snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
snowflake/ml/modeling/svm/svc.py
CHANGED
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -302,12 +301,7 @@ class SVC(BaseTransformer):
|
|
302
301
|
)
|
303
302
|
return selected_cols
|
304
303
|
|
305
|
-
|
306
|
-
project=_PROJECT,
|
307
|
-
subproject=_SUBPROJECT,
|
308
|
-
custom_tags=dict([("autogen", True)]),
|
309
|
-
)
|
310
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVC":
|
304
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVC":
|
311
305
|
"""Fit the SVM model according to the given training data
|
312
306
|
For more details on this function, see [sklearn.svm.SVC.fit]
|
313
307
|
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC.fit)
|
@@ -334,12 +328,14 @@ class SVC(BaseTransformer):
|
|
334
328
|
|
335
329
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
336
330
|
|
337
|
-
|
331
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
338
332
|
if SNOWML_SPROC_ENV in os.environ:
|
339
333
|
statement_params = telemetry.get_function_usage_statement_params(
|
340
334
|
project=_PROJECT,
|
341
335
|
subproject=_SUBPROJECT,
|
342
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
336
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
337
|
+
inspect.currentframe(), SVC.__class__.__name__
|
338
|
+
),
|
343
339
|
api_calls=[Session.call],
|
344
340
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
345
341
|
)
|
@@ -360,7 +356,7 @@ class SVC(BaseTransformer):
|
|
360
356
|
)
|
361
357
|
self._sklearn_object = model_trainer.train()
|
362
358
|
self._is_fitted = True
|
363
|
-
self.
|
359
|
+
self._generate_model_signatures(dataset)
|
364
360
|
return self
|
365
361
|
|
366
362
|
def _batch_inference_validate_snowpark(
|
@@ -436,7 +432,9 @@ class SVC(BaseTransformer):
|
|
436
432
|
# when it is classifier, infer the datatype from label columns
|
437
433
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
438
434
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
439
|
-
label_cols_signatures = [
|
435
|
+
label_cols_signatures = [
|
436
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
437
|
+
]
|
440
438
|
if len(label_cols_signatures) == 0:
|
441
439
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
442
440
|
raise exceptions.SnowflakeMLException(
|
@@ -444,25 +442,22 @@ class SVC(BaseTransformer):
|
|
444
442
|
original_exception=ValueError(error_str),
|
445
443
|
)
|
446
444
|
|
447
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
448
|
-
label_cols_signatures[0].as_snowpark_type()
|
449
|
-
)
|
445
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
450
446
|
|
451
447
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
452
|
-
assert isinstance(
|
448
|
+
assert isinstance(
|
449
|
+
dataset._session, Session
|
450
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
453
451
|
|
454
452
|
transform_kwargs = dict(
|
455
|
-
session
|
456
|
-
dependencies
|
457
|
-
drop_input_cols
|
458
|
-
expected_output_cols_type
|
453
|
+
session=dataset._session,
|
454
|
+
dependencies=self._deps,
|
455
|
+
drop_input_cols=self._drop_input_cols,
|
456
|
+
expected_output_cols_type=expected_type_inferred,
|
459
457
|
)
|
460
458
|
|
461
459
|
elif isinstance(dataset, pd.DataFrame):
|
462
|
-
transform_kwargs = dict(
|
463
|
-
snowpark_input_cols = self._snowpark_cols,
|
464
|
-
drop_input_cols = self._drop_input_cols
|
465
|
-
)
|
460
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
466
461
|
|
467
462
|
transform_handlers = ModelTransformerBuilder.build(
|
468
463
|
dataset=dataset,
|
@@ -502,7 +497,7 @@ class SVC(BaseTransformer):
|
|
502
497
|
Transformed dataset.
