snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -269,12 +268,7 @@ class BayesianRidge(BaseTransformer):
269
268
  )
270
269
  return selected_cols
271
270
 
272
- @telemetry.send_api_usage_telemetry(
273
- project=_PROJECT,
274
- subproject=_SUBPROJECT,
275
- custom_tags=dict([("autogen", True)]),
276
- )
277
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BayesianRidge":
271
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BayesianRidge":
278
272
  """Fit the model
279
273
  For more details on this function, see [sklearn.linear_model.BayesianRidge.fit]
280
274
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn.linear_model.BayesianRidge.fit)
@@ -301,12 +295,14 @@ class BayesianRidge(BaseTransformer):
301
295
 
302
296
  self._snowpark_cols = dataset.select(self.input_cols).columns
303
297
 
304
- # If we are already in a stored procedure, no need to kick off another one.
298
+ # If we are already in a stored procedure, no need to kick off another one.
305
299
  if SNOWML_SPROC_ENV in os.environ:
306
300
  statement_params = telemetry.get_function_usage_statement_params(
307
301
  project=_PROJECT,
308
302
  subproject=_SUBPROJECT,
309
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BayesianRidge.__class__.__name__),
303
+ function_name=telemetry.get_statement_params_full_func_name(
304
+ inspect.currentframe(), BayesianRidge.__class__.__name__
305
+ ),
310
306
  api_calls=[Session.call],
311
307
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
312
308
  )
@@ -327,7 +323,7 @@ class BayesianRidge(BaseTransformer):
327
323
  )
328
324
  self._sklearn_object = model_trainer.train()
329
325
  self._is_fitted = True
330
- self._get_model_signatures(dataset)
326
+ self._generate_model_signatures(dataset)
331
327
  return self
332
328
 
333
329
  def _batch_inference_validate_snowpark(
@@ -403,7 +399,9 @@ class BayesianRidge(BaseTransformer):
403
399
  # when it is classifier, infer the datatype from label columns
404
400
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
405
401
  # Batch inference takes a single expected output column type. Use the first columns type for now.
406
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
402
+ label_cols_signatures = [
403
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
404
+ ]
407
405
  if len(label_cols_signatures) == 0:
408
406
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
409
407
  raise exceptions.SnowflakeMLException(
@@ -411,25 +409,22 @@ class BayesianRidge(BaseTransformer):
411
409
  original_exception=ValueError(error_str),
412
410
  )
413
411
 
414
- expected_type_inferred = convert_sp_to_sf_type(
415
- label_cols_signatures[0].as_snowpark_type()
416
- )
412
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
417
413
 
418
414
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
419
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
415
+ assert isinstance(
416
+ dataset._session, Session
417
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
420
418
 
421
419
  transform_kwargs = dict(
422
- session = dataset._session,
423
- dependencies = self._deps,
424
- drop_input_cols = self._drop_input_cols,
425
- expected_output_cols_type = expected_type_inferred,
420
+ session=dataset._session,
421
+ dependencies=self._deps,
422
+ drop_input_cols=self._drop_input_cols,
423
+ expected_output_cols_type=expected_type_inferred,
426
424
  )
427
425
 
428
426
  elif isinstance(dataset, pd.DataFrame):
429
- transform_kwargs = dict(
430
- snowpark_input_cols = self._snowpark_cols,
431
- drop_input_cols = self._drop_input_cols
432
- )
427
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
433
428
 
434
429
  transform_handlers = ModelTransformerBuilder.build(
435
430
  dataset=dataset,
@@ -469,7 +464,7 @@ class BayesianRidge(BaseTransformer):
469
464
  Transformed dataset.
470
465
  """
471
466
  super()._check_dataset_type(dataset)
472
- inference_method="transform"
467
+ inference_method = "transform"
473
468
 
474
469
  # This dictionary contains optional kwargs for batch inference. These kwargs
475
470
  # are specific to the type of dataset used.
@@ -506,17 +501,14 @@ class BayesianRidge(BaseTransformer):
506
501
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
507
502
 
508
503
  transform_kwargs = dict(
509
- session = dataset._session,
510
- dependencies = self._deps,
511
- drop_input_cols = self._drop_input_cols,
512
- expected_output_cols_type = expected_dtype,
504
+ session=dataset._session,
505
+ dependencies=self._deps,
506
+ drop_input_cols=self._drop_input_cols,
507
+ expected_output_cols_type=expected_dtype,
513
508
  )
514
509
 
515
510
  elif isinstance(dataset, pd.DataFrame):
516
- transform_kwargs = dict(
517
- snowpark_input_cols = self._snowpark_cols,
518
- drop_input_cols = self._drop_input_cols
519
- )
511
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
520
512
 
