snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -275,12 +274,7 @@ class AgglomerativeClustering(BaseTransformer):
275
274
  )
276
275
  return selected_cols
277
276
 
278
- @telemetry.send_api_usage_telemetry(
279
- project=_PROJECT,
280
- subproject=_SUBPROJECT,
281
- custom_tags=dict([("autogen", True)]),
282
- )
283
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AgglomerativeClustering":
277
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AgglomerativeClustering":
284
278
  """Fit the hierarchical clustering from features, or distance matrix
285
279
  For more details on this function, see [sklearn.cluster.AgglomerativeClustering.fit]
286
280
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering.fit)
@@ -307,12 +301,14 @@ class AgglomerativeClustering(BaseTransformer):
307
301
 
308
302
  self._snowpark_cols = dataset.select(self.input_cols).columns
309
303
 
310
- # If we are already in a stored procedure, no need to kick off another one.
304
+ # If we are already in a stored procedure, no need to kick off another one.
311
305
  if SNOWML_SPROC_ENV in os.environ:
312
306
  statement_params = telemetry.get_function_usage_statement_params(
313
307
  project=_PROJECT,
314
308
  subproject=_SUBPROJECT,
315
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AgglomerativeClustering.__class__.__name__),
309
+ function_name=telemetry.get_statement_params_full_func_name(
310
+ inspect.currentframe(), AgglomerativeClustering.__class__.__name__
311
+ ),
316
312
  api_calls=[Session.call],
317
313
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
318
314
  )
@@ -333,7 +329,7 @@ class AgglomerativeClustering(BaseTransformer):
333
329
  )
334
330
  self._sklearn_object = model_trainer.train()
335
331
  self._is_fitted = True
336
- self._get_model_signatures(dataset)
332
+ self._generate_model_signatures(dataset)
337
333
  return self
338
334
 
339
335
  def _batch_inference_validate_snowpark(
@@ -407,7 +403,9 @@ class AgglomerativeClustering(BaseTransformer):
407
403
  # when it is classifier, infer the datatype from label columns
408
404
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
409
405
  # Batch inference takes a single expected output column type. Use the first columns type for now.
410
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
406
+ label_cols_signatures = [
407
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
408
+ ]
411
409
  if len(label_cols_signatures) == 0:
412
410
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
413
411
  raise exceptions.SnowflakeMLException(
@@ -415,25 +413,22 @@ class AgglomerativeClustering(BaseTransformer):
415
413
  original_exception=ValueError(error_str),
416
414
  )
417
415
 
418
- expected_type_inferred = convert_sp_to_sf_type(
419
- label_cols_signatures[0].as_snowpark_type()
420
- )
416
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
421
417
 
422
418
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
423
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
419
+ assert isinstance(
420
+ dataset._session, Session
421
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
424
422
 
425
423
  transform_kwargs = dict(
426
- session = dataset._session,
427
- dependencies = self._deps,
428
- drop_input_cols = self._drop_input_cols,
429
- expected_output_cols_type = expected_type_inferred,
424
+ session=dataset._session,
425
+ dependencies=self._deps,
426
+ drop_input_cols=self._drop_input_cols,
427
+ expected_output_cols_type=expected_type_inferred,
430
428
  )
431
429
 
432
430
  elif isinstance(dataset, pd.DataFrame):
433
- transform_kwargs = dict(
434
- snowpark_input_cols = self._snowpark_cols,
435
- drop_input_cols = self._drop_input_cols
436
- )
431
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
437
432
 
438
433
  transform_handlers = ModelTransformerBuilder.build(
439
434
  dataset=dataset,
@@ -473,7 +468,7 @@ class AgglomerativeClustering(BaseTransformer):
473
468
  Transformed dataset.
474
469
  """
475
470
  super()._check_dataset_type(dataset)
476
- inference_method="transform"
471
+ inference_method = "transform"
477
472
 
478
473
  # This dictionary contains optional kwargs for batch inference. These kwargs
479
474
  # are specific to the type of dataset used.
@@ -510,17 +505,14 @@ class AgglomerativeClustering(BaseTransformer):
510
505
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
511
506
 