|
503
498
|
"""
|
504
499
|
super()._check_dataset_type(dataset)
|
505
|
-
inference_method="transform"
|
500
|
+
inference_method = "transform"
|
506
501
|
|
507
502
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
508
503
|
# are specific to the type of dataset used.
|
@@ -539,17 +534,14 @@ class SVC(BaseTransformer):
|
|
539
534
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
540
535
|
|
541
536
|
transform_kwargs = dict(
|
542
|
-
session
|
543
|
-
dependencies
|
544
|
-
drop_input_cols
|
545
|
-
expected_output_cols_type
|
537
|
+
session=dataset._session,
|
538
|
+
dependencies=self._deps,
|
539
|
+
drop_input_cols=self._drop_input_cols,
|
540
|
+
expected_output_cols_type=expected_dtype,
|
546
541
|
)
|
547
542
|
|
548
543
|
elif isinstance(dataset, pd.DataFrame):
|
549
|
-
transform_kwargs = dict(
|
550
|
-
snowpark_input_cols = self._snowpark_cols,
|
551
|
-
drop_input_cols = self._drop_input_cols
|
552
|
-
)
|
544
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
553
545
|
|
554
546
|
transform_handlers = ModelTransformerBuilder.build(
|
555
547
|
dataset=dataset,
|
@@ -568,7 +560,11 @@ class SVC(BaseTransformer):
|
|
568
560
|
return output_df
|
569
561
|
|
570
562
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
571
|
-
def fit_predict(
|
563
|
+
def fit_predict(
|
564
|
+
self,
|
565
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
566
|
+
output_cols_prefix: str = "fit_predict_",
|
567
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
572
568
|
""" Method not supported for this class.
|
573
569
|
|
574
570
|
|
@@ -593,7 +589,9 @@ class SVC(BaseTransformer):
|
|
593
589
|
)
|
594
590
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
595
591
|
drop_input_cols=self._drop_input_cols,
|
596
|
-
expected_output_cols_list=
|
592
|
+
expected_output_cols_list=(
|
593
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
594
|
+
),
|
597
595
|
)
|
598
596
|
self._sklearn_object = fitted_estimator
|
599
597
|
self._is_fitted = True
|
@@ -610,6 +608,62 @@ class SVC(BaseTransformer):
|
|
610
608
|
assert self._sklearn_object is not None
|
611
609
|
return self._sklearn_object.embedding_
|
612
610
|
|
611
|
+
|
612
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
613
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
614
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
615
|
+
"""
|
616
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
617
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
618
|
+
if output_cols:
|
619
|
+
output_cols = [
|
620
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
621
|
+
for c in output_cols
|
622
|
+
]
|
623
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
624
|
+
output_cols = [output_cols_prefix]
|
625
|
+
elif self._sklearn_object is not None:
|
626
|
+
classes = self._sklearn_object.classes_
|
627
|
+
if isinstance(classes, numpy.ndarray):
|
628
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
629
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
630
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
631
|
+
output_cols = []
|
632
|
+
for i, cl in enumerate(classes):
|
633
|
+
# For binary classification, there is only one output column for each class
|
634
|
+
# ndarray as the two classes are complementary.
|
635
|
+
if len(cl) == 2:
|
636
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
637
|
+
else:
|
638
|
+
output_cols.extend([
|
639
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
640
|
+
])
|
641
|
+
else:
|
642
|
+
output_cols = []
|
643
|
+
|
644
|
+
# Make sure column names are valid snowflake identifiers.
|
645
|
+
assert output_cols is not None # Make MyPy happy
|
646
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
647
|
+
|
648
|
+
return rv
|
649
|
+
|
650
|
+
def _align_expected_output_names(
|
651
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
652
|
+
) -> List[str]:
|
653
|
+
# in case the inferred output column names dimension is different
|
654
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
655
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
656
|
+
output_df_columns = list(output_df_pd.columns)
|
657
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
658
|
+
if self.sample_weight_col:
|
659
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
660
|
+
# if the dimension of inferred output column names is correct; use it
|
661
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
662
|
+
return expected_output_cols_list
|
663
|
+
# otherwise, use the sklearn estimator's output
|
664
|
+
else:
|
665
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
666
|
+
|
613
667
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
614
668
|
@telemetry.send_api_usage_telemetry(
|
615
669
|
project=_PROJECT,
|
@@ -642,24 +696,28 @@ class SVC(BaseTransformer):
