snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -282,12 +281,7 @@ class TweedieRegressor(BaseTransformer):
|
|
282
281
|
)
|
283
282
|
return selected_cols
|
284
283
|
|
285
|
-
|
286
|
-
project=_PROJECT,
|
287
|
-
subproject=_SUBPROJECT,
|
288
|
-
custom_tags=dict([("autogen", True)]),
|
289
|
-
)
|
290
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TweedieRegressor":
|
284
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TweedieRegressor":
|
291
285
|
"""Fit a Generalized Linear Model
|
292
286
|
For more details on this function, see [sklearn.linear_model.TweedieRegressor.fit]
|
293
287
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TweedieRegressor.html#sklearn.linear_model.TweedieRegressor.fit)
|
@@ -314,12 +308,14 @@ class TweedieRegressor(BaseTransformer):
|
|
314
308
|
|
315
309
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
316
310
|
|
317
|
-
|
311
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
318
312
|
if SNOWML_SPROC_ENV in os.environ:
|
319
313
|
statement_params = telemetry.get_function_usage_statement_params(
|
320
314
|
project=_PROJECT,
|
321
315
|
subproject=_SUBPROJECT,
|
322
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
316
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
317
|
+
inspect.currentframe(), TweedieRegressor.__class__.__name__
|
318
|
+
),
|
323
319
|
api_calls=[Session.call],
|
324
320
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
325
321
|
)
|
@@ -340,7 +336,7 @@ class TweedieRegressor(BaseTransformer):
|
|
340
336
|
)
|
341
337
|
self._sklearn_object = model_trainer.train()
|
342
338
|
self._is_fitted = True
|
343
|
-
self.
|
339
|
+
self._generate_model_signatures(dataset)
|
344
340
|
return self
|
345
341
|
|
346
342
|
def _batch_inference_validate_snowpark(
|
@@ -416,7 +412,9 @@ class TweedieRegressor(BaseTransformer):
|
|
416
412
|
# when it is classifier, infer the datatype from label columns
|
417
413
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
418
414
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
419
|
-
label_cols_signatures = [
|
415
|
+
label_cols_signatures = [
|
416
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
417
|
+
]
|
420
418
|
if len(label_cols_signatures) == 0:
|
421
419
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
422
420
|
raise exceptions.SnowflakeMLException(
|
@@ -424,25 +422,22 @@ class TweedieRegressor(BaseTransformer):
|
|
424
422
|
original_exception=ValueError(error_str),
|
425
423
|
)
|
426
424
|
|
427
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
428
|
-
label_cols_signatures[0].as_snowpark_type()
|
429
|
-
)
|
425
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
430
426
|
|
431
427
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
432
|
-
assert isinstance(
|
428
|
+
assert isinstance(
|
429
|
+
dataset._session, Session
|
430
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
433
431
|
|
434
432
|
transform_kwargs = dict(
|
435
|
-
session
|
436
|
-
dependencies
|
437
|
-
drop_input_cols
|
438
|
-
expected_output_cols_type
|
433
|
+
session=dataset._session,
|
434
|
+
dependencies=self._deps,
|
435
|
+
drop_input_cols=self._drop_input_cols,
|
436
|
+
expected_output_cols_type=expected_type_inferred,
|
439
437
|
)
|
440
438
|
|
441
439
|
elif isinstance(dataset, pd.DataFrame):
|
442
|
-
transform_kwargs = dict(
|
443
|
-
snowpark_input_cols = self._snowpark_cols,
|
444
|
-
drop_input_cols = self._drop_input_cols
|
445
|
-
)
|
440
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
446
441
|
|
447
442
|
transform_handlers = ModelTransformerBuilder.build(
|
448
443
|
dataset=dataset,
|
@@ -482,7 +477,7 @@ class TweedieRegressor(BaseTransformer):
|
|
482
477
|
Transformed dataset.
