snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -210,12 +209,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
210
209
|
)
|
211
210
|
return selected_cols
|
212
211
|
|
213
|
-
|
214
|
-
project=_PROJECT,
|
215
|
-
subproject=_SUBPROJECT,
|
216
|
-
custom_tags=dict([("autogen", True)]),
|
217
|
-
)
|
218
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsOneClassifier":
|
212
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsOneClassifier":
|
219
213
|
"""Fit underlying estimators
|
220
214
|
For more details on this function, see [sklearn.multiclass.OneVsOneClassifier.fit]
|
221
215
|
(https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsOneClassifier.html#sklearn.multiclass.OneVsOneClassifier.fit)
|
@@ -242,12 +236,14 @@ class OneVsOneClassifier(BaseTransformer):
|
|
242
236
|
|
243
237
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
244
238
|
|
245
|
-
|
239
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
246
240
|
if SNOWML_SPROC_ENV in os.environ:
|
247
241
|
statement_params = telemetry.get_function_usage_statement_params(
|
248
242
|
project=_PROJECT,
|
249
243
|
subproject=_SUBPROJECT,
|
250
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
244
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
245
|
+
inspect.currentframe(), OneVsOneClassifier.__class__.__name__
|
246
|
+
),
|
251
247
|
api_calls=[Session.call],
|
252
248
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
253
249
|
)
|
@@ -268,7 +264,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
268
264
|
)
|
269
265
|
self._sklearn_object = model_trainer.train()
|
270
266
|
self._is_fitted = True
|
271
|
-
self.
|
267
|
+
self._generate_model_signatures(dataset)
|
272
268
|
return self
|
273
269
|
|
274
270
|
def _batch_inference_validate_snowpark(
|
@@ -344,7 +340,9 @@ class OneVsOneClassifier(BaseTransformer):
|
|
344
340
|
# when it is classifier, infer the datatype from label columns
|
345
341
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
346
342
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
347
|
-
label_cols_signatures = [
|
343
|
+
label_cols_signatures = [
|
344
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
345
|
+
]
|
348
346
|
if len(label_cols_signatures) == 0:
|
349
347
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
350
348
|
raise exceptions.SnowflakeMLException(
|
@@ -352,25 +350,22 @@ class OneVsOneClassifier(BaseTransformer):
|
|
352
350
|
original_exception=ValueError(error_str),
|
353
351
|
)
|
354
352
|
|
355
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
356
|
-
label_cols_signatures[0].as_snowpark_type()
|
357
|
-
)
|
353
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
358
354
|
|
359
355
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
360
|
-
assert isinstance(
|
356
|
+
assert isinstance(
|
357
|
+
dataset._session, Session
|
358
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
361
359
|
|
362
360
|
transform_kwargs = dict(
|
363
|
-
session
|
364
|
-
dependencies
|
365
|
-
drop_input_cols
|
366
|
-
expected_output_cols_type
|
361
|
+
session=dataset._session,
|
362
|
+
dependencies=self._deps,
|
363
|
+
drop_input_cols=self._drop_input_cols,
|
364
|
+
expected_output_cols_type=expected_type_inferred,
|
367
365
|
)
|
368
366
|
|
369
367
|
elif isinstance(dataset, pd.DataFrame):
|
370
|
-
transform_kwargs = dict(
|
371
|
-
snowpark_input_cols = self._snowpark_cols,
|
372
|
-
drop_input_cols = self._drop_input_cols
|
373
|
-
)
|
368
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
374
369
|
|
375
370
|
transform_handlers = ModelTransformerBuilder.build(
|
376
371
|
dataset=dataset,
|
@@ -410,7 +405,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
410
405
|
Transformed dataset.