512
507
  transform_kwargs = dict(
513
- session = dataset._session,
514
- dependencies = self._deps,
515
- drop_input_cols = self._drop_input_cols,
516
- expected_output_cols_type = expected_dtype,
508
+ session=dataset._session,
509
+ dependencies=self._deps,
510
+ drop_input_cols=self._drop_input_cols,
511
+ expected_output_cols_type=expected_dtype,
517
512
  )
518
513
 
519
514
  elif isinstance(dataset, pd.DataFrame):
520
- transform_kwargs = dict(
521
- snowpark_input_cols = self._snowpark_cols,
522
- drop_input_cols = self._drop_input_cols
523
- )
515
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
524
516
 
525
517
  transform_handlers = ModelTransformerBuilder.build(
526
518
  dataset=dataset,
@@ -539,7 +531,11 @@ class AgglomerativeClustering(BaseTransformer):
539
531
  return output_df
540
532
 
541
533
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
542
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
534
+ def fit_predict(
535
+ self,
536
+ dataset: Union[DataFrame, pd.DataFrame],
537
+ output_cols_prefix: str = "fit_predict_",
538
+ ) -> Union[DataFrame, pd.DataFrame]:
543
539
  """ Fit and return the result of each sample's clustering assignment
544
540
  For more details on this function, see [sklearn.cluster.AgglomerativeClustering.fit_predict]
545
541
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering.fit_predict)
@@ -566,7 +562,9 @@ class AgglomerativeClustering(BaseTransformer):
566
562
  )
567
563
  output_result, fitted_estimator = model_trainer.train_fit_predict(
568
564
  drop_input_cols=self._drop_input_cols,
569
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
565
+ expected_output_cols_list=(
566
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
567
+ ),
570
568
  )
571
569
  self._sklearn_object = fitted_estimator
572
570
  self._is_fitted = True
@@ -583,6 +581,62 @@ class AgglomerativeClustering(BaseTransformer):
583
581
  assert self._sklearn_object is not None
584
582
  return self._sklearn_object.embedding_
585
583
 
584
+
585
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
586
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
587
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
588
+ """
589
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
590
+ # The following condition is introduced for kneighbors methods, and not used in other methods
591
+ if output_cols:
592
+ output_cols = [
593
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
594
+ for c in output_cols
595
+ ]
596
+ elif getattr(self._sklearn_object, "classes_", None) is None:
597
+ output_cols = [output_cols_prefix]
598
+ elif self._sklearn_object is not None:
599
+ classes = self._sklearn_object.classes_
600
+ if isinstance(classes, numpy.ndarray):
601
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
602
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
603
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
604
+ output_cols = []
605
+ for i, cl in enumerate(classes):
606
+ # For binary classification, there is only one output column for each class
607
+ # ndarray as the two classes are complementary.
608
+ if len(cl) == 2:
609
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
610
+ else:
611
+ output_cols.extend([
612
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
613
+ ])
614
+ else:
615
+ output_cols = []
616
+
617
+ # Make sure column names are valid snowflake identifiers.
618
+ assert output_cols is not None # Make MyPy happy
619
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
620
+
621
+ return rv
622
+
623
+ def _align_expected_output_names(
624
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
625
+ ) -> List[str]:
626
+ # in case the inferred output column names dimension is different
627
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
628
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
629
+ output_df_columns = list(output_df_pd.columns)
630
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
631
+ if self.sample_weight_col:
632
+ output_df_columns_set -= set(self.sample_weight_col)
633
+ # if the dimension of inferred output column names is correct; use it
634
+ if len(expected_output_cols_list) == len(output_df_columns_set):
635
+ return expected_output_cols_list
636
+ # otherwise, use the sklearn estimator's output
637
+ else:
638
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
639
+
586
640
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
587
641
  @telemetry.send_api_usage_telemetry(
588
642
  project=_PROJECT,
@@ -613,24 +667,28 @@ class AgglomerativeClustering(BaseTransformer):
613
667
  # are specific to the type of dataset used.
614
668
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
615
669
 