|
483
478
|
"""
|
484
479
|
super()._check_dataset_type(dataset)
|
485
|
-
inference_method="transform"
|
480
|
+
inference_method = "transform"
|
486
481
|
|
487
482
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
488
483
|
# are specific to the type of dataset used.
|
@@ -519,17 +514,14 @@ class TweedieRegressor(BaseTransformer):
|
|
519
514
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
520
515
|
|
521
516
|
transform_kwargs = dict(
|
522
|
-
session
|
523
|
-
dependencies
|
524
|
-
drop_input_cols
|
525
|
-
expected_output_cols_type
|
517
|
+
session=dataset._session,
|
518
|
+
dependencies=self._deps,
|
519
|
+
drop_input_cols=self._drop_input_cols,
|
520
|
+
expected_output_cols_type=expected_dtype,
|
526
521
|
)
|
527
522
|
|
528
523
|
elif isinstance(dataset, pd.DataFrame):
|
529
|
-
transform_kwargs = dict(
|
530
|
-
snowpark_input_cols = self._snowpark_cols,
|
531
|
-
drop_input_cols = self._drop_input_cols
|
532
|
-
)
|
524
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
533
525
|
|
534
526
|
transform_handlers = ModelTransformerBuilder.build(
|
535
527
|
dataset=dataset,
|
@@ -548,7 +540,11 @@ class TweedieRegressor(BaseTransformer):
|
|
548
540
|
return output_df
|
549
541
|
|
550
542
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
551
|
-
def fit_predict(
|
543
|
+
def fit_predict(
|
544
|
+
self,
|
545
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
546
|
+
output_cols_prefix: str = "fit_predict_",
|
547
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
552
548
|
""" Method not supported for this class.
|
553
549
|
|
554
550
|
|
@@ -573,7 +569,9 @@ class TweedieRegressor(BaseTransformer):
|
|
573
569
|
)
|
574
570
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
575
571
|
drop_input_cols=self._drop_input_cols,
|
576
|
-
expected_output_cols_list=
|
572
|
+
expected_output_cols_list=(
|
573
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
574
|
+
),
|
577
575
|
)
|
578
576
|
self._sklearn_object = fitted_estimator
|
579
577
|
self._is_fitted = True
|
@@ -590,6 +588,62 @@ class TweedieRegressor(BaseTransformer):
|
|
590
588
|
assert self._sklearn_object is not None
|
591
589
|
return self._sklearn_object.embedding_
|
592
590
|
|
591
|
+
|
592
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
593
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
594
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
595
|
+
"""
|
596
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
597
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
598
|
+
if output_cols:
|
599
|
+
output_cols = [
|
600
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
601
|
+
for c in output_cols
|
602
|
+
]
|
603
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
604
|
+
output_cols = [output_cols_prefix]
|
605
|
+
elif self._sklearn_object is not None:
|
606
|
+
classes = self._sklearn_object.classes_
|
607
|
+
if isinstance(classes, numpy.ndarray):
|
608
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
609
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
610
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
611
|
+
output_cols = []
|
612
|
+
for i, cl in enumerate(classes):
|
613
|
+
# For binary classification, there is only one output column for each class
|
614
|
+
# ndarray as the two classes are complementary.
|
615
|
+
if len(cl) == 2:
|
616
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
617
|
+
else:
|
618
|
+
output_cols.extend([
|
619
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
620
|
+
])
|
621
|
+
else:
|
622
|
+
output_cols = []
|
623
|
+
|
624
|
+
# Make sure column names are valid snowflake identifiers.
|
625
|
+
assert output_cols is not None # Make MyPy happy
|
626
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
627
|
+
|
628
|
+
return rv
|
629
|
+
|
630
|
+
def _align_expected_output_names(
|
631
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
632
|
+
) -> List[str]:
|
633
|
+
# in case the inferred output column names dimension is different
|
634
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
635
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
636
|
+
output_df_columns = list(output_df_pd.columns)
|
637
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
638
|
+
if self.sample_weight_col:
|
639
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
640
|
+
# if the dimension of inferred output column names is correct; use it
|
641
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
642
|
+
return expected_output_cols_list
|
643
|
+
# otherwise, use the sklearn estimator's output
|
644
|
+
else:
|
645
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
646
|
+
|
593
647
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
594
648
|
@telemetry.send_api_usage_telemetry(
|
595
649
|
project=_PROJECT,
|
@@ -620,24 +674,28 @@ class TweedieRegressor(BaseTransformer):
