snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -297,12 +296,7 @@ class Ridge(BaseTransformer):
297
296
  )
298
297
  return selected_cols
299
298
 
300
- @telemetry.send_api_usage_telemetry(
301
- project=_PROJECT,
302
- subproject=_SUBPROJECT,
303
- custom_tags=dict([("autogen", True)]),
304
- )
305
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Ridge":
299
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Ridge":
306
300
  """Fit Ridge regression model
307
301
  For more details on this function, see [sklearn.linear_model.Ridge.fit]
308
302
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge.fit)
@@ -329,12 +323,14 @@ class Ridge(BaseTransformer):
329
323
 
330
324
  self._snowpark_cols = dataset.select(self.input_cols).columns
331
325
 
332
- # If we are already in a stored procedure, no need to kick off another one.
326
+ # If we are already in a stored procedure, no need to kick off another one.
333
327
  if SNOWML_SPROC_ENV in os.environ:
334
328
  statement_params = telemetry.get_function_usage_statement_params(
335
329
  project=_PROJECT,
336
330
  subproject=_SUBPROJECT,
337
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Ridge.__class__.__name__),
331
+ function_name=telemetry.get_statement_params_full_func_name(
332
+ inspect.currentframe(), Ridge.__class__.__name__
333
+ ),
338
334
  api_calls=[Session.call],
339
335
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
340
336
  )
@@ -355,7 +351,7 @@ class Ridge(BaseTransformer):
355
351
  )
356
352
  self._sklearn_object = model_trainer.train()
357
353
  self._is_fitted = True
358
- self._get_model_signatures(dataset)
354
+ self._generate_model_signatures(dataset)
359
355
  return self
360
356
 
361
357
  def _batch_inference_validate_snowpark(
@@ -431,7 +427,9 @@ class Ridge(BaseTransformer):
431
427
  # when it is classifier, infer the datatype from label columns
432
428
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
433
429
  # Batch inference takes a single expected output column type. Use the first columns type for now.
434
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
430
+ label_cols_signatures = [
431
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
432
+ ]
435
433
  if len(label_cols_signatures) == 0:
436
434
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
437
435
  raise exceptions.SnowflakeMLException(
@@ -439,25 +437,22 @@ class Ridge(BaseTransformer):
439
437
  original_exception=ValueError(error_str),
440
438
  )
441
439
 
442
- expected_type_inferred = convert_sp_to_sf_type(
443
- label_cols_signatures[0].as_snowpark_type()
444
- )
440
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
445
441
 
446
442
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
447
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
443
+ assert isinstance(
444
+ dataset._session, Session
445
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
448
446
 
449
447
  transform_kwargs = dict(
450
- session = dataset._session,
451
- dependencies = self._deps,
452
- drop_input_cols = self._drop_input_cols,
453
- expected_output_cols_type = expected_type_inferred,
448
+ session=dataset._session,
449
+ dependencies=self._deps,
450
+ drop_input_cols=self._drop_input_cols,
451
+ expected_output_cols_type=expected_type_inferred,
454
452
  )
455
453
 
456
454
  elif isinstance(dataset, pd.DataFrame):
457
- transform_kwargs = dict(
458
- snowpark_input_cols = self._snowpark_cols,
459
- drop_input_cols = self._drop_input_cols
460
- )
455
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
461
456
 
462
457
  transform_handlers = ModelTransformerBuilder.build(
463
458
  dataset=dataset,
@@ -497,7 +492,7 @@ class Ridge(BaseTransformer):
497
492
  Transformed dataset.
498
493
  """
499
494
  super()._check_dataset_type(dataset)
500
- inference_method="transform"
495
+ inference_method = "transform"
501
496
 
502
497
  # This dictionary contains optional kwargs for batch inference. These kwargs
503
498
  # are specific to the type of dataset used.
@@ -534,17 +529,14 @@ class Ridge(BaseTransformer):
534
529
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
535
530
 