521
513
  transform_handlers = ModelTransformerBuilder.build(
522
514
  dataset=dataset,
@@ -535,7 +527,11 @@ class BayesianRidge(BaseTransformer):
535
527
  return output_df
536
528
 
537
529
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
538
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
530
+ def fit_predict(
531
+ self,
532
+ dataset: Union[DataFrame, pd.DataFrame],
533
+ output_cols_prefix: str = "fit_predict_",
534
+ ) -> Union[DataFrame, pd.DataFrame]:
539
535
  """ Method not supported for this class.
540
536
 
541
537
 
@@ -560,7 +556,9 @@ class BayesianRidge(BaseTransformer):
560
556
  )
561
557
  output_result, fitted_estimator = model_trainer.train_fit_predict(
562
558
  drop_input_cols=self._drop_input_cols,
563
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
559
+ expected_output_cols_list=(
560
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
561
+ ),
564
562
  )
565
563
  self._sklearn_object = fitted_estimator
566
564
  self._is_fitted = True
@@ -577,6 +575,62 @@ class BayesianRidge(BaseTransformer):
577
575
  assert self._sklearn_object is not None
578
576
  return self._sklearn_object.embedding_
579
577
 
578
+
579
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
580
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
581
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
582
+ """
583
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
584
+ # The following condition is introduced for kneighbors methods, and not used in other methods
585
+ if output_cols:
586
+ output_cols = [
587
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
588
+ for c in output_cols
589
+ ]
590
+ elif getattr(self._sklearn_object, "classes_", None) is None:
591
+ output_cols = [output_cols_prefix]
592
+ elif self._sklearn_object is not None:
593
+ classes = self._sklearn_object.classes_
594
+ if isinstance(classes, numpy.ndarray):
595
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
596
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
597
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
598
+ output_cols = []
599
+ for i, cl in enumerate(classes):
600
+ # For binary classification, there is only one output column for each class
601
+ # ndarray as the two classes are complementary.
602
+ if len(cl) == 2:
603
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
604
+ else:
605
+ output_cols.extend([
606
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
607
+ ])
608
+ else:
609
+ output_cols = []
610
+
611
+ # Make sure column names are valid snowflake identifiers.
612
+ assert output_cols is not None # Make MyPy happy
613
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
614
+
615
+ return rv
616
+
617
+ def _align_expected_output_names(
618
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
619
+ ) -> List[str]:
620
+ # in case the inferred output column names dimension is different
621
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
622
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
623
+ output_df_columns = list(output_df_pd.columns)
624
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
625
+ if self.sample_weight_col:
626
+ output_df_columns_set -= set(self.sample_weight_col)
627
+ # if the dimension of inferred output column names is correct; use it
628
+ if len(expected_output_cols_list) == len(output_df_columns_set):
629
+ return expected_output_cols_list
630
+ # otherwise, use the sklearn estimator's output
631
+ else:
632
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
633
+
580
634
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
581
635
  @telemetry.send_api_usage_telemetry(
582
636
  project=_PROJECT,
@@ -607,24 +661,28 @@ class BayesianRidge(BaseTransformer):
607
661
  # are specific to the type of dataset used.
608
662
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
609
663
 
664
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
665
+
610
666
  if isinstance(dataset, DataFrame):
611
667
  self._deps = self._batch_inference_validate_snowpark(
612
668
  dataset=dataset,
613
669
  inference_method=inference_method,
614
670
  )
615
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
+ assert isinstance(
672
+ dataset._session, Session
673
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
616
674
  transform_kwargs = dict(
617
675
  session=dataset._session,
618
676
  dependencies=self._deps,
619
- drop_input_cols = self._drop_input_cols,
677
+ drop_input_cols=self._drop_input_cols,
620
678
  expected_output_cols_type="float",
621
679
  )
680
+ expected_output_cols = self._align_expected_output_names(
681
+ inference_method, dataset, expected_output_cols, output_cols_prefix
682
+ )
622
683
 
623
684
  elif isinstance(dataset, pd.DataFrame):
624
- transform_kwargs = dict(
625
- snowpark_input_cols = self._snowpark_cols,
626
- drop_input_cols = self._drop_input_cols
627
- )
685
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
628
686
 
629
687
  transform_handlers = ModelTransformerBuilder.build(
630
688
  dataset=dataset,
@@ -636,7 +694,7 @@ class BayesianRidge(BaseTransformer):
636
694
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
637
695
  inference_method=inference_method,
638
696
  input_cols=self.input_cols,
639
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
697
+ expected_output_cols=expected_output_cols,
640
698
  **transform_kwargs
641
699
  )
642
700
  return output_df
@@ -666,7 +724,8 @@ class BayesianRidge(BaseTransformer):
666
724
  Output dataset with log probability of the sample for each class in the model.
667
725
  """
668
726
  super()._check_dataset_type(dataset)
669
- inference_method="predict_log_proba"
727
+ inference_method = "predict_log_proba"
728
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
670
729
 