|
411
406
|
"""
|
412
407
|
super()._check_dataset_type(dataset)
|
413
|
-
inference_method="transform"
|
408
|
+
inference_method = "transform"
|
414
409
|
|
415
410
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
416
411
|
# are specific to the type of dataset used.
|
@@ -447,17 +442,14 @@ class OneVsOneClassifier(BaseTransformer):
|
|
447
442
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
448
443
|
|
449
444
|
transform_kwargs = dict(
|
450
|
-
session
|
451
|
-
dependencies
|
452
|
-
drop_input_cols
|
453
|
-
expected_output_cols_type
|
445
|
+
session=dataset._session,
|
446
|
+
dependencies=self._deps,
|
447
|
+
drop_input_cols=self._drop_input_cols,
|
448
|
+
expected_output_cols_type=expected_dtype,
|
454
449
|
)
|
455
450
|
|
456
451
|
elif isinstance(dataset, pd.DataFrame):
|
457
|
-
transform_kwargs = dict(
|
458
|
-
snowpark_input_cols = self._snowpark_cols,
|
459
|
-
drop_input_cols = self._drop_input_cols
|
460
|
-
)
|
452
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
461
453
|
|
462
454
|
transform_handlers = ModelTransformerBuilder.build(
|
463
455
|
dataset=dataset,
|
@@ -476,7 +468,11 @@ class OneVsOneClassifier(BaseTransformer):
|
|
476
468
|
return output_df
|
477
469
|
|
478
470
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
479
|
-
def fit_predict(
|
471
|
+
def fit_predict(
|
472
|
+
self,
|
473
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
474
|
+
output_cols_prefix: str = "fit_predict_",
|
475
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
480
476
|
""" Method not supported for this class.
|
481
477
|
|
482
478
|
|
@@ -501,7 +497,9 @@ class OneVsOneClassifier(BaseTransformer):
|
|
501
497
|
)
|
502
498
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
503
499
|
drop_input_cols=self._drop_input_cols,
|
504
|
-
expected_output_cols_list=
|
500
|
+
expected_output_cols_list=(
|
501
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
502
|
+
),
|
505
503
|
)
|
506
504
|
self._sklearn_object = fitted_estimator
|
507
505
|
self._is_fitted = True
|
@@ -518,6 +516,62 @@ class OneVsOneClassifier(BaseTransformer):
|
|
518
516
|
assert self._sklearn_object is not None
|
519
517
|
return self._sklearn_object.embedding_
|
520
518
|
|
519
|
+
|
520
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
521
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
522
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
523
|
+
"""
|
524
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
525
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
526
|
+
if output_cols:
|
527
|
+
output_cols = [
|
528
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
529
|
+
for c in output_cols
|
530
|
+
]
|
531
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
532
|
+
output_cols = [output_cols_prefix]
|
533
|
+
elif self._sklearn_object is not None:
|
534
|
+
classes = self._sklearn_object.classes_
|
535
|
+
if isinstance(classes, numpy.ndarray):
|
536
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
537
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
538
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
539
|
+
output_cols = []
|
540
|
+
for i, cl in enumerate(classes):
|
541
|
+
# For binary classification, there is only one output column for each class
|
542
|
+
# ndarray as the two classes are complementary.
|
543
|
+
if len(cl) == 2:
|
544
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
545
|
+
else:
|
546
|
+
output_cols.extend([
|
547
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
548
|
+
])
|
549
|
+
else:
|
550
|
+
output_cols = []
|
551
|
+
|
552
|
+
# Make sure column names are valid snowflake identifiers.
|
553
|
+
assert output_cols is not None # Make MyPy happy
|
554
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
555
|
+
|
556
|
+
return rv
|
557
|
+
|
558
|
+
def _align_expected_output_names(
|
559
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
560
|
+
) -> List[str]:
|
561
|
+
# in case the inferred output column names dimension is different
|
562
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
563
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
564
|
+
output_df_columns = list(output_df_pd.columns)
|
565
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
566
|
+
if self.sample_weight_col:
|
567
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
568
|
+
# if the dimension of inferred output column names is correct; use it
|
569
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
570
|
+
return expected_output_cols_list
|
571
|
+
# otherwise, use the sklearn estimator's output
|
572
|
+
else:
|
573
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
574
|
+
|
521
575
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
522
576
|
@telemetry.send_api_usage_telemetry(
|
523
577
|
project=_PROJECT,
|
@@ -548,24 +602,28 @@ class OneVsOneClassifier(BaseTransformer):