536
531
  transform_kwargs = dict(
537
- session = dataset._session,
538
- dependencies = self._deps,
539
- drop_input_cols = self._drop_input_cols,
540
- expected_output_cols_type = expected_dtype,
532
+ session=dataset._session,
533
+ dependencies=self._deps,
534
+ drop_input_cols=self._drop_input_cols,
535
+ expected_output_cols_type=expected_dtype,
541
536
  )
542
537
 
543
538
  elif isinstance(dataset, pd.DataFrame):
544
- transform_kwargs = dict(
545
- snowpark_input_cols = self._snowpark_cols,
546
- drop_input_cols = self._drop_input_cols
547
- )
539
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
548
540
 
549
541
  transform_handlers = ModelTransformerBuilder.build(
550
542
  dataset=dataset,
@@ -563,7 +555,11 @@ class Ridge(BaseTransformer):
563
555
  return output_df
564
556
 
565
557
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
566
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
558
+ def fit_predict(
559
+ self,
560
+ dataset: Union[DataFrame, pd.DataFrame],
561
+ output_cols_prefix: str = "fit_predict_",
562
+ ) -> Union[DataFrame, pd.DataFrame]:
567
563
  """ Method not supported for this class.
568
564
 
569
565
 
@@ -588,7 +584,9 @@ class Ridge(BaseTransformer):
588
584
  )
589
585
  output_result, fitted_estimator = model_trainer.train_fit_predict(
590
586
  drop_input_cols=self._drop_input_cols,
591
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
587
+ expected_output_cols_list=(
588
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
589
+ ),
592
590
  )
593
591
  self._sklearn_object = fitted_estimator
594
592
  self._is_fitted = True
@@ -605,6 +603,62 @@ class Ridge(BaseTransformer):
605
603
  assert self._sklearn_object is not None
606
604
  return self._sklearn_object.embedding_
607
605
 
606
+
607
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
608
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
609
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
610
+ """
611
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
612
+ # The following condition is introduced for kneighbors methods, and not used in other methods
613
+ if output_cols:
614
+ output_cols = [
615
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
616
+ for c in output_cols
617
+ ]
618
+ elif getattr(self._sklearn_object, "classes_", None) is None:
619
+ output_cols = [output_cols_prefix]
620
+ elif self._sklearn_object is not None:
621
+ classes = self._sklearn_object.classes_
622
+ if isinstance(classes, numpy.ndarray):
623
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
624
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
625
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
626
+ output_cols = []
627
+ for i, cl in enumerate(classes):
628
+ # For binary classification, there is only one output column for each class
629
+ # ndarray as the two classes are complementary.
630
+ if len(cl) == 2:
631
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
632
+ else:
633
+ output_cols.extend([
634
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
635
+ ])
636
+ else:
637
+ output_cols = []
638
+
639
+ # Make sure column names are valid snowflake identifiers.
640
+ assert output_cols is not None # Make MyPy happy
641
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
642
+
643
+ return rv
644
+
645
+ def _align_expected_output_names(
646
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
647
+ ) -> List[str]:
648
+ # in case the inferred output column names dimension is different
649
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
650
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
651
+ output_df_columns = list(output_df_pd.columns)
652
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
653
+ if self.sample_weight_col:
654
+ output_df_columns_set -= set(self.sample_weight_col)
655
+ # if the dimension of inferred output column names is correct; use it
656
+ if len(expected_output_cols_list) == len(output_df_columns_set):
657
+ return expected_output_cols_list
658
+ # otherwise, use the sklearn estimator's output
659
+ else:
660
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
661
+
608
662
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
609
663
  @telemetry.send_api_usage_telemetry(
610
664
  project=_PROJECT,
@@ -635,24 +689,28 @@ class Ridge(BaseTransformer):
635
689
  # are specific to the type of dataset used.
636
690
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
637
691
 
