snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -263,12 +262,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
263
262
|
)
|
264
263
|
return selected_cols
|
265
264
|
|
266
|
-
|
267
|
-
project=_PROJECT,
|
268
|
-
subproject=_SUBPROJECT,
|
269
|
-
custom_tags=dict([("autogen", True)]),
|
270
|
-
)
|
271
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralEmbedding":
|
265
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralEmbedding":
|
272
266
|
"""Fit the model from data in X
|
273
267
|
For more details on this function, see [sklearn.manifold.SpectralEmbedding.fit]
|
274
268
|
(https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html#sklearn.manifold.SpectralEmbedding.fit)
|
@@ -295,12 +289,14 @@ class SpectralEmbedding(BaseTransformer):
|
|
295
289
|
|
296
290
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
291
|
|
298
|
-
|
292
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
299
293
|
if SNOWML_SPROC_ENV in os.environ:
|
300
294
|
statement_params = telemetry.get_function_usage_statement_params(
|
301
295
|
project=_PROJECT,
|
302
296
|
subproject=_SUBPROJECT,
|
303
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
297
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
298
|
+
inspect.currentframe(), SpectralEmbedding.__class__.__name__
|
299
|
+
),
|
304
300
|
api_calls=[Session.call],
|
305
301
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
306
302
|
)
|
@@ -321,7 +317,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
321
317
|
)
|
322
318
|
self._sklearn_object = model_trainer.train()
|
323
319
|
self._is_fitted = True
|
324
|
-
self.
|
320
|
+
self._generate_model_signatures(dataset)
|
325
321
|
return self
|
326
322
|
|
327
323
|
def _batch_inference_validate_snowpark(
|
@@ -395,7 +391,9 @@ class SpectralEmbedding(BaseTransformer):
|
|
395
391
|
# when it is classifier, infer the datatype from label columns
|
396
392
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
397
393
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
398
|
-
label_cols_signatures = [
|
394
|
+
label_cols_signatures = [
|
395
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
396
|
+
]
|
399
397
|
if len(label_cols_signatures) == 0:
|
400
398
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
401
399
|
raise exceptions.SnowflakeMLException(
|
@@ -403,25 +401,22 @@ class SpectralEmbedding(BaseTransformer):
|
|
403
401
|
original_exception=ValueError(error_str),
|
404
402
|
)
|
405
403
|
|
406
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
407
|
-
label_cols_signatures[0].as_snowpark_type()
|
408
|
-
)
|
404
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
409
405
|
|
410
406
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
411
|
-
assert isinstance(
|
407
|
+
assert isinstance(
|
408
|
+
dataset._session, Session
|
409
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
412
410
|
|
413
411
|
transform_kwargs = dict(
|
414
|
-
session
|
415
|
-
dependencies
|
416
|
-
drop_input_cols
|
417
|
-
expected_output_cols_type
|
412
|
+
session=dataset._session,
|
413
|
+
dependencies=self._deps,
|
414
|
+
drop_input_cols=self._drop_input_cols,
|
415
|
+
expected_output_cols_type=expected_type_inferred,
|
418
416
|
)
|
419
417
|
|
420
418
|
elif isinstance(dataset, pd.DataFrame):
|
421
|
-
transform_kwargs = dict(
|
422
|
-
snowpark_input_cols = self._snowpark_cols,
|
423
|
-
drop_input_cols = self._drop_input_cols
|
424
|
-
)
|
419
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
425
420
|
|
426
421
|
transform_handlers = ModelTransformerBuilder.build(
|
427
422
|
dataset=dataset,
|
@@ -461,7 +456,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
461
456
|
Transformed dataset.