671
730
  # This dictionary contains optional kwargs for batch inference. These kwargs
672
731
  # are specific to the type of dataset used.
@@ -677,18 +736,20 @@ class BayesianRidge(BaseTransformer):
677
736
  dataset=dataset,
678
737
  inference_method=inference_method,
679
738
  )
680
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
739
+ assert isinstance(
740
+ dataset._session, Session
741
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
681
742
  transform_kwargs = dict(
682
743
  session=dataset._session,
683
744
  dependencies=self._deps,
684
- drop_input_cols = self._drop_input_cols,
745
+ drop_input_cols=self._drop_input_cols,
685
746
  expected_output_cols_type="float",
686
747
  )
748
+ expected_output_cols = self._align_expected_output_names(
749
+ inference_method, dataset, expected_output_cols, output_cols_prefix
750
+ )
687
751
  elif isinstance(dataset, pd.DataFrame):
688
- transform_kwargs = dict(
689
- snowpark_input_cols = self._snowpark_cols,
690
- drop_input_cols = self._drop_input_cols
691
- )
752
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
692
753
 
693
754
  transform_handlers = ModelTransformerBuilder.build(
694
755
  dataset=dataset,
@@ -701,7 +762,7 @@ class BayesianRidge(BaseTransformer):
701
762
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
702
763
  inference_method=inference_method,
703
764
  input_cols=self.input_cols,
704
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
765
+ expected_output_cols=expected_output_cols,
705
766
  **transform_kwargs
706
767
  )
707
768
  return output_df
@@ -727,30 +788,34 @@ class BayesianRidge(BaseTransformer):
727
788
  Output dataset with results of the decision function for the samples in input dataset.
728
789
  """
729
790
  super()._check_dataset_type(dataset)
730
- inference_method="decision_function"
791
+ inference_method = "decision_function"
731
792
 
732
793
  # This dictionary contains optional kwargs for batch inference. These kwargs
733
794
  # are specific to the type of dataset used.
734
795
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
735
796
 
797
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
798
+
736
799
  if isinstance(dataset, DataFrame):
737
800
  self._deps = self._batch_inference_validate_snowpark(
738
801
  dataset=dataset,
739
802
  inference_method=inference_method,
740
803
  )
741
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
804
+ assert isinstance(
805
+ dataset._session, Session
806
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
742
807
  transform_kwargs = dict(
743
808
  session=dataset._session,
744
809
  dependencies=self._deps,
745
- drop_input_cols = self._drop_input_cols,
810
+ drop_input_cols=self._drop_input_cols,
746
811
  expected_output_cols_type="float",
747
812
  )
813
+ expected_output_cols = self._align_expected_output_names(
814
+ inference_method, dataset, expected_output_cols, output_cols_prefix
815
+ )
748
816
 
749
817
  elif isinstance(dataset, pd.DataFrame):
750
- transform_kwargs = dict(
751
- snowpark_input_cols = self._snowpark_cols,
752
- drop_input_cols = self._drop_input_cols
753
- )
818
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
754
819
 
755
820
  transform_handlers = ModelTransformerBuilder.build(
756
821
  dataset=dataset,
@@ -763,7 +828,7 @@ class BayesianRidge(BaseTransformer):
763
828
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
764
829
  inference_method=inference_method,
765
830
  input_cols=self.input_cols,
766
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
831
+ expected_output_cols=expected_output_cols,
767
832
  **transform_kwargs
768
833
  )
769
834
  return output_df
@@ -792,12 +857,14 @@ class BayesianRidge(BaseTransformer):
792
857
  Output dataset with probability of the sample for each class in the model.
793
858
  """
794
859
  super()._check_dataset_type(dataset)
795
- inference_method="score_samples"
860
+ inference_method = "score_samples"
796
861
 
797
862
  # This dictionary contains optional kwargs for batch inference. These kwargs
798
863
  # are specific to the type of dataset used.
799
864
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
800
865
 
866
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
867
+
801
868
  if isinstance(dataset, DataFrame):
802
869
  self._deps = self._batch_inference_validate_snowpark(
803
870
  dataset=dataset,
@@ -810,6 +877,9 @@ class BayesianRidge(BaseTransformer):
810
877
  drop_input_cols = self._drop_input_cols,
811
878
  expected_output_cols_type="float",
812
879
  )
880
+ expected_output_cols = self._align_expected_output_names(
881
+ inference_method, dataset, expected_output_cols, output_cols_prefix
882
+ )
813
883
 
