with each method and its input output signature
988
1092
  """
989
1093
  if self._model_signature_dict is None:
990
1094
  raise exceptions.SnowflakeMLException(
@@ -992,35 +1096,3 @@ class IncrementalPCA(BaseTransformer):
992
1096
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
993
1097
  )
994
1098
  return self._model_signature_dict
995
-
996
- def to_sklearn(self) -> Any:
997
- """Get sklearn.decomposition.IncrementalPCA object.
998
- """
999
- if self._sklearn_object is None:
1000
- self._sklearn_object = self._create_sklearn_object()
1001
- return self._sklearn_object
1002
-
1003
- def to_xgboost(self) -> Any:
1004
- raise exceptions.SnowflakeMLException(
1005
- error_code=error_codes.METHOD_NOT_ALLOWED,
1006
- original_exception=AttributeError(
1007
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1008
- "to_xgboost()",
1009
- "to_sklearn()"
1010
- )
1011
- ),
1012
- )
1013
-
1014
- def to_lightgbm(self) -> Any:
1015
- raise exceptions.SnowflakeMLException(
1016
- error_code=error_codes.METHOD_NOT_ALLOWED,
1017
- original_exception=AttributeError(
1018
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1019
- "to_lightgbm()",
1020
- "to_sklearn()"
1021
- )
1022
- ),
1023
- )
1024
-
1025
- def _get_dependencies(self) -> List[str]:
1026
- return self._deps