snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -302,12 +301,7 @@ class SVC(BaseTransformer):
302
301
  )
303
302
  return selected_cols
304
303
 
305
- @telemetry.send_api_usage_telemetry(
306
- project=_PROJECT,
307
- subproject=_SUBPROJECT,
308
- custom_tags=dict([("autogen", True)]),
309
- )
310
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVC":
304
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVC":
311
305
  """Fit the SVM model according to the given training data
312
306
  For more details on this function, see [sklearn.svm.SVC.fit]
313
307
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC.fit)
@@ -334,12 +328,14 @@ class SVC(BaseTransformer):
334
328
 
335
329
  self._snowpark_cols = dataset.select(self.input_cols).columns
336
330
 
337
- # If we are already in a stored procedure, no need to kick off another one.
331
+ # If we are already in a stored procedure, no need to kick off another one.
338
332
  if SNOWML_SPROC_ENV in os.environ:
339
333
  statement_params = telemetry.get_function_usage_statement_params(
340
334
  project=_PROJECT,
341
335
  subproject=_SUBPROJECT,
342
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVC.__class__.__name__),
336
+ function_name=telemetry.get_statement_params_full_func_name(
337
+ inspect.currentframe(), SVC.__class__.__name__
338
+ ),
343
339
  api_calls=[Session.call],
344
340
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
345
341
  )
@@ -360,7 +356,7 @@ class SVC(BaseTransformer):
360
356
  )
361
357
  self._sklearn_object = model_trainer.train()
362
358
  self._is_fitted = True
363
- self._get_model_signatures(dataset)
359
+ self._generate_model_signatures(dataset)
364
360
  return self
365
361
 
366
362
  def _batch_inference_validate_snowpark(
@@ -436,7 +432,9 @@ class SVC(BaseTransformer):
436
432
  # when it is classifier, infer the datatype from label columns
437
433
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
438
434
  # Batch inference takes a single expected output column type. Use the first columns type for now.
439
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
435
+ label_cols_signatures = [
436
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
437
+ ]
440
438
  if len(label_cols_signatures) == 0:
441
439
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
442
440
  raise exceptions.SnowflakeMLException(
@@ -444,25 +442,22 @@ class SVC(BaseTransformer):
444
442
  original_exception=ValueError(error_str),
445
443
  )
446
444
 
447
- expected_type_inferred = convert_sp_to_sf_type(
448
- label_cols_signatures[0].as_snowpark_type()
449
- )
445
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
450
446
 
451
447
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
452
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
448
+ assert isinstance(
449
+ dataset._session, Session
450
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
453
451
 
454
452
  transform_kwargs = dict(
455
- session = dataset._session,
456
- dependencies = self._deps,
457
- drop_input_cols = self._drop_input_cols,
458
- expected_output_cols_type = expected_type_inferred,
453
+ session=dataset._session,
454
+ dependencies=self._deps,
455
+ drop_input_cols=self._drop_input_cols,
456
+ expected_output_cols_type=expected_type_inferred,
459
457
  )
460
458
 
461
459
  elif isinstance(dataset, pd.DataFrame):
462
- transform_kwargs = dict(
463
- snowpark_input_cols = self._snowpark_cols,
464
- drop_input_cols = self._drop_input_cols
465
- )
460
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
466
461
 
467
462
  transform_handlers = ModelTransformerBuilder.build(
468
463
  dataset=dataset,
@@ -502,7 +497,7 @@ class SVC(BaseTransformer):
502
497
  Transformed dataset.
503
498
  """
504
499
  super()._check_dataset_type(dataset)
505
- inference_method="transform"
500
+ inference_method = "transform"
506
501
 
507
502
  # This dictionary contains optional kwargs for batch inference. These kwargs
508
503
  # are specific to the type of dataset used.
@@ -539,17 +534,14 @@ class SVC(BaseTransformer):
539
534
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
540
535
 