670
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
671
+
616
672
  if isinstance(dataset, DataFrame):
617
673
  self._deps = self._batch_inference_validate_snowpark(
618
674
  dataset=dataset,
619
675
  inference_method=inference_method,
620
676
  )
621
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
677
+ assert isinstance(
678
+ dataset._session, Session
679
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
622
680
  transform_kwargs = dict(
623
681
  session=dataset._session,
624
682
  dependencies=self._deps,
625
- drop_input_cols = self._drop_input_cols,
683
+ drop_input_cols=self._drop_input_cols,
626
684
  expected_output_cols_type="float",
627
685
  )
686
+ expected_output_cols = self._align_expected_output_names(
687
+ inference_method, dataset, expected_output_cols, output_cols_prefix
688
+ )
628
689
 
629
690
  elif isinstance(dataset, pd.DataFrame):
630
- transform_kwargs = dict(
631
- snowpark_input_cols = self._snowpark_cols,
632
- drop_input_cols = self._drop_input_cols
633
- )
691
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
634
692
 
635
693
  transform_handlers = ModelTransformerBuilder.build(
636
694
  dataset=dataset,
@@ -642,7 +700,7 @@ class AgglomerativeClustering(BaseTransformer):
642
700
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
643
701
  inference_method=inference_method,
644
702
  input_cols=self.input_cols,
645
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
703
+ expected_output_cols=expected_output_cols,
646
704
  **transform_kwargs
647
705
  )
648
706
  return output_df
@@ -672,7 +730,8 @@ class AgglomerativeClustering(BaseTransformer):
672
730
  Output dataset with log probability of the sample for each class in the model.
673
731
  """
674
732
  super()._check_dataset_type(dataset)
675
- inference_method="predict_log_proba"
733
+ inference_method = "predict_log_proba"
734
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
676
735
 
677
736
  # This dictionary contains optional kwargs for batch inference. These kwargs
678
737
  # are specific to the type of dataset used.
@@ -683,18 +742,20 @@ class AgglomerativeClustering(BaseTransformer):
683
742
  dataset=dataset,
684
743
  inference_method=inference_method,
685
744
  )
686
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
745
+ assert isinstance(
746
+ dataset._session, Session
747
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
687
748
  transform_kwargs = dict(
688
749
  session=dataset._session,
689
750
  dependencies=self._deps,
690
- drop_input_cols = self._drop_input_cols,
751
+ drop_input_cols=self._drop_input_cols,
691
752
  expected_output_cols_type="float",
692
753
  )
754
+ expected_output_cols = self._align_expected_output_names(
755
+ inference_method, dataset, expected_output_cols, output_cols_prefix
756
+ )
693
757
  elif isinstance(dataset, pd.DataFrame):
694
- transform_kwargs = dict(
695
- snowpark_input_cols = self._snowpark_cols,
696
- drop_input_cols = self._drop_input_cols
697
- )
758
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
698
759
 
699
760
  transform_handlers = ModelTransformerBuilder.build(
700
761
  dataset=dataset,
@@ -707,7 +768,7 @@ class AgglomerativeClustering(BaseTransformer):
707
768
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
708
769
  inference_method=inference_method,
709
770
  input_cols=self.input_cols,
710
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
771
+ expected_output_cols=expected_output_cols,
711
772
  **transform_kwargs
712
773
  )
713
774
  return output_df
@@ -733,30 +794,34 @@ class AgglomerativeClustering(BaseTransformer):
733
794
  Output dataset with results of the decision function for the samples in input dataset.
734
795
  """
735
796
  super()._check_dataset_type(dataset)
736
- inference_method="decision_function"
797
+ inference_method = "decision_function"
737
798
 
738
799
  # This dictionary contains optional kwargs for batch inference. These kwargs
739
800
  # are specific to the type of dataset used.
740
801
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
741
802
 