|
|
548
602
|
# are specific to the type of dataset used.
|
549
603
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
550
604
|
|
605
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
606
|
+
|
551
607
|
if isinstance(dataset, DataFrame):
|
552
608
|
self._deps = self._batch_inference_validate_snowpark(
|
553
609
|
dataset=dataset,
|
554
610
|
inference_method=inference_method,
|
555
611
|
)
|
556
|
-
assert isinstance(
|
612
|
+
assert isinstance(
|
613
|
+
dataset._session, Session
|
614
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
557
615
|
transform_kwargs = dict(
|
558
616
|
session=dataset._session,
|
559
617
|
dependencies=self._deps,
|
560
|
-
drop_input_cols
|
618
|
+
drop_input_cols=self._drop_input_cols,
|
561
619
|
expected_output_cols_type="float",
|
562
620
|
)
|
621
|
+
expected_output_cols = self._align_expected_output_names(
|
622
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
623
|
+
)
|
563
624
|
|
564
625
|
elif isinstance(dataset, pd.DataFrame):
|
565
|
-
transform_kwargs = dict(
|
566
|
-
snowpark_input_cols = self._snowpark_cols,
|
567
|
-
drop_input_cols = self._drop_input_cols
|
568
|
-
)
|
626
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
569
627
|
|
570
628
|
transform_handlers = ModelTransformerBuilder.build(
|
571
629
|
dataset=dataset,
|
@@ -577,7 +635,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
577
635
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
578
636
|
inference_method=inference_method,
|
579
637
|
input_cols=self.input_cols,
|
580
|
-
expected_output_cols=
|
638
|
+
expected_output_cols=expected_output_cols,
|
581
639
|
**transform_kwargs
|
582
640
|
)
|
583
641
|
return output_df
|
@@ -607,7 +665,8 @@ class OneVsOneClassifier(BaseTransformer):
|
|
607
665
|
Output dataset with log probability of the sample for each class in the model.
|
608
666
|
"""
|
609
667
|
super()._check_dataset_type(dataset)
|
610
|
-
inference_method="predict_log_proba"
|
668
|
+
inference_method = "predict_log_proba"
|
669
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
611
670
|
|
612
671
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
613
672
|
# are specific to the type of dataset used.
|
@@ -618,18 +677,20 @@ class OneVsOneClassifier(BaseTransformer):
|
|
618
677
|
dataset=dataset,
|
619
678
|
inference_method=inference_method,
|
620
679
|
)
|
621
|
-
assert isinstance(
|
680
|
+
assert isinstance(
|
681
|
+
dataset._session, Session
|
682
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
622
683
|
transform_kwargs = dict(
|
623
684
|
session=dataset._session,
|
624
685
|
dependencies=self._deps,
|
625
|
-
drop_input_cols
|
686
|
+
drop_input_cols=self._drop_input_cols,
|
626
687
|
expected_output_cols_type="float",
|
627
688
|
)
|
689
|
+
expected_output_cols = self._align_expected_output_names(
|
690
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
691
|
+
)
|
628
692
|
elif isinstance(dataset, pd.DataFrame):
|
629
|
-
transform_kwargs = dict(
|
630
|
-
snowpark_input_cols = self._snowpark_cols,
|
631
|
-
drop_input_cols = self._drop_input_cols
|
632
|
-
)
|
693
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
633
694
|
|
634
695
|
transform_handlers = ModelTransformerBuilder.build(
|
635
696
|
dataset=dataset,
|
@@ -642,7 +703,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
642
703
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
643
704
|
inference_method=inference_method,
|
644
705
|
input_cols=self.input_cols,
|
645
|
-
expected_output_cols=
|
706
|
+
expected_output_cols=expected_output_cols,
|
646
707
|
**transform_kwargs
|
647
708
|
)
|
648
709
|
return output_df
|
@@ -670,30 +731,34 @@ class OneVsOneClassifier(BaseTransformer):
|
|
670
731
|
Output dataset with results of the decision function for the samples in input dataset.