541
536
  transform_kwargs = dict(
542
- session = dataset._session,
543
- dependencies = self._deps,
544
- drop_input_cols = self._drop_input_cols,
545
- expected_output_cols_type = expected_dtype,
537
+ session=dataset._session,
538
+ dependencies=self._deps,
539
+ drop_input_cols=self._drop_input_cols,
540
+ expected_output_cols_type=expected_dtype,
546
541
  )
547
542
 
548
543
  elif isinstance(dataset, pd.DataFrame):
549
- transform_kwargs = dict(
550
- snowpark_input_cols = self._snowpark_cols,
551
- drop_input_cols = self._drop_input_cols
552
- )
544
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
553
545
 
554
546
  transform_handlers = ModelTransformerBuilder.build(
555
547
  dataset=dataset,
@@ -568,7 +560,11 @@ class SVC(BaseTransformer):
568
560
  return output_df
569
561
 
570
562
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
571
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
563
+ def fit_predict(
564
+ self,
565
+ dataset: Union[DataFrame, pd.DataFrame],
566
+ output_cols_prefix: str = "fit_predict_",
567
+ ) -> Union[DataFrame, pd.DataFrame]:
572
568
  """ Method not supported for this class.
573
569
 
574
570
 
@@ -593,7 +589,9 @@ class SVC(BaseTransformer):
593
589
  )
594
590
  output_result, fitted_estimator = model_trainer.train_fit_predict(
595
591
  drop_input_cols=self._drop_input_cols,
596
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
592
+ expected_output_cols_list=(
593
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
594
+ ),
597
595
  )
598
596
  self._sklearn_object = fitted_estimator
599
597
  self._is_fitted = True
@@ -610,6 +608,62 @@ class SVC(BaseTransformer):
610
608
  assert self._sklearn_object is not None
611
609
  return self._sklearn_object.embedding_
612
610
 
611
+
612
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
613
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
614
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
615
+ """
616
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
617
+ # The following condition is introduced for kneighbors methods, and not used in other methods
618
+ if output_cols:
619
+ output_cols = [
620
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
621
+ for c in output_cols
622
+ ]
623
+ elif getattr(self._sklearn_object, "classes_", None) is None:
624
+ output_cols = [output_cols_prefix]
625
+ elif self._sklearn_object is not None:
626
+ classes = self._sklearn_object.classes_
627
+ if isinstance(classes, numpy.ndarray):
628
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
629
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
630
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
631
+ output_cols = []
632
+ for i, cl in enumerate(classes):
633
+ # For binary classification, there is only one output column for each class
634
+ # ndarray as the two classes are complementary.
635
+ if len(cl) == 2:
636
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
637
+ else:
638
+ output_cols.extend([
639
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
640
+ ])
641
+ else:
642
+ output_cols = []
643
+
644
+ # Make sure column names are valid snowflake identifiers.
645
+ assert output_cols is not None # Make MyPy happy
646
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
647
+
648
+ return rv
649
+
650
+ def _align_expected_output_names(
651
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
652
+ ) -> List[str]:
653
+ # in case the inferred output column names dimension is different
654
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
655
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
656
+ output_df_columns = list(output_df_pd.columns)
657
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
658
+ if self.sample_weight_col:
659
+ output_df_columns_set -= set(self.sample_weight_col)
660
+ # if the dimension of inferred output column names is correct; use it
661
+ if len(expected_output_cols_list) == len(output_df_columns_set):
662
+ return expected_output_cols_list
663
+ # otherwise, use the sklearn estimator's output
664
+ else:
665
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
666
+
613
667
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
614
668
  @telemetry.send_api_usage_telemetry(
615
669
  project=_PROJECT,
@@ -642,24 +696,28 @@ class SVC(BaseTransformer):
642
696
  # are specific to the type of dataset used.
643
697
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
644
698
 