692
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
693
+
638
694
  if isinstance(dataset, DataFrame):
639
695
  self._deps = self._batch_inference_validate_snowpark(
640
696
  dataset=dataset,
641
697
  inference_method=inference_method,
642
698
  )
643
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
699
+ assert isinstance(
700
+ dataset._session, Session
701
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
644
702
  transform_kwargs = dict(
645
703
  session=dataset._session,
646
704
  dependencies=self._deps,
647
- drop_input_cols = self._drop_input_cols,
705
+ drop_input_cols=self._drop_input_cols,
648
706
  expected_output_cols_type="float",
649
707
  )
708
+ expected_output_cols = self._align_expected_output_names(
709
+ inference_method, dataset, expected_output_cols, output_cols_prefix
710
+ )
650
711
 
651
712
  elif isinstance(dataset, pd.DataFrame):
652
- transform_kwargs = dict(
653
- snowpark_input_cols = self._snowpark_cols,
654
- drop_input_cols = self._drop_input_cols
655
- )
713
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
656
714
 
657
715
  transform_handlers = ModelTransformerBuilder.build(
658
716
  dataset=dataset,
@@ -664,7 +722,7 @@ class Ridge(BaseTransformer):
664
722
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
665
723
  inference_method=inference_method,
666
724
  input_cols=self.input_cols,
667
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
725
+ expected_output_cols=expected_output_cols,
668
726
  **transform_kwargs
669
727
  )
670
728
  return output_df
@@ -694,7 +752,8 @@ class Ridge(BaseTransformer):
694
752
  Output dataset with log probability of the sample for each class in the model.
695
753
  """
696
754
  super()._check_dataset_type(dataset)
697
- inference_method="predict_log_proba"
755
+ inference_method = "predict_log_proba"
756
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
698
757
 
699
758
  # This dictionary contains optional kwargs for batch inference. These kwargs
700
759
  # are specific to the type of dataset used.
@@ -705,18 +764,20 @@ class Ridge(BaseTransformer):
705
764
  dataset=dataset,
706
765
  inference_method=inference_method,
707
766
  )
708
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
767
+ assert isinstance(
768
+ dataset._session, Session
769
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
709
770
  transform_kwargs = dict(
710
771
  session=dataset._session,
711
772
  dependencies=self._deps,
712
- drop_input_cols = self._drop_input_cols,
773
+ drop_input_cols=self._drop_input_cols,
713
774
  expected_output_cols_type="float",
714
775
  )
776
+ expected_output_cols = self._align_expected_output_names(
777
+ inference_method, dataset, expected_output_cols, output_cols_prefix
778
+ )
715
779
  elif isinstance(dataset, pd.DataFrame):
716
- transform_kwargs = dict(
717
- snowpark_input_cols = self._snowpark_cols,
718
- drop_input_cols = self._drop_input_cols
719
- )
780
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
720
781
 
721
782
  transform_handlers = ModelTransformerBuilder.build(
722
783
  dataset=dataset,
@@ -729,7 +790,7 @@ class Ridge(BaseTransformer):
729
790
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
730
791
  inference_method=inference_method,
731
792
  input_cols=self.input_cols,
732
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
793
+ expected_output_cols=expected_output_cols,
733
794
  **transform_kwargs
734
795
  )
735
796
  return output_df
@@ -755,30 +816,34 @@ class Ridge(BaseTransformer):
755
816
  Output dataset with results of the decision function for the samples in input dataset.
756
817
  """
757
818
  super()._check_dataset_type(dataset)
758
- inference_method="decision_function"
819
+ inference_method = "decision_function"
759
820
 
760
821
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
822
  # are specific to the type of dataset used.
762
823
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
763
824
 