|
462
457
|
"""
|
463
458
|
super()._check_dataset_type(dataset)
|
464
|
-
inference_method="transform"
|
459
|
+
inference_method = "transform"
|
465
460
|
|
466
461
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
467
462
|
# are specific to the type of dataset used.
|
@@ -498,17 +493,14 @@ class SpectralEmbedding(BaseTransformer):
|
|
498
493
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
499
494
|
|
500
495
|
transform_kwargs = dict(
|
501
|
-
session
|
502
|
-
dependencies
|
503
|
-
drop_input_cols
|
504
|
-
expected_output_cols_type
|
496
|
+
session=dataset._session,
|
497
|
+
dependencies=self._deps,
|
498
|
+
drop_input_cols=self._drop_input_cols,
|
499
|
+
expected_output_cols_type=expected_dtype,
|
505
500
|
)
|
506
501
|
|
507
502
|
elif isinstance(dataset, pd.DataFrame):
|
508
|
-
transform_kwargs = dict(
|
509
|
-
snowpark_input_cols = self._snowpark_cols,
|
510
|
-
drop_input_cols = self._drop_input_cols
|
511
|
-
)
|
503
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
512
504
|
|
513
505
|
transform_handlers = ModelTransformerBuilder.build(
|
514
506
|
dataset=dataset,
|
@@ -527,7 +519,11 @@ class SpectralEmbedding(BaseTransformer):
|
|
527
519
|
return output_df
|
528
520
|
|
529
521
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
530
|
-
def fit_predict(
|
522
|
+
def fit_predict(
|
523
|
+
self,
|
524
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
525
|
+
output_cols_prefix: str = "fit_predict_",
|
526
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
531
527
|
""" Method not supported for this class.
|
532
528
|
|
533
529
|
|
@@ -552,7 +548,9 @@ class SpectralEmbedding(BaseTransformer):
|
|
552
548
|
)
|
553
549
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
554
550
|
drop_input_cols=self._drop_input_cols,
|
555
|
-
expected_output_cols_list=
|
551
|
+
expected_output_cols_list=(
|
552
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
553
|
+
),
|
556
554
|
)
|
557
555
|
self._sklearn_object = fitted_estimator
|
558
556
|
self._is_fitted = True
|
@@ -569,6 +567,62 @@ class SpectralEmbedding(BaseTransformer):
|
|
569
567
|
assert self._sklearn_object is not None
|
570
568
|
return self._sklearn_object.embedding_
|
571
569
|
|
570
|
+
|
571
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
572
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
573
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
574
|
+
"""
|
575
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
576
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
577
|
+
if output_cols:
|
578
|
+
output_cols = [
|
579
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
580
|
+
for c in output_cols
|
581
|
+
]
|
582
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
583
|
+
output_cols = [output_cols_prefix]
|
584
|
+
elif self._sklearn_object is not None:
|
585
|
+
classes = self._sklearn_object.classes_
|
586
|
+
if isinstance(classes, numpy.ndarray):
|
587
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
588
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
589
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
590
|
+
output_cols = []
|
591
|
+
for i, cl in enumerate(classes):
|
592
|
+
# For binary classification, there is only one output column for each class
|
593
|
+
# ndarray as the two classes are complementary.
|
594
|
+
if len(cl) == 2:
|
595
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
596
|
+
else:
|
597
|
+
output_cols.extend([
|
598
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
599
|
+
])
|
600
|
+
else:
|
601
|
+
output_cols = []
|
602
|
+
|
603
|
+
# Make sure column names are valid snowflake identifiers.
|
604
|
+
assert output_cols is not None # Make MyPy happy
|
605
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
606
|
+
|
607
|
+
return rv
|
608
|
+
|
609
|
+
def _align_expected_output_names(
|
610
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
611
|
+
) -> List[str]:
|
612
|
+
# in case the inferred output column names dimension is different
|
613
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
614
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
615
|
+
output_df_columns = list(output_df_pd.columns)
|
616
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
617
|
+
if self.sample_weight_col:
|
618
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
619
|
+
# if the dimension of inferred output column names is correct; use it
|
620
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
621
|
+
return expected_output_cols_list
|
622
|
+
# otherwise, use the sklearn estimator's output
|
623
|
+
else:
|
624
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
625
|
+
|
572
626
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
573
627
|
@telemetry.send_api_usage_telemetry(
|
574
628
|
project=_PROJECT,
|
@@ -599,24 +653,28 @@ class SpectralEmbedding(BaseTransformer):