|
671
732
|
"""
|
672
733
|
super()._check_dataset_type(dataset)
|
673
|
-
inference_method="decision_function"
|
734
|
+
inference_method = "decision_function"
|
674
735
|
|
675
736
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
676
737
|
# are specific to the type of dataset used.
|
677
738
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
678
739
|
|
740
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
741
|
+
|
679
742
|
if isinstance(dataset, DataFrame):
|
680
743
|
self._deps = self._batch_inference_validate_snowpark(
|
681
744
|
dataset=dataset,
|
682
745
|
inference_method=inference_method,
|
683
746
|
)
|
684
|
-
assert isinstance(
|
747
|
+
assert isinstance(
|
748
|
+
dataset._session, Session
|
749
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
685
750
|
transform_kwargs = dict(
|
686
751
|
session=dataset._session,
|
687
752
|
dependencies=self._deps,
|
688
|
-
drop_input_cols
|
753
|
+
drop_input_cols=self._drop_input_cols,
|
689
754
|
expected_output_cols_type="float",
|
690
755
|
)
|
756
|
+
expected_output_cols = self._align_expected_output_names(
|
757
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
758
|
+
)
|
691
759
|
|
692
760
|
elif isinstance(dataset, pd.DataFrame):
|
693
|
-
transform_kwargs = dict(
|
694
|
-
snowpark_input_cols = self._snowpark_cols,
|
695
|
-
drop_input_cols = self._drop_input_cols
|
696
|
-
)
|
761
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
697
762
|
|
698
763
|
transform_handlers = ModelTransformerBuilder.build(
|
699
764
|
dataset=dataset,
|
@@ -706,7 +771,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
706
771
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
707
772
|
inference_method=inference_method,
|
708
773
|
input_cols=self.input_cols,
|
709
|
-
expected_output_cols=
|
774
|
+
expected_output_cols=expected_output_cols,
|
710
775
|
**transform_kwargs
|
711
776
|
)
|
712
777
|
return output_df
|
@@ -735,12 +800,14 @@ class OneVsOneClassifier(BaseTransformer):
|
|
735
800
|
Output dataset with probability of the sample for each class in the model.
|
736
801
|
"""
|
737
802
|
super()._check_dataset_type(dataset)
|
738
|
-
inference_method="score_samples"
|
803
|
+
inference_method = "score_samples"
|
739
804
|
|
740
805
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
741
806
|
# are specific to the type of dataset used.
|
742
807
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
743
808
|
|
809
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
810
|
+
|
744
811
|
if isinstance(dataset, DataFrame):
|
745
812
|
self._deps = self._batch_inference_validate_snowpark(
|
746
813
|
dataset=dataset,
|
@@ -753,6 +820,9 @@ class OneVsOneClassifier(BaseTransformer):
|
|
753
820
|
drop_input_cols = self._drop_input_cols,
|
754
821
|
expected_output_cols_type="float",
|
755
822
|
)
|
823
|
+
expected_output_cols = self._align_expected_output_names(
|
824
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
825
|
+
)
|
756
826
|
|
757
827
|
elif isinstance(dataset, pd.DataFrame):
|
758
828
|
transform_kwargs = dict(
|
@@ -771,7 +841,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
771
841
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
772
842
|
inference_method=inference_method,
|
773
843
|
input_cols=self.input_cols,
|
774
|
-
expected_output_cols=
|
844
|
+
expected_output_cols=expected_output_cols,
|
775
845
|
**transform_kwargs
|
776
846
|
)
|
777
847
|
return output_df
|
@@ -918,50 +988,84 @@ class OneVsOneClassifier(BaseTransformer):
|
|
918
988
|
)
|
919
989
|
return output_df
|
920
990
|
|
991
|
+
|
992
|
+
|
993
|
+
def to_sklearn(self) -> Any:
|
994
|
+
"""Get sklearn.multiclass.OneVsOneClassifier object.