803
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
804
+
742
805
  if isinstance(dataset, DataFrame):
743
806
  self._deps = self._batch_inference_validate_snowpark(
744
807
  dataset=dataset,
745
808
  inference_method=inference_method,
746
809
  )
747
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
810
+ assert isinstance(
811
+ dataset._session, Session
812
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
748
813
  transform_kwargs = dict(
749
814
  session=dataset._session,
750
815
  dependencies=self._deps,
751
- drop_input_cols = self._drop_input_cols,
816
+ drop_input_cols=self._drop_input_cols,
752
817
  expected_output_cols_type="float",
753
818
  )
819
+ expected_output_cols = self._align_expected_output_names(
820
+ inference_method, dataset, expected_output_cols, output_cols_prefix
821
+ )
754
822
 
755
823
  elif isinstance(dataset, pd.DataFrame):
756
- transform_kwargs = dict(
757
- snowpark_input_cols = self._snowpark_cols,
758
- drop_input_cols = self._drop_input_cols
759
- )
824
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
760
825
 
761
826
  transform_handlers = ModelTransformerBuilder.build(
762
827
  dataset=dataset,
@@ -769,7 +834,7 @@ class AgglomerativeClustering(BaseTransformer):
769
834
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
770
835
  inference_method=inference_method,
771
836
  input_cols=self.input_cols,
772
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
837
+ expected_output_cols=expected_output_cols,
773
838
  **transform_kwargs
774
839
  )
775
840
  return output_df
@@ -798,12 +863,14 @@ class AgglomerativeClustering(BaseTransformer):
798
863
  Output dataset with probability of the sample for each class in the model.
799
864
  """
800
865
  super()._check_dataset_type(dataset)
801
- inference_method="score_samples"
866
+ inference_method = "score_samples"
802
867
 
803
868
  # This dictionary contains optional kwargs for batch inference. These kwargs
804
869
  # are specific to the type of dataset used.
805
870
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
806
871
 
872
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
873
+
807
874
  if isinstance(dataset, DataFrame):
808
875
  self._deps = self._batch_inference_validate_snowpark(
809
876
  dataset=dataset,
@@ -816,6 +883,9 @@ class AgglomerativeClustering(BaseTransformer):
816
883
  drop_input_cols = self._drop_input_cols,
817
884
  expected_output_cols_type="float",
818
885
  )
886
+ expected_output_cols = self._align_expected_output_names(
887
+ inference_method, dataset, expected_output_cols, output_cols_prefix
888
+ )
819
889
 
820
890
  elif isinstance(dataset, pd.DataFrame):
821
891
  transform_kwargs = dict(
@@ -834,7 +904,7 @@ class AgglomerativeClustering(BaseTransformer):
834
904
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
835
905
  inference_method=inference_method,
836
906
  input_cols=self.input_cols,
837
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
907
+ expected_output_cols=expected_output_cols,
838
908
  **transform_kwargs
839
909
  )
840
910
  return output_df
@@ -979,50 +1049,84 @@ class AgglomerativeClustering(BaseTransformer):
979
1049
  )
980
1050
  return output_df
981
1051
 
1052
+
1053
+
1054
+ def to_sklearn(self) -> Any:
1055
+ """Get sklearn.cluster.AgglomerativeClustering object.
1056
+ """
1057
+ if self._sklearn_object is None:
1058
+ self._sklearn_object = self._create_sklearn_object()
1059
+ return self._sklearn_object
1060
+
1061
+ def to_xgboost(self) -> Any:
1062
+ raise exceptions.SnowflakeMLException(
1063
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1064
+ original_exception=AttributeError(
1065
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1066
+ "to_xgboost()",
1067
+ "to_sklearn()"
1068
+ )
1069
+ ),
1070
+ )
1071
+
1072
+ def to_lightgbm(self) -> Any:
1073
+ raise exceptions.SnowflakeMLException(
1074
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1075
+ original_exception=AttributeError(
1076
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1077
+ "to_lightgbm()",
1078
+ "to_sklearn()"
1079
+ )
1080
+ ),
1081
+ )
982
1082
 