|
|
642
696
|
# are specific to the type of dataset used.
|
643
697
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
644
698
|
|
699
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
700
|
+
|
645
701
|
if isinstance(dataset, DataFrame):
|
646
702
|
self._deps = self._batch_inference_validate_snowpark(
|
647
703
|
dataset=dataset,
|
648
704
|
inference_method=inference_method,
|
649
705
|
)
|
650
|
-
assert isinstance(
|
706
|
+
assert isinstance(
|
707
|
+
dataset._session, Session
|
708
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
651
709
|
transform_kwargs = dict(
|
652
710
|
session=dataset._session,
|
653
711
|
dependencies=self._deps,
|
654
|
-
drop_input_cols
|
712
|
+
drop_input_cols=self._drop_input_cols,
|
655
713
|
expected_output_cols_type="float",
|
656
714
|
)
|
715
|
+
expected_output_cols = self._align_expected_output_names(
|
716
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
717
|
+
)
|
657
718
|
|
658
719
|
elif isinstance(dataset, pd.DataFrame):
|
659
|
-
transform_kwargs = dict(
|
660
|
-
snowpark_input_cols = self._snowpark_cols,
|
661
|
-
drop_input_cols = self._drop_input_cols
|
662
|
-
)
|
720
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
663
721
|
|
664
722
|
transform_handlers = ModelTransformerBuilder.build(
|
665
723
|
dataset=dataset,
|
@@ -671,7 +729,7 @@ class SVC(BaseTransformer):
|
|
671
729
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
672
730
|
inference_method=inference_method,
|
673
731
|
input_cols=self.input_cols,
|
674
|
-
expected_output_cols=
|
732
|
+
expected_output_cols=expected_output_cols,
|
675
733
|
**transform_kwargs
|
676
734
|
)
|
677
735
|
return output_df
|
@@ -703,7 +761,8 @@ class SVC(BaseTransformer):
|
|
703
761
|
Output dataset with log probability of the sample for each class in the model.
|
704
762
|
"""
|
705
763
|
super()._check_dataset_type(dataset)
|
706
|
-
inference_method="predict_log_proba"
|
764
|
+
inference_method = "predict_log_proba"
|
765
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
707
766
|
|
708
767
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
709
768
|
# are specific to the type of dataset used.
|
@@ -714,18 +773,20 @@ class SVC(BaseTransformer):
|
|
714
773
|
dataset=dataset,
|
715
774
|
inference_method=inference_method,
|
716
775
|
)
|
717
|
-
assert isinstance(
|
776
|
+
assert isinstance(
|
777
|
+
dataset._session, Session
|
778
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
718
779
|
transform_kwargs = dict(
|
719
780
|
session=dataset._session,
|
720
781
|
dependencies=self._deps,
|
721
|
-
drop_input_cols
|
782
|
+
drop_input_cols=self._drop_input_cols,
|
722
783
|
expected_output_cols_type="float",
|
723
784
|
)
|
785
|
+
expected_output_cols = self._align_expected_output_names(
|
786
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
787
|
+
)
|
724
788
|
elif isinstance(dataset, pd.DataFrame):
|
725
|
-
transform_kwargs = dict(
|
726
|
-
snowpark_input_cols = self._snowpark_cols,
|
727
|
-
drop_input_cols = self._drop_input_cols
|
728
|
-
)
|
789
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
729
790
|
|
730
791
|
transform_handlers = ModelTransformerBuilder.build(
|
731
792
|
dataset=dataset,
|
@@ -738,7 +799,7 @@ class SVC(BaseTransformer):
|
|
738
799
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
739
800
|
inference_method=inference_method,
|
740
801
|
input_cols=self.input_cols,
|
741
|
-
expected_output_cols=
|
802
|
+
expected_output_cols=expected_output_cols,
|
742
803
|
**transform_kwargs
|
743
804
|
)
|
744
805
|
return output_df
|
@@ -766,30 +827,34 @@ class SVC(BaseTransformer):
|
|
766
827
|
Output dataset with results of the decision function for the samples in input dataset.