699
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
700
+
645
701
  if isinstance(dataset, DataFrame):
646
702
  self._deps = self._batch_inference_validate_snowpark(
647
703
  dataset=dataset,
648
704
  inference_method=inference_method,
649
705
  )
650
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
706
+ assert isinstance(
707
+ dataset._session, Session
708
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
651
709
  transform_kwargs = dict(
652
710
  session=dataset._session,
653
711
  dependencies=self._deps,
654
- drop_input_cols = self._drop_input_cols,
712
+ drop_input_cols=self._drop_input_cols,
655
713
  expected_output_cols_type="float",
656
714
  )
715
+ expected_output_cols = self._align_expected_output_names(
716
+ inference_method, dataset, expected_output_cols, output_cols_prefix
717
+ )
657
718
 
658
719
  elif isinstance(dataset, pd.DataFrame):
659
- transform_kwargs = dict(
660
- snowpark_input_cols = self._snowpark_cols,
661
- drop_input_cols = self._drop_input_cols
662
- )
720
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
663
721
 
664
722
  transform_handlers = ModelTransformerBuilder.build(
665
723
  dataset=dataset,
@@ -671,7 +729,7 @@ class SVC(BaseTransformer):
671
729
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
672
730
  inference_method=inference_method,
673
731
  input_cols=self.input_cols,
674
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
732
+ expected_output_cols=expected_output_cols,
675
733
  **transform_kwargs
676
734
  )
677
735
  return output_df
@@ -703,7 +761,8 @@ class SVC(BaseTransformer):
703
761
  Output dataset with log probability of the sample for each class in the model.
704
762
  """
705
763
  super()._check_dataset_type(dataset)
706
- inference_method="predict_log_proba"
764
+ inference_method = "predict_log_proba"
765
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
707
766
 
708
767
  # This dictionary contains optional kwargs for batch inference. These kwargs
709
768
  # are specific to the type of dataset used.
@@ -714,18 +773,20 @@ class SVC(BaseTransformer):
714
773
  dataset=dataset,
715
774
  inference_method=inference_method,
716
775
  )
717
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
776
+ assert isinstance(
777
+ dataset._session, Session
778
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
718
779
  transform_kwargs = dict(
719
780
  session=dataset._session,
720
781
  dependencies=self._deps,
721
- drop_input_cols = self._drop_input_cols,
782
+ drop_input_cols=self._drop_input_cols,
722
783
  expected_output_cols_type="float",
723
784
  )
785
+ expected_output_cols = self._align_expected_output_names(
786
+ inference_method, dataset, expected_output_cols, output_cols_prefix
787
+ )
724
788
  elif isinstance(dataset, pd.DataFrame):
725
- transform_kwargs = dict(
726
- snowpark_input_cols = self._snowpark_cols,
727
- drop_input_cols = self._drop_input_cols
728
- )
789
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
729
790
 
730
791
  transform_handlers = ModelTransformerBuilder.build(
731
792
  dataset=dataset,
@@ -738,7 +799,7 @@ class SVC(BaseTransformer):
738
799
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
739
800
  inference_method=inference_method,
740
801
  input_cols=self.input_cols,
741
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
802
+ expected_output_cols=expected_output_cols,
742
803
  **transform_kwargs
743
804
  )
744
805
  return output_df
@@ -766,30 +827,34 @@ class SVC(BaseTransformer):
766
827
  Output dataset with results of the decision function for the samples in input dataset.
767
828
  """
768
829
  super()._check_dataset_type(dataset)
769
- inference_method="decision_function"
830
+ inference_method = "decision_function"
770
831
 
771
832
  # This dictionary contains optional kwargs for batch inference. These kwargs
772
833
  # are specific to the type of dataset used.
773
834
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
774
835
 