|
|
599
653
|
# are specific to the type of dataset used.
|
600
654
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
601
655
|
|
656
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
657
|
+
|
602
658
|
if isinstance(dataset, DataFrame):
|
603
659
|
self._deps = self._batch_inference_validate_snowpark(
|
604
660
|
dataset=dataset,
|
605
661
|
inference_method=inference_method,
|
606
662
|
)
|
607
|
-
assert isinstance(
|
663
|
+
assert isinstance(
|
664
|
+
dataset._session, Session
|
665
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
608
666
|
transform_kwargs = dict(
|
609
667
|
session=dataset._session,
|
610
668
|
dependencies=self._deps,
|
611
|
-
drop_input_cols
|
669
|
+
drop_input_cols=self._drop_input_cols,
|
612
670
|
expected_output_cols_type="float",
|
613
671
|
)
|
672
|
+
expected_output_cols = self._align_expected_output_names(
|
673
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
674
|
+
)
|
614
675
|
|
615
676
|
elif isinstance(dataset, pd.DataFrame):
|
616
|
-
transform_kwargs = dict(
|
617
|
-
snowpark_input_cols = self._snowpark_cols,
|
618
|
-
drop_input_cols = self._drop_input_cols
|
619
|
-
)
|
677
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
620
678
|
|
621
679
|
transform_handlers = ModelTransformerBuilder.build(
|
622
680
|
dataset=dataset,
|
@@ -628,7 +686,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
628
686
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
629
687
|
inference_method=inference_method,
|
630
688
|
input_cols=self.input_cols,
|
631
|
-
expected_output_cols=
|
689
|
+
expected_output_cols=expected_output_cols,
|
632
690
|
**transform_kwargs
|
633
691
|
)
|
634
692
|
return output_df
|
@@ -658,7 +716,8 @@ class SpectralEmbedding(BaseTransformer):
|
|
658
716
|
Output dataset with log probability of the sample for each class in the model.
|
659
717
|
"""
|
660
718
|
super()._check_dataset_type(dataset)
|
661
|
-
inference_method="predict_log_proba"
|
719
|
+
inference_method = "predict_log_proba"
|
720
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
662
721
|
|
663
722
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
664
723
|
# are specific to the type of dataset used.
|
@@ -669,18 +728,20 @@ class SpectralEmbedding(BaseTransformer):
|
|
669
728
|
dataset=dataset,
|
670
729
|
inference_method=inference_method,
|
671
730
|
)
|
672
|
-
assert isinstance(
|
731
|
+
assert isinstance(
|
732
|
+
dataset._session, Session
|
733
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
673
734
|
transform_kwargs = dict(
|
674
735
|
session=dataset._session,
|
675
736
|
dependencies=self._deps,
|
676
|
-
drop_input_cols
|
737
|
+
drop_input_cols=self._drop_input_cols,
|
677
738
|
expected_output_cols_type="float",
|
678
739
|
)
|
740
|
+
expected_output_cols = self._align_expected_output_names(
|
741
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
742
|
+
)
|
679
743
|
elif isinstance(dataset, pd.DataFrame):
|
680
|
-
transform_kwargs = dict(
|
681
|
-
snowpark_input_cols = self._snowpark_cols,
|
682
|
-
drop_input_cols = self._drop_input_cols
|
683
|
-
)
|
744
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
684
745
|
|
685
746
|
transform_handlers = ModelTransformerBuilder.build(
|
686
747
|
dataset=dataset,
|
@@ -693,7 +754,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
693
754
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
694
755
|
inference_method=inference_method,
|
695
756
|
input_cols=self.input_cols,
|
696
|
-
expected_output_cols=
|
757
|
+
expected_output_cols=expected_output_cols,
|
697
758
|
**transform_kwargs
|
698
759
|
)
|
699
760
|
return output_df
|
@@ -719,30 +780,34 @@ class SpectralEmbedding(BaseTransformer):
|
|
719
780
|
Output dataset with results of the decision function for the samples in input dataset.
|
720
781
|
"""
|
721
782
|
super()._check_dataset_type(dataset)
|
722
|
-
inference_method="decision_function"
|
783
|
+
inference_method = "decision_function"