|
|
620
674
|
# are specific to the type of dataset used.
|
621
675
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
622
676
|
|
677
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
678
|
+
|
623
679
|
if isinstance(dataset, DataFrame):
|
624
680
|
self._deps = self._batch_inference_validate_snowpark(
|
625
681
|
dataset=dataset,
|
626
682
|
inference_method=inference_method,
|
627
683
|
)
|
628
|
-
assert isinstance(
|
684
|
+
assert isinstance(
|
685
|
+
dataset._session, Session
|
686
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
629
687
|
transform_kwargs = dict(
|
630
688
|
session=dataset._session,
|
631
689
|
dependencies=self._deps,
|
632
|
-
drop_input_cols
|
690
|
+
drop_input_cols=self._drop_input_cols,
|
633
691
|
expected_output_cols_type="float",
|
634
692
|
)
|
693
|
+
expected_output_cols = self._align_expected_output_names(
|
694
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
695
|
+
)
|
635
696
|
|
636
697
|
elif isinstance(dataset, pd.DataFrame):
|
637
|
-
transform_kwargs = dict(
|
638
|
-
snowpark_input_cols = self._snowpark_cols,
|
639
|
-
drop_input_cols = self._drop_input_cols
|
640
|
-
)
|
698
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
641
699
|
|
642
700
|
transform_handlers = ModelTransformerBuilder.build(
|
643
701
|
dataset=dataset,
|
@@ -649,7 +707,7 @@ class TweedieRegressor(BaseTransformer):
|
|
649
707
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
650
708
|
inference_method=inference_method,
|
651
709
|
input_cols=self.input_cols,
|
652
|
-
expected_output_cols=
|
710
|
+
expected_output_cols=expected_output_cols,
|
653
711
|
**transform_kwargs
|
654
712
|
)
|
655
713
|
return output_df
|
@@ -679,7 +737,8 @@ class TweedieRegressor(BaseTransformer):
|
|
679
737
|
Output dataset with log probability of the sample for each class in the model.
|
680
738
|
"""
|
681
739
|
super()._check_dataset_type(dataset)
|
682
|
-
inference_method="predict_log_proba"
|
740
|
+
inference_method = "predict_log_proba"
|
741
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
683
742
|
|
684
743
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
685
744
|
# are specific to the type of dataset used.
|
@@ -690,18 +749,20 @@ class TweedieRegressor(BaseTransformer):
|
|
690
749
|
dataset=dataset,
|
691
750
|
inference_method=inference_method,
|
692
751
|
)
|
693
|
-
assert isinstance(
|
752
|
+
assert isinstance(
|
753
|
+
dataset._session, Session
|
754
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
694
755
|
transform_kwargs = dict(
|
695
756
|
session=dataset._session,
|
696
757
|
dependencies=self._deps,
|
697
|
-
drop_input_cols
|
758
|
+
drop_input_cols=self._drop_input_cols,
|
698
759
|
expected_output_cols_type="float",
|
699
760
|
)
|
761
|
+
expected_output_cols = self._align_expected_output_names(
|
762
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
763
|
+
)
|
700
764
|
elif isinstance(dataset, pd.DataFrame):
|
701
|
-
transform_kwargs = dict(
|
702
|
-
snowpark_input_cols = self._snowpark_cols,
|
703
|
-
drop_input_cols = self._drop_input_cols
|
704
|
-
)
|
765
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
705
766
|
|
706
767
|
transform_handlers = ModelTransformerBuilder.build(
|
707
768
|
dataset=dataset,
|
@@ -714,7 +775,7 @@ class TweedieRegressor(BaseTransformer):
|
|
714
775
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
715
776
|
inference_method=inference_method,
|
716
777
|
input_cols=self.input_cols,
|
717
|
-
expected_output_cols=
|
778
|
+
expected_output_cols=expected_output_cols,
|
718
779
|
**transform_kwargs
|
719
780
|
)
|
720
781
|
return output_df
|
@@ -740,30 +801,34 @@ class TweedieRegressor(BaseTransformer):
|
|
740
801
|
Output dataset with results of the decision function for the samples in input dataset.