836
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
837
+
775
838
  if isinstance(dataset, DataFrame):
776
839
  self._deps = self._batch_inference_validate_snowpark(
777
840
  dataset=dataset,
778
841
  inference_method=inference_method,
779
842
  )
780
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
843
+ assert isinstance(
844
+ dataset._session, Session
845
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
781
846
  transform_kwargs = dict(
782
847
  session=dataset._session,
783
848
  dependencies=self._deps,
784
- drop_input_cols = self._drop_input_cols,
849
+ drop_input_cols=self._drop_input_cols,
785
850
  expected_output_cols_type="float",
786
851
  )
852
+ expected_output_cols = self._align_expected_output_names(
853
+ inference_method, dataset, expected_output_cols, output_cols_prefix
854
+ )
787
855
 
788
856
  elif isinstance(dataset, pd.DataFrame):
789
- transform_kwargs = dict(
790
- snowpark_input_cols = self._snowpark_cols,
791
- drop_input_cols = self._drop_input_cols
792
- )
857
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
793
858
 
794
859
  transform_handlers = ModelTransformerBuilder.build(
795
860
  dataset=dataset,
@@ -802,7 +867,7 @@ class SVC(BaseTransformer):
802
867
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
803
868
  inference_method=inference_method,
804
869
  input_cols=self.input_cols,
805
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
870
+ expected_output_cols=expected_output_cols,
806
871
  **transform_kwargs
807
872
  )
808
873
  return output_df
@@ -831,12 +896,14 @@ class SVC(BaseTransformer):
831
896
  Output dataset with probability of the sample for each class in the model.
832
897
  """
833
898
  super()._check_dataset_type(dataset)
834
- inference_method="score_samples"
899
+ inference_method = "score_samples"
835
900
 
836
901
  # This dictionary contains optional kwargs for batch inference. These kwargs
837
902
  # are specific to the type of dataset used.
838
903
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
839
904
 
905
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
906
+
840
907
  if isinstance(dataset, DataFrame):
841
908
  self._deps = self._batch_inference_validate_snowpark(
842
909
  dataset=dataset,
@@ -849,6 +916,9 @@ class SVC(BaseTransformer):
849
916
  drop_input_cols = self._drop_input_cols,
850
917
  expected_output_cols_type="float",
851
918
  )
919
+ expected_output_cols = self._align_expected_output_names(
920
+ inference_method, dataset, expected_output_cols, output_cols_prefix
921
+ )
852
922
 
853
923
  elif isinstance(dataset, pd.DataFrame):
854
924
  transform_kwargs = dict(
@@ -867,7 +937,7 @@ class SVC(BaseTransformer):
867
937
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
868
938
  inference_method=inference_method,
869
939
  input_cols=self.input_cols,
870
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
940
+ expected_output_cols=expected_output_cols,
871
941
  **transform_kwargs
872
942
  )
873
943
  return output_df
@@ -1014,50 +1084,84 @@ class SVC(BaseTransformer):
1014
1084
  )
1015
1085
  return output_df
1016
1086
 
1087
+
1088
+
1089
+ def to_sklearn(self) -> Any:
1090
+ """Get sklearn.svm.SVC object.
1091
+ """
1092
+ if self._sklearn_object is None:
1093
+ self._sklearn_object = self._create_sklearn_object()
1094
+ return self._sklearn_object
1095
+
1096
+ def to_xgboost(self) -> Any:
1097
+ raise exceptions.SnowflakeMLException(
1098
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1099
+ original_exception=AttributeError(
1100
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1101
+ "to_xgboost()",
1102
+ "to_sklearn()"
1103
+ )
1104
+ ),
1105
+ )
1106
+
1107
+ def to_lightgbm(self) -> Any:
1108
+ raise exceptions.SnowflakeMLException(
1109
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1110
+ original_exception=AttributeError(
1111
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1112
+ "to_lightgbm()",
1113
+ "to_sklearn()"
1114
+ )
1115
+ ),
1116
+ )
1017
1117
 
1018
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1118
+ def _get_dependencies(self) -> List[str]:
1119
+ return self._deps
1120
+
1121
+
1122
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1019
1123
  self._model_signature_dict = dict()
1020
1124
 