|
767
828
|
"""
|
768
829
|
super()._check_dataset_type(dataset)
|
769
|
-
inference_method="decision_function"
|
830
|
+
inference_method = "decision_function"
|
770
831
|
|
771
832
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
772
833
|
# are specific to the type of dataset used.
|
773
834
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
774
835
|
|
836
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
837
|
+
|
775
838
|
if isinstance(dataset, DataFrame):
|
776
839
|
self._deps = self._batch_inference_validate_snowpark(
|
777
840
|
dataset=dataset,
|
778
841
|
inference_method=inference_method,
|
779
842
|
)
|
780
|
-
assert isinstance(
|
843
|
+
assert isinstance(
|
844
|
+
dataset._session, Session
|
845
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
781
846
|
transform_kwargs = dict(
|
782
847
|
session=dataset._session,
|
783
848
|
dependencies=self._deps,
|
784
|
-
drop_input_cols
|
849
|
+
drop_input_cols=self._drop_input_cols,
|
785
850
|
expected_output_cols_type="float",
|
786
851
|
)
|
852
|
+
expected_output_cols = self._align_expected_output_names(
|
853
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
854
|
+
)
|
787
855
|
|
788
856
|
elif isinstance(dataset, pd.DataFrame):
|
789
|
-
transform_kwargs = dict(
|
790
|
-
snowpark_input_cols = self._snowpark_cols,
|
791
|
-
drop_input_cols = self._drop_input_cols
|
792
|
-
)
|
857
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
793
858
|
|
794
859
|
transform_handlers = ModelTransformerBuilder.build(
|
795
860
|
dataset=dataset,
|
@@ -802,7 +867,7 @@ class SVC(BaseTransformer):
|
|
802
867
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
803
868
|
inference_method=inference_method,
|
804
869
|
input_cols=self.input_cols,
|
805
|
-
expected_output_cols=
|
870
|
+
expected_output_cols=expected_output_cols,
|
806
871
|
**transform_kwargs
|
807
872
|
)
|
808
873
|
return output_df
|
@@ -831,12 +896,14 @@ class SVC(BaseTransformer):
|
|
831
896
|
Output dataset with probability of the sample for each class in the model.
|
832
897
|
"""
|
833
898
|
super()._check_dataset_type(dataset)
|
834
|
-
inference_method="score_samples"
|
899
|
+
inference_method = "score_samples"
|
835
900
|
|
836
901
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
837
902
|
# are specific to the type of dataset used.
|
838
903
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
839
904
|
|
905
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
906
|
+
|
840
907
|
if isinstance(dataset, DataFrame):
|
841
908
|
self._deps = self._batch_inference_validate_snowpark(
|
842
909
|
dataset=dataset,
|
@@ -849,6 +916,9 @@ class SVC(BaseTransformer):
|
|
849
916
|
drop_input_cols = self._drop_input_cols,
|
850
917
|
expected_output_cols_type="float",
|
851
918
|
)
|
919
|
+
expected_output_cols = self._align_expected_output_names(
|
920
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
921
|
+
)
|
852
922
|
|
853
923
|
elif isinstance(dataset, pd.DataFrame):
|
854
924
|
transform_kwargs = dict(
|
@@ -867,7 +937,7 @@ class SVC(BaseTransformer):
|
|
867
937
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
868
938
|
inference_method=inference_method,
|
869
939
|
input_cols=self.input_cols,
|
870
|
-
expected_output_cols=
|
940
|
+
expected_output_cols=expected_output_cols,
|
871
941
|
**transform_kwargs
|
872
942
|
)
|
873
943
|
return output_df
|
@@ -1014,50 +1084,84 @@ class SVC(BaseTransformer):
|
|
1014
1084
|
)
|
1015
1085
|
return output_df
|
1016
1086
|
|
1087
|
+
|
1088
|
+
|
1089
|
+
def to_sklearn(self) -> Any:
|
1090
|
+
"""Get sklearn.svm.SVC object.