|
723
784
|
|
724
785
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
725
786
|
# are specific to the type of dataset used.
|
726
787
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
727
788
|
|
789
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
790
|
+
|
728
791
|
if isinstance(dataset, DataFrame):
|
729
792
|
self._deps = self._batch_inference_validate_snowpark(
|
730
793
|
dataset=dataset,
|
731
794
|
inference_method=inference_method,
|
732
795
|
)
|
733
|
-
assert isinstance(
|
796
|
+
assert isinstance(
|
797
|
+
dataset._session, Session
|
798
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
734
799
|
transform_kwargs = dict(
|
735
800
|
session=dataset._session,
|
736
801
|
dependencies=self._deps,
|
737
|
-
drop_input_cols
|
802
|
+
drop_input_cols=self._drop_input_cols,
|
738
803
|
expected_output_cols_type="float",
|
739
804
|
)
|
805
|
+
expected_output_cols = self._align_expected_output_names(
|
806
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
807
|
+
)
|
740
808
|
|
741
809
|
elif isinstance(dataset, pd.DataFrame):
|
742
|
-
transform_kwargs = dict(
|
743
|
-
snowpark_input_cols = self._snowpark_cols,
|
744
|
-
drop_input_cols = self._drop_input_cols
|
745
|
-
)
|
810
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
746
811
|
|
747
812
|
transform_handlers = ModelTransformerBuilder.build(
|
748
813
|
dataset=dataset,
|
@@ -755,7 +820,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
755
820
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
756
821
|
inference_method=inference_method,
|
757
822
|
input_cols=self.input_cols,
|
758
|
-
expected_output_cols=
|
823
|
+
expected_output_cols=expected_output_cols,
|
759
824
|
**transform_kwargs
|
760
825
|
)
|
761
826
|
return output_df
|
@@ -784,12 +849,14 @@ class SpectralEmbedding(BaseTransformer):
|
|
784
849
|
Output dataset with probability of the sample for each class in the model.
|
785
850
|
"""
|
786
851
|
super()._check_dataset_type(dataset)
|
787
|
-
inference_method="score_samples"
|
852
|
+
inference_method = "score_samples"
|
788
853
|
|
789
854
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
790
855
|
# are specific to the type of dataset used.
|
791
856
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
792
857
|
|
858
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
859
|
+
|
793
860
|
if isinstance(dataset, DataFrame):
|
794
861
|
self._deps = self._batch_inference_validate_snowpark(
|
795
862
|
dataset=dataset,
|
@@ -802,6 +869,9 @@ class SpectralEmbedding(BaseTransformer):
|
|
802
869
|
drop_input_cols = self._drop_input_cols,
|
803
870
|
expected_output_cols_type="float",
|
804
871
|
)
|
872
|
+
expected_output_cols = self._align_expected_output_names(
|
873
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
874
|
+
)
|
805
875
|
|
806
876
|
elif isinstance(dataset, pd.DataFrame):
|
807
877
|
transform_kwargs = dict(
|
@@ -820,7 +890,7 @@ class SpectralEmbedding(BaseTransformer):
|
|
820
890
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
821
891
|
inference_method=inference_method,
|
822
892
|
input_cols=self.input_cols,
|
823
|
-
expected_output_cols=
|
893
|
+
expected_output_cols=expected_output_cols,
|
824
894
|
**transform_kwargs
|
825
895
|
)
|
826
896
|
return output_df
|
@@ -965,50 +1035,84 @@ class SpectralEmbedding(BaseTransformer):
|
|
965
1035
|
)
|
966
1036
|
return output_df
|
967
1037
|
|
1038
|
+
|
1039
|
+
|
1040
|
+
def to_sklearn(self) -> Any:
|
1041
|
+
"""Get sklearn.manifold.SpectralEmbedding object.