1021
1125
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1022
1126
 
1023
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1127
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1024
1128
  outputs: List[BaseFeatureSpec] = []
1025
1129
  if hasattr(self, "predict"):
1026
1130
  # keep mypy happy
1027
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1131
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1028
1132
  # For classifier, the type of predict is the same as the type of label
1029
- if self._sklearn_object._estimator_type == 'classifier':
1030
- # label columns is the desired type for output
1133
+ if self._sklearn_object._estimator_type == "classifier":
1134
+ # label columns is the desired type for output
1031
1135
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1032
1136
  # rename the output columns
1033
1137
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1034
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1035
- ([] if self._drop_input_cols else inputs)
1036
- + outputs)
1138
+ self._model_signature_dict["predict"] = ModelSignature(
1139
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1140
+ )
1037
1141
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1038
1142
  # For outlier models, returns -1 for outliers and 1 for inliers.
1039
- # Clusterer returns int64 cluster labels.
1143
+ # Clusterer returns int64 cluster labels.
1040
1144
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1041
1145
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1042
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1043
- ([] if self._drop_input_cols else inputs)
1044
- + outputs)
1045
-
1146
+ self._model_signature_dict["predict"] = ModelSignature(
1147
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1148
+ )
1149
+
1046
1150
  # For regressor, the type of predict is float64
1047
- elif self._sklearn_object._estimator_type == 'regressor':
1151
+ elif self._sklearn_object._estimator_type == "regressor":
1048
1152
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1049
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1050
- ([] if self._drop_input_cols else inputs)
1051
- + outputs)
1052
-
1153
+ self._model_signature_dict["predict"] = ModelSignature(
1154
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1155
+ )
1156
+
1053
1157
  for prob_func in PROB_FUNCTIONS:
1054
1158
  if hasattr(self, prob_func):
1055
1159
  output_cols_prefix: str = f"{prob_func}_"
1056
1160
  output_column_names = self._get_output_column_names(output_cols_prefix)
1057
1161
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1058
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1059
- ([] if self._drop_input_cols else inputs)
1060
- + outputs)
1162
+ self._model_signature_dict[prob_func] = ModelSignature(
1163
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1164
+ )
1061
1165
 
1062
1166
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1063
1167
  items = list(self._model_signature_dict.items())
@@ -1070,10 +1174,10 @@ class SVC(BaseTransformer):
1070
1174
  """Returns model signature of current class.
1071
1175
 
1072
1176
  Raises:
1073
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1177
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1074
1178
 
1075
1179
  Returns:
1076
- Dict[str, ModelSignature]: each method and its input output signature
1180
+ Dict with each method and its input output signature
1077
1181
  """
1078
1182
  if self._model_signature_dict is None:
1079
1183
  raise exceptions.SnowflakeMLException(
@@ -1081,35 +1185,3 @@ class SVC(BaseTransformer):
1081
1185
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1082
1186
  )
1083
1187
  return self._model_signature_dict
1084
-
1085
- def to_sklearn(self) -> Any:
1086
- """Get sklearn.svm.SVC object.
1087
- """
1088
- if self._sklearn_object is None:
1089
- self._sklearn_object = self._create_sklearn_object()
1090
- return self._sklearn_object
1091
-
1092
- def to_xgboost(self) -> Any:
1093
- raise exceptions.SnowflakeMLException(
1094
- error_code=error_codes.METHOD_NOT_ALLOWED,
1095
- original_exception=AttributeError(
1096
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1097
- "to_xgboost()",
1098
- "to_sklearn()"
1099
- )
1100
- ),
1101
- )
1102
-
1103
- def to_lightgbm(self) -> Any:
1104
- raise exceptions.SnowflakeMLException(
1105
- error_code=error_codes.METHOD_NOT_ALLOWED,
1106
- original_exception=AttributeError(
1107
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1108
- "to_lightgbm()",
1109
- "to_sklearn()"
1110
- )
1111
- ),
1112
- )
1113
-
1114
- def _get_dependencies(self) -> List[str]:
1115
- return self._deps