983
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1083
+ def _get_dependencies(self) -> List[str]:
1084
+ return self._deps
1085
+
1086
+
1087
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
984
1088
  self._model_signature_dict = dict()
985
1089
 
986
1090
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
987
1091
 
988
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1092
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
989
1093
  outputs: List[BaseFeatureSpec] = []
990
1094
  if hasattr(self, "predict"):
991
1095
  # keep mypy happy
992
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1096
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
993
1097
  # For classifier, the type of predict is the same as the type of label
994
- if self._sklearn_object._estimator_type == 'classifier':
995
- # label columns is the desired type for output
1098
+ if self._sklearn_object._estimator_type == "classifier":
1099
+ # label columns is the desired type for output
996
1100
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
997
1101
  # rename the output columns
998
1102
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
999
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1000
- ([] if self._drop_input_cols else inputs)
1001
- + outputs)
1103
+ self._model_signature_dict["predict"] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1002
1106
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1003
1107
  # For outlier models, returns -1 for outliers and 1 for inliers.
1004
- # Clusterer returns int64 cluster labels.
1108
+ # Clusterer returns int64 cluster labels.
1005
1109
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1006
1110
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1007
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1008
- ([] if self._drop_input_cols else inputs)
1009
- + outputs)
1010
-
1111
+ self._model_signature_dict["predict"] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1114
+
1011
1115
  # For regressor, the type of predict is float64
1012
- elif self._sklearn_object._estimator_type == 'regressor':
1116
+ elif self._sklearn_object._estimator_type == "regressor":
1013
1117
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1014
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1015
- ([] if self._drop_input_cols else inputs)
1016
- + outputs)
1017
-
1118
+ self._model_signature_dict["predict"] = ModelSignature(
1119
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1120
+ )
1121
+
1018
1122
  for prob_func in PROB_FUNCTIONS:
1019
1123
  if hasattr(self, prob_func):
1020
1124
  output_cols_prefix: str = f"{prob_func}_"
1021
1125
  output_column_names = self._get_output_column_names(output_cols_prefix)
1022
1126
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1023
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1127
+ self._model_signature_dict[prob_func] = ModelSignature(
1128
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1129
+ )
1026
1130
 
1027
1131
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1028
1132
  items = list(self._model_signature_dict.items())
@@ -1035,10 +1139,10 @@ class AgglomerativeClustering(BaseTransformer):
1035
1139
  """Returns model signature of current class.
1036
1140
 
1037
1141
  Raises:
1038
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1142
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1039
1143
 
1040
1144
  Returns:
1041
- Dict[str, ModelSignature]: each method and its input output signature
1145
+ Dict with each method and its input output signature
1042
1146
  """
1043
1147
  if self._model_signature_dict is None:
1044
1148
  raise exceptions.SnowflakeMLException(
@@ -1046,35 +1150,3 @@ class AgglomerativeClustering(BaseTransformer):
1046
1150
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1047
1151
  )
1048
1152
  return self._model_signature_dict
1049
-
1050
- def to_sklearn(self) -> Any:
1051
- """Get sklearn.cluster.AgglomerativeClustering object.
1052
- """
1053
- if self._sklearn_object is None:
1054
- self._sklearn_object = self._create_sklearn_object()
1055
- return self._sklearn_object
1056
-
1057
- def to_xgboost(self) -> Any:
1058
- raise exceptions.SnowflakeMLException(
1059
- error_code=error_codes.METHOD_NOT_ALLOWED,
1060
- original_exception=AttributeError(
1061
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1062
- "to_xgboost()",
1063
- "to_sklearn()"
1064
- )
1065
- ),
1066
- )
1067
-
1068
- def to_lightgbm(self) -> Any:
1069
- raise exceptions.SnowflakeMLException(
1070
- error_code=error_codes.METHOD_NOT_ALLOWED,
1071
- original_exception=AttributeError(
1072
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1073
- "to_lightgbm()",
1074
- "to_sklearn()"
1075
- )
1076
- ),
1077
- )
1078
-
1079
- def _get_dependencies(self) -> List[str]:
1080
- return self._deps