|
1091
|
+
"""
|
1092
|
+
if self._sklearn_object is None:
|
1093
|
+
self._sklearn_object = self._create_sklearn_object()
|
1094
|
+
return self._sklearn_object
|
1095
|
+
|
1096
|
+
def to_xgboost(self) -> Any:
|
1097
|
+
raise exceptions.SnowflakeMLException(
|
1098
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1099
|
+
original_exception=AttributeError(
|
1100
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1101
|
+
"to_xgboost()",
|
1102
|
+
"to_sklearn()"
|
1103
|
+
)
|
1104
|
+
),
|
1105
|
+
)
|
1106
|
+
|
1107
|
+
def to_lightgbm(self) -> Any:
|
1108
|
+
raise exceptions.SnowflakeMLException(
|
1109
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1110
|
+
original_exception=AttributeError(
|
1111
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1112
|
+
"to_lightgbm()",
|
1113
|
+
"to_sklearn()"
|
1114
|
+
)
|
1115
|
+
),
|
1116
|
+
)
|
1017
1117
|
|
1018
|
-
def
|
1118
|
+
def _get_dependencies(self) -> List[str]:
|
1119
|
+
return self._deps
|
1120
|
+
|
1121
|
+
|
1122
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1019
1123
|
self._model_signature_dict = dict()
|
1020
1124
|
|
1021
1125
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1022
1126
|
|
1023
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1127
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1024
1128
|
outputs: List[BaseFeatureSpec] = []
|
1025
1129
|
if hasattr(self, "predict"):
|
1026
1130
|
# keep mypy happy
|
1027
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1131
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1028
1132
|
# For classifier, the type of predict is the same as the type of label
|
1029
|
-
if self._sklearn_object._estimator_type ==
|
1030
|
-
|
1133
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1134
|
+
# label columns is the desired type for output
|
1031
1135
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1032
1136
|
# rename the output columns
|
1033
1137
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1034
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1035
|
-
|
1036
|
-
|
1138
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1139
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1140
|
+
)
|
1037
1141
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1038
1142
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1039
|
-
# Clusterer returns int64 cluster labels.
|
1143
|
+
# Clusterer returns int64 cluster labels.
|
1040
1144
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1041
1145
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1042
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1043
|
-
|
1044
|
-
|
1045
|
-
|
1146
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1147
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1148
|
+
)
|
1149
|
+
|
1046
1150
|
# For regressor, the type of predict is float64
|
1047
|
-
elif self._sklearn_object._estimator_type ==
|
1151
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1048
1152
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1049
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1050
|
-
|
1051
|
-
|
1052
|
-
|
1153
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1154
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1155
|
+
)
|
1156
|
+
|
1053
1157
|
for prob_func in PROB_FUNCTIONS:
|
1054
1158
|
if hasattr(self, prob_func):
|
1055
1159
|
output_cols_prefix: str = f"{prob_func}_"
|
1056
1160
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1057
1161
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1058
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1059
|
-
|
1060
|
-
|
1162
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1163
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1164
|
+
)
|
1061
1165
|
|
1062
1166
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1063
1167
|
items = list(self._model_signature_dict.items())
|
@@ -1070,10 +1174,10 @@ class SVC(BaseTransformer):
|
|
1070
1174
|
"""Returns model signature of current class.
|
1071
1175
|
|
1072
1176
|
Raises:
|
1073
|
-
|
1177
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1074
1178
|
|
1075
1179
|
Returns:
|
1076
|
-
Dict
|
1180
|
+
Dict with each method and its input output signature
|
1077
1181
|
"""
|
1078
1182
|
if self._model_signature_dict is None:
|
1079
1183
|
raise exceptions.SnowflakeMLException(
|
@@ -1081,35 +1185,3 @@ class SVC(BaseTransformer):
|
|
1081
1185
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1082
1186
|
)
|
1083
1187
|
return self._model_signature_dict
|
1084
|
-
|
1085
|
-
def to_sklearn(self) -> Any:
|
1086
|
-
"""Get sklearn.svm.SVC object.
|
1087
|
-
"""
|
1088
|
-
if self._sklearn_object is None:
|
1089
|
-
self._sklearn_object = self._create_sklearn_object()
|
1090
|
-
return self._sklearn_object
|
1091
|
-
|
1092
|
-
def to_xgboost(self) -> Any:
|
1093
|
-
raise exceptions.SnowflakeMLException(
|
1094
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1095
|
-
original_exception=AttributeError(
|
1096
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1097
|
-
"to_xgboost()",
|
1098
|
-
"to_sklearn()"
|
1099
|
-
)
|
1100
|
-
),
|
1101
|
-
)
|
1102
|
-
|
1103
|
-
def to_lightgbm(self) -> Any:
|
1104
|
-
raise exceptions.SnowflakeMLException(
|
1105
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1106
|
-
original_exception=AttributeError(
|
1107
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1108
|
-
"to_lightgbm()",
|
1109
|
-
"to_sklearn()"
|
1110
|
-
)
|
1111
|
-
),
|
1112
|
-
)
|
1113
|
-
|
1114
|
-
def _get_dependencies(self) -> List[str]:
|
1115
|
-
return self._deps
|