|
995
|
+
"""
|
996
|
+
if self._sklearn_object is None:
|
997
|
+
self._sklearn_object = self._create_sklearn_object()
|
998
|
+
return self._sklearn_object
|
999
|
+
|
1000
|
+
def to_xgboost(self) -> Any:
|
1001
|
+
raise exceptions.SnowflakeMLException(
|
1002
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1003
|
+
original_exception=AttributeError(
|
1004
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1005
|
+
"to_xgboost()",
|
1006
|
+
"to_sklearn()"
|
1007
|
+
)
|
1008
|
+
),
|
1009
|
+
)
|
1010
|
+
|
1011
|
+
def to_lightgbm(self) -> Any:
|
1012
|
+
raise exceptions.SnowflakeMLException(
|
1013
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1014
|
+
original_exception=AttributeError(
|
1015
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1016
|
+
"to_lightgbm()",
|
1017
|
+
"to_sklearn()"
|
1018
|
+
)
|
1019
|
+
),
|
1020
|
+
)
|
921
1021
|
|
922
|
-
def
|
1022
|
+
def _get_dependencies(self) -> List[str]:
|
1023
|
+
return self._deps
|
1024
|
+
|
1025
|
+
|
1026
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
923
1027
|
self._model_signature_dict = dict()
|
924
1028
|
|
925
1029
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
926
1030
|
|
927
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1031
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
928
1032
|
outputs: List[BaseFeatureSpec] = []
|
929
1033
|
if hasattr(self, "predict"):
|
930
1034
|
# keep mypy happy
|
931
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1035
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
932
1036
|
# For classifier, the type of predict is the same as the type of label
|
933
|
-
if self._sklearn_object._estimator_type ==
|
934
|
-
|
1037
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1038
|
+
# label columns is the desired type for output
|
935
1039
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
936
1040
|
# rename the output columns
|
937
1041
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
938
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
939
|
-
|
940
|
-
|
1042
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1043
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1044
|
+
)
|
941
1045
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
942
1046
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
943
|
-
# Clusterer returns int64 cluster labels.
|
1047
|
+
# Clusterer returns int64 cluster labels.
|
944
1048
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
945
1049
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
946
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
947
|
-
|
948
|
-
|
949
|
-
|
1050
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1051
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1052
|
+
)
|
1053
|
+
|
950
1054
|
# For regressor, the type of predict is float64
|
951
|
-
elif self._sklearn_object._estimator_type ==
|
1055
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
952
1056
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
953
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
954
|
-
|
955
|
-
|
956
|
-
|
1057
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1058
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1059
|
+
)
|
1060
|
+
|
957
1061
|
for prob_func in PROB_FUNCTIONS:
|
958
1062
|
if hasattr(self, prob_func):
|
959
1063
|
output_cols_prefix: str = f"{prob_func}_"
|
960
1064
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
961
1065
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
962
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
963
|
-
|
964
|
-
|
1066
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1067
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1068
|
+
)
|
965
1069
|
|
966
1070
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
967
1071
|
items = list(self._model_signature_dict.items())
|
@@ -974,10 +1078,10 @@ class OneVsOneClassifier(BaseTransformer):
|
|
974
1078
|
"""Returns model signature of current class.
|
975
1079
|
|
976
1080
|
Raises:
|
977
|
-
|
1081
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
978
1082
|
|
979
1083
|
Returns:
|
980
|
-
Dict
|
1084
|
+
Dict with each method and its input output signature
|
981
1085
|
"""
|
982
1086
|
if self._model_signature_dict is None:
|
983
1087
|
raise exceptions.SnowflakeMLException(
|
@@ -985,35 +1089,3 @@ class OneVsOneClassifier(BaseTransformer):
|
|
985
1089
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
986
1090
|
)
|
987
1091
|
return self._model_signature_dict
|
988
|
-
|
989
|
-
def to_sklearn(self) -> Any:
|
990
|
-
"""Get sklearn.multiclass.OneVsOneClassifier object.
|
991
|
-
"""
|
992
|
-
if self._sklearn_object is None:
|
993
|
-
self._sklearn_object = self._create_sklearn_object()
|
994
|
-
return self._sklearn_object
|
995
|
-
|
996
|
-
def to_xgboost(self) -> Any:
|
997
|
-
raise exceptions.SnowflakeMLException(
|
998
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
999
|
-
original_exception=AttributeError(
|
1000
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1001
|
-
"to_xgboost()",
|
1002
|
-
"to_sklearn()"
|
1003
|
-
)
|
1004
|
-
),
|
1005
|
-
)
|
1006
|
-
|
1007
|
-
def to_lightgbm(self) -> Any:
|
1008
|
-
raise exceptions.SnowflakeMLException(
|
1009
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1010
|
-
original_exception=AttributeError(
|
1011
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1012
|
-
"to_lightgbm()",
|
1013
|
-
"to_sklearn()"
|
1014
|
-
)
|
1015
|
-
),
|
1016
|
-
)
|
1017
|
-
|
1018
|
-
def _get_dependencies(self) -> List[str]:
|
1019
|
-
return self._deps
|