|
741
802
|
"""
|
742
803
|
super()._check_dataset_type(dataset)
|
743
|
-
inference_method="decision_function"
|
804
|
+
inference_method = "decision_function"
|
744
805
|
|
745
806
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
746
807
|
# are specific to the type of dataset used.
|
747
808
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
748
809
|
|
810
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
811
|
+
|
749
812
|
if isinstance(dataset, DataFrame):
|
750
813
|
self._deps = self._batch_inference_validate_snowpark(
|
751
814
|
dataset=dataset,
|
752
815
|
inference_method=inference_method,
|
753
816
|
)
|
754
|
-
assert isinstance(
|
817
|
+
assert isinstance(
|
818
|
+
dataset._session, Session
|
819
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
755
820
|
transform_kwargs = dict(
|
756
821
|
session=dataset._session,
|
757
822
|
dependencies=self._deps,
|
758
|
-
drop_input_cols
|
823
|
+
drop_input_cols=self._drop_input_cols,
|
759
824
|
expected_output_cols_type="float",
|
760
825
|
)
|
826
|
+
expected_output_cols = self._align_expected_output_names(
|
827
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
828
|
+
)
|
761
829
|
|
762
830
|
elif isinstance(dataset, pd.DataFrame):
|
763
|
-
transform_kwargs = dict(
|
764
|
-
snowpark_input_cols = self._snowpark_cols,
|
765
|
-
drop_input_cols = self._drop_input_cols
|
766
|
-
)
|
831
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
767
832
|
|
768
833
|
transform_handlers = ModelTransformerBuilder.build(
|
769
834
|
dataset=dataset,
|
@@ -776,7 +841,7 @@ class TweedieRegressor(BaseTransformer):
|
|
776
841
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
777
842
|
inference_method=inference_method,
|
778
843
|
input_cols=self.input_cols,
|
779
|
-
expected_output_cols=
|
844
|
+
expected_output_cols=expected_output_cols,
|
780
845
|
**transform_kwargs
|
781
846
|
)
|
782
847
|
return output_df
|
@@ -805,12 +870,14 @@ class TweedieRegressor(BaseTransformer):
|
|
805
870
|
Output dataset with probability of the sample for each class in the model.
|
806
871
|
"""
|
807
872
|
super()._check_dataset_type(dataset)
|
808
|
-
inference_method="score_samples"
|
873
|
+
inference_method = "score_samples"
|
809
874
|
|
810
875
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
811
876
|
# are specific to the type of dataset used.
|
812
877
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
813
878
|
|
879
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
880
|
+
|
814
881
|
if isinstance(dataset, DataFrame):
|
815
882
|
self._deps = self._batch_inference_validate_snowpark(
|
816
883
|
dataset=dataset,
|
@@ -823,6 +890,9 @@ class TweedieRegressor(BaseTransformer):
|
|
823
890
|
drop_input_cols = self._drop_input_cols,
|
824
891
|
expected_output_cols_type="float",
|
825
892
|
)
|
893
|
+
expected_output_cols = self._align_expected_output_names(
|
894
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
895
|
+
)
|
826
896
|
|
827
897
|
elif isinstance(dataset, pd.DataFrame):
|
828
898
|
transform_kwargs = dict(
|
@@ -841,7 +911,7 @@ class TweedieRegressor(BaseTransformer):
|
|
841
911
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
842
912
|
inference_method=inference_method,
|
843
913
|
input_cols=self.input_cols,
|
844
|
-
expected_output_cols=
|
914
|
+
expected_output_cols=expected_output_cols,
|
845
915
|
**transform_kwargs
|
846
916
|
)
|
847
917
|
return output_df
|
@@ -988,50 +1058,84 @@ class TweedieRegressor(BaseTransformer):
|
|
988
1058
|
)
|
989
1059
|
return output_df
|
990
1060
|
|
1061
|
+
|
1062
|
+
|
1063
|
+
def to_sklearn(self) -> Any:
|
1064
|
+
"""Get sklearn.linear_model.TweedieRegressor object.