825
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
826
+
764
827
  if isinstance(dataset, DataFrame):
765
828
  self._deps = self._batch_inference_validate_snowpark(
766
829
  dataset=dataset,
767
830
  inference_method=inference_method,
768
831
  )
769
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
832
+ assert isinstance(
833
+ dataset._session, Session
834
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
770
835
  transform_kwargs = dict(
771
836
  session=dataset._session,
772
837
  dependencies=self._deps,
773
- drop_input_cols = self._drop_input_cols,
838
+ drop_input_cols=self._drop_input_cols,
774
839
  expected_output_cols_type="float",
775
840
  )
841
+ expected_output_cols = self._align_expected_output_names(
842
+ inference_method, dataset, expected_output_cols, output_cols_prefix
843
+ )
776
844
 
777
845
  elif isinstance(dataset, pd.DataFrame):
778
- transform_kwargs = dict(
779
- snowpark_input_cols = self._snowpark_cols,
780
- drop_input_cols = self._drop_input_cols
781
- )
846
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
782
847
 
783
848
  transform_handlers = ModelTransformerBuilder.build(
784
849
  dataset=dataset,
@@ -791,7 +856,7 @@ class Ridge(BaseTransformer):
791
856
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
792
857
  inference_method=inference_method,
793
858
  input_cols=self.input_cols,
794
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
859
+ expected_output_cols=expected_output_cols,
795
860
  **transform_kwargs
796
861
  )
797
862
  return output_df
@@ -820,12 +885,14 @@ class Ridge(BaseTransformer):
820
885
  Output dataset with probability of the sample for each class in the model.
821
886
  """
822
887
  super()._check_dataset_type(dataset)
823
- inference_method="score_samples"
888
+ inference_method = "score_samples"
824
889
 
825
890
  # This dictionary contains optional kwargs for batch inference. These kwargs
826
891
  # are specific to the type of dataset used.
827
892
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
828
893
 
894
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
895
+
829
896
  if isinstance(dataset, DataFrame):
830
897
  self._deps = self._batch_inference_validate_snowpark(
831
898
  dataset=dataset,
@@ -838,6 +905,9 @@ class Ridge(BaseTransformer):
838
905
  drop_input_cols = self._drop_input_cols,
839
906
  expected_output_cols_type="float",
840
907
  )
908
+ expected_output_cols = self._align_expected_output_names(
909
+ inference_method, dataset, expected_output_cols, output_cols_prefix
910
+ )
841
911
 
842
912
  elif isinstance(dataset, pd.DataFrame):
843
913
  transform_kwargs = dict(
@@ -856,7 +926,7 @@ class Ridge(BaseTransformer):
856
926
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
857
927
  inference_method=inference_method,
858
928
  input_cols=self.input_cols,
859
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
929
+ expected_output_cols=expected_output_cols,
860
930
  **transform_kwargs
861
931
  )
862
932
  return output_df
@@ -1003,50 +1073,84 @@ class Ridge(BaseTransformer):
1003
1073
  )
1004
1074
  return output_df
1005
1075
 
1076
+
1077
+
1078
+ def to_sklearn(self) -> Any:
1079
+ """Get sklearn.linear_model.Ridge object.
1080
+ """
1081
+ if self._sklearn_object is None:
1082
+ self._sklearn_object = self._create_sklearn_object()
1083
+ return self._sklearn_object
1084
+
1085
+ def to_xgboost(self) -> Any:
1086
+ raise exceptions.SnowflakeMLException(
1087
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1088
+ original_exception=AttributeError(
1089
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1090
+ "to_xgboost()",
1091
+ "to_sklearn()"
1092
+ )
1093
+ ),
1094
+ )
1095
+
1096
+ def to_lightgbm(self) -> Any:
1097
+ raise exceptions.SnowflakeMLException(
1098
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1099
+ original_exception=AttributeError(
1100
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1101
+ "to_lightgbm()",
1102
+ "to_sklearn()"
1103
+ )
1104
+ ),
1105
+ )
1006
1106
 
1007
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1107
+ def _get_dependencies(self) -> List[str]:
1108
+ return self._deps
1109
+
1110
+
1111
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1008
1112
  self._model_signature_dict = dict()
1009
1113
 