|
1042
|
+
"""
|
1043
|
+
if self._sklearn_object is None:
|
1044
|
+
self._sklearn_object = self._create_sklearn_object()
|
1045
|
+
return self._sklearn_object
|
1046
|
+
|
1047
|
+
def to_xgboost(self) -> Any:
|
1048
|
+
raise exceptions.SnowflakeMLException(
|
1049
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1050
|
+
original_exception=AttributeError(
|
1051
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1052
|
+
"to_xgboost()",
|
1053
|
+
"to_sklearn()"
|
1054
|
+
)
|
1055
|
+
),
|
1056
|
+
)
|
1057
|
+
|
1058
|
+
def to_lightgbm(self) -> Any:
|
1059
|
+
raise exceptions.SnowflakeMLException(
|
1060
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1061
|
+
original_exception=AttributeError(
|
1062
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1063
|
+
"to_lightgbm()",
|
1064
|
+
"to_sklearn()"
|
1065
|
+
)
|
1066
|
+
),
|
1067
|
+
)
|
968
1068
|
|
969
|
-
def
|
1069
|
+
def _get_dependencies(self) -> List[str]:
|
1070
|
+
return self._deps
|
1071
|
+
|
1072
|
+
|
1073
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
970
1074
|
self._model_signature_dict = dict()
|
971
1075
|
|
972
1076
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
973
1077
|
|
974
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1078
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
975
1079
|
outputs: List[BaseFeatureSpec] = []
|
976
1080
|
if hasattr(self, "predict"):
|
977
1081
|
# keep mypy happy
|
978
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1082
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
979
1083
|
# For classifier, the type of predict is the same as the type of label
|
980
|
-
if self._sklearn_object._estimator_type ==
|
981
|
-
|
1084
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1085
|
+
# label columns is the desired type for output
|
982
1086
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
983
1087
|
# rename the output columns
|
984
1088
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
985
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
986
|
-
|
987
|
-
|
1089
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1090
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1091
|
+
)
|
988
1092
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
989
1093
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
990
|
-
# Clusterer returns int64 cluster labels.
|
1094
|
+
# Clusterer returns int64 cluster labels.
|
991
1095
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
992
1096
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
993
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
994
|
-
|
995
|
-
|
996
|
-
|
1097
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1098
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1099
|
+
)
|
1100
|
+
|
997
1101
|
# For regressor, the type of predict is float64
|
998
|
-
elif self._sklearn_object._estimator_type ==
|
1102
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
999
1103
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1000
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1001
|
-
|
1002
|
-
|
1003
|
-
|
1104
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1105
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1106
|
+
)
|
1107
|
+
|
1004
1108
|
for prob_func in PROB_FUNCTIONS:
|
1005
1109
|
if hasattr(self, prob_func):
|
1006
1110
|
output_cols_prefix: str = f"{prob_func}_"
|
1007
1111
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1008
1112
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1009
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1010
|
-
|
1011
|
-
|
1113
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1114
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1115
|
+
)
|
1012
1116
|
|
1013
1117
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1014
1118
|
items = list(self._model_signature_dict.items())
|
@@ -1021,10 +1125,10 @@ class SpectralEmbedding(BaseTransformer):
|
|
1021
1125
|
"""Returns model signature of current class.
|
1022
1126
|
|
1023
1127
|
Raises:
|
1024
|
-
|
1128
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1025
1129
|
|
1026
1130
|
Returns:
|
1027
|
-
Dict
|
1131
|
+
Dict with each method and its input output signature
|
1028
1132
|
"""
|
1029
1133
|
if self._model_signature_dict is None:
|
1030
1134
|
raise exceptions.SnowflakeMLException(
|
@@ -1032,35 +1136,3 @@ class SpectralEmbedding(BaseTransformer):
|
|
1032
1136
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1033
1137
|
)
|
1034
1138
|
return self._model_signature_dict
|
1035
|
-
|
1036
|
-
def to_sklearn(self) -> Any:
|
1037
|
-
"""Get sklearn.manifold.SpectralEmbedding object.
|
1038
|
-
"""
|
1039
|
-
if self._sklearn_object is None:
|
1040
|
-
self._sklearn_object = self._create_sklearn_object()
|
1041
|
-
return self._sklearn_object
|
1042
|
-
|
1043
|
-
def to_xgboost(self) -> Any:
|
1044
|
-
raise exceptions.SnowflakeMLException(
|
1045
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1046
|
-
original_exception=AttributeError(
|
1047
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1048
|
-
"to_xgboost()",
|
1049
|
-
"to_sklearn()"
|
1050
|
-
)
|
1051
|
-
),
|
1052
|
-
)
|
1053
|
-
|
1054
|
-
def to_lightgbm(self) -> Any:
|
1055
|
-
raise exceptions.SnowflakeMLException(
|
1056
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1057
|
-
original_exception=AttributeError(
|
1058
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1059
|
-
"to_lightgbm()",
|
1060
|
-
"to_sklearn()"
|
1061
|
-
)
|
1062
|
-
),
|
1063
|
-
)
|
1064
|
-
|
1065
|
-
def _get_dependencies(self) -> List[str]:
|
1066
|
-
return self._deps
|