|
1065
|
+
"""
|
1066
|
+
if self._sklearn_object is None:
|
1067
|
+
self._sklearn_object = self._create_sklearn_object()
|
1068
|
+
return self._sklearn_object
|
1069
|
+
|
1070
|
+
def to_xgboost(self) -> Any:
|
1071
|
+
raise exceptions.SnowflakeMLException(
|
1072
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1073
|
+
original_exception=AttributeError(
|
1074
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1075
|
+
"to_xgboost()",
|
1076
|
+
"to_sklearn()"
|
1077
|
+
)
|
1078
|
+
),
|
1079
|
+
)
|
1080
|
+
|
1081
|
+
def to_lightgbm(self) -> Any:
|
1082
|
+
raise exceptions.SnowflakeMLException(
|
1083
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1084
|
+
original_exception=AttributeError(
|
1085
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1086
|
+
"to_lightgbm()",
|
1087
|
+
"to_sklearn()"
|
1088
|
+
)
|
1089
|
+
),
|
1090
|
+
)
|
991
1091
|
|
992
|
-
def
|
1092
|
+
def _get_dependencies(self) -> List[str]:
|
1093
|
+
return self._deps
|
1094
|
+
|
1095
|
+
|
1096
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
993
1097
|
self._model_signature_dict = dict()
|
994
1098
|
|
995
1099
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
996
1100
|
|
997
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1101
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
998
1102
|
outputs: List[BaseFeatureSpec] = []
|
999
1103
|
if hasattr(self, "predict"):
|
1000
1104
|
# keep mypy happy
|
1001
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1105
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1002
1106
|
# For classifier, the type of predict is the same as the type of label
|
1003
|
-
if self._sklearn_object._estimator_type ==
|
1004
|
-
|
1107
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1108
|
+
# label columns is the desired type for output
|
1005
1109
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1006
1110
|
# rename the output columns
|
1007
1111
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1008
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1009
|
-
|
1010
|
-
|
1112
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1113
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1114
|
+
)
|
1011
1115
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1012
1116
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1013
|
-
# Clusterer returns int64 cluster labels.
|
1117
|
+
# Clusterer returns int64 cluster labels.
|
1014
1118
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1015
1119
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1016
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1017
|
-
|
1018
|
-
|
1019
|
-
|
1120
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1121
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1122
|
+
)
|
1123
|
+
|
1020
1124
|
# For regressor, the type of predict is float64
|
1021
|
-
elif self._sklearn_object._estimator_type ==
|
1125
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1022
1126
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1023
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1024
|
-
|
1025
|
-
|
1026
|
-
|
1127
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1128
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1129
|
+
)
|
1130
|
+
|
1027
1131
|
for prob_func in PROB_FUNCTIONS:
|
1028
1132
|
if hasattr(self, prob_func):
|
1029
1133
|
output_cols_prefix: str = f"{prob_func}_"
|
1030
1134
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1031
1135
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1032
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1033
|
-
|
1034
|
-
|
1136
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1137
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1138
|
+
)
|
1035
1139
|
|
1036
1140
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1037
1141
|
items = list(self._model_signature_dict.items())
|
@@ -1044,10 +1148,10 @@ class TweedieRegressor(BaseTransformer):
|
|
1044
1148
|
"""Returns model signature of current class.
|
1045
1149
|
|
1046
1150
|
Raises:
|
1047
|
-
|
1151
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1048
1152
|
|
1049
1153
|
Returns:
|
1050
|
-
Dict
|
1154
|
+
Dict with each method and its input output signature
|
1051
1155
|
"""
|
1052
1156
|
if self._model_signature_dict is None:
|
1053
1157
|
raise exceptions.SnowflakeMLException(
|
@@ -1055,35 +1159,3 @@ class TweedieRegressor(BaseTransformer):
|
|
1055
1159
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1056
1160
|
)
|
1057
1161
|
return self._model_signature_dict
|
1058
|
-
|
1059
|
-
def to_sklearn(self) -> Any:
|
1060
|
-
"""Get sklearn.linear_model.TweedieRegressor object.
|
1061
|
-
"""
|
1062
|
-
if self._sklearn_object is None:
|
1063
|
-
self._sklearn_object = self._create_sklearn_object()
|
1064
|
-
return self._sklearn_object
|
1065
|
-
|
1066
|
-
def to_xgboost(self) -> Any:
|
1067
|
-
raise exceptions.SnowflakeMLException(
|
1068
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1069
|
-
original_exception=AttributeError(
|
1070
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1071
|
-
"to_xgboost()",
|
1072
|
-
"to_sklearn()"
|
1073
|
-
)
|
1074
|
-
),
|
1075
|
-
)
|
1076
|
-
|
1077
|
-
def to_lightgbm(self) -> Any:
|
1078
|
-
raise exceptions.SnowflakeMLException(
|
1079
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1080
|
-
original_exception=AttributeError(
|
1081
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1082
|
-
"to_lightgbm()",
|
1083
|
-
"to_sklearn()"
|
1084
|
-
)
|
1085
|
-
),
|
1086
|
-
)
|
1087
|
-
|
1088
|
-
def _get_dependencies(self) -> List[str]:
|
1089
|
-
return self._deps
|