1010
1114
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1011
1115
 
1012
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1116
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1013
1117
  outputs: List[BaseFeatureSpec] = []
1014
1118
  if hasattr(self, "predict"):
1015
1119
  # keep mypy happy
1016
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1120
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1017
1121
  # For classifier, the type of predict is the same as the type of label
1018
- if self._sklearn_object._estimator_type == 'classifier':
1019
- # label columns is the desired type for output
1122
+ if self._sklearn_object._estimator_type == "classifier":
1123
+ # label columns is the desired type for output
1020
1124
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1021
1125
  # rename the output columns
1022
1126
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1023
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1127
+ self._model_signature_dict["predict"] = ModelSignature(
1128
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1129
+ )
1026
1130
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1027
1131
  # For outlier models, returns -1 for outliers and 1 for inliers.
1028
- # Clusterer returns int64 cluster labels.
1132
+ # Clusterer returns int64 cluster labels.
1029
1133
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1030
1134
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1031
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1032
- ([] if self._drop_input_cols else inputs)
1033
- + outputs)
1034
-
1135
+ self._model_signature_dict["predict"] = ModelSignature(
1136
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1137
+ )
1138
+
1035
1139
  # For regressor, the type of predict is float64
1036
- elif self._sklearn_object._estimator_type == 'regressor':
1140
+ elif self._sklearn_object._estimator_type == "regressor":
1037
1141
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1038
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1041
-
1142
+ self._model_signature_dict["predict"] = ModelSignature(
1143
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1144
+ )
1145
+
1042
1146
  for prob_func in PROB_FUNCTIONS:
1043
1147
  if hasattr(self, prob_func):
1044
1148
  output_cols_prefix: str = f"{prob_func}_"
1045
1149
  output_column_names = self._get_output_column_names(output_cols_prefix)
1046
1150
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1047
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1048
- ([] if self._drop_input_cols else inputs)
1049
- + outputs)
1151
+ self._model_signature_dict[prob_func] = ModelSignature(
1152
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1153
+ )
1050
1154
 
1051
1155
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1052
1156
  items = list(self._model_signature_dict.items())
@@ -1059,10 +1163,10 @@ class Ridge(BaseTransformer):
1059
1163
  """Returns model signature of current class.
1060
1164
 
1061
1165
  Raises:
1062
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1166
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1063
1167
 
1064
1168
  Returns:
1065
- Dict[str, ModelSignature]: each method and its input output signature
1169
+ Dict with each method and its input output signature
1066
1170
  """
1067
1171
  if self._model_signature_dict is None:
1068
1172
  raise exceptions.SnowflakeMLException(
@@ -1070,35 +1174,3 @@ class Ridge(BaseTransformer):
1070
1174
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1071
1175
  )
1072
1176
  return self._model_signature_dict
1073
-
1074
- def to_sklearn(self) -> Any:
1075
- """Get sklearn.linear_model.Ridge object.
1076
- """
1077
- if self._sklearn_object is None:
1078
- self._sklearn_object = self._create_sklearn_object()
1079
- return self._sklearn_object
1080
-
1081
- def to_xgboost(self) -> Any:
1082
- raise exceptions.SnowflakeMLException(
1083
- error_code=error_codes.METHOD_NOT_ALLOWED,
1084
- original_exception=AttributeError(
1085
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
- "to_xgboost()",
1087
- "to_sklearn()"
1088
- )
1089
- ),
1090
- )
1091
-
1092
- def to_lightgbm(self) -> Any:
1093
- raise exceptions.SnowflakeMLException(
1094
- error_code=error_codes.METHOD_NOT_ALLOWED,
1095
- original_exception=AttributeError(
1096
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1097
- "to_lightgbm()",
1098
- "to_sklearn()"
1099
- )
1100
- ),
1101
- )
1102
-
1103
- def _get_dependencies(self) -> List[str]:
1104
- return self._deps