814
884
  elif isinstance(dataset, pd.DataFrame):
815
885
  transform_kwargs = dict(
@@ -828,7 +898,7 @@ class BayesianRidge(BaseTransformer):
828
898
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
829
899
  inference_method=inference_method,
830
900
  input_cols=self.input_cols,
831
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
901
+ expected_output_cols=expected_output_cols,
832
902
  **transform_kwargs
833
903
  )
834
904
  return output_df
@@ -975,50 +1045,84 @@ class BayesianRidge(BaseTransformer):
975
1045
  )
976
1046
  return output_df
977
1047
 
1048
+
1049
+
1050
+ def to_sklearn(self) -> Any:
1051
+ """Get sklearn.linear_model.BayesianRidge object.
1052
+ """
1053
+ if self._sklearn_object is None:
1054
+ self._sklearn_object = self._create_sklearn_object()
1055
+ return self._sklearn_object
1056
+
1057
+ def to_xgboost(self) -> Any:
1058
+ raise exceptions.SnowflakeMLException(
1059
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1060
+ original_exception=AttributeError(
1061
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1062
+ "to_xgboost()",
1063
+ "to_sklearn()"
1064
+ )
1065
+ ),
1066
+ )
1067
+
1068
+ def to_lightgbm(self) -> Any:
1069
+ raise exceptions.SnowflakeMLException(
1070
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1071
+ original_exception=AttributeError(
1072
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1073
+ "to_lightgbm()",
1074
+ "to_sklearn()"
1075
+ )
1076
+ ),
1077
+ )
978
1078
 
979
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1079
+ def _get_dependencies(self) -> List[str]:
1080
+ return self._deps
1081
+
1082
+
1083
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
980
1084
  self._model_signature_dict = dict()
981
1085
 
982
1086
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
983
1087
 
984
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1088
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
985
1089
  outputs: List[BaseFeatureSpec] = []
986
1090
  if hasattr(self, "predict"):
987
1091
  # keep mypy happy
988
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1092
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
989
1093
  # For classifier, the type of predict is the same as the type of label
990
- if self._sklearn_object._estimator_type == 'classifier':
991
- # label columns is the desired type for output
1094
+ if self._sklearn_object._estimator_type == "classifier":
1095
+ # label columns is the desired type for output
992
1096
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
993
1097
  # rename the output columns
994
1098
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
995
- self._model_signature_dict["predict"] = ModelSignature(inputs,
996
- ([] if self._drop_input_cols else inputs)
997
- + outputs)
1099
+ self._model_signature_dict["predict"] = ModelSignature(
1100
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1101
+ )
998
1102
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
999
1103
  # For outlier models, returns -1 for outliers and 1 for inliers.
1000
- # Clusterer returns int64 cluster labels.
1104
+ # Clusterer returns int64 cluster labels.
1001
1105
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1002
1106
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1003
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1004
- ([] if self._drop_input_cols else inputs)
1005
- + outputs)
1006
-
1107
+ self._model_signature_dict["predict"] = ModelSignature(
1108
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1109
+ )
1110
+
1007
1111
  # For regressor, the type of predict is float64
1008
- elif self._sklearn_object._estimator_type == 'regressor':
1112
+ elif self._sklearn_object._estimator_type == "regressor":
1009
1113
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1010
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1011
- ([] if self._drop_input_cols else inputs)
1012
- + outputs)
1013
-
1114
+ self._model_signature_dict["predict"] = ModelSignature(
1115
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1116
+ )
1117
+
1014
1118
  for prob_func in PROB_FUNCTIONS:
1015
1119
  if hasattr(self, prob_func):
1016
1120
  output_cols_prefix: str = f"{prob_func}_"
1017
1121
  output_column_names = self._get_output_column_names(output_cols_prefix)
1018
1122
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1019
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1020
- ([] if self._drop_input_cols else inputs)
1021
- + outputs)
1123
+ self._model_signature_dict[prob_func] = ModelSignature(
1124
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1125
+ )
1022
1126
 
1023
1127
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1024
1128
  items = list(self._model_signature_dict.items())
@@ -1031,10 +1135,10 @@ class BayesianRidge(BaseTransformer):
1031
1135
  """Returns model signature of current class.
1032
1136
 
1033
1137
  Raises:
1034
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1138
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1035
1139
 
1036
1140
  Returns:
1037
- Dict[str, ModelSignature]: each method and its input output signature
1141
+ Dict with each method and its input output signature
1038
1142
  """
1039
1143
  if self._model_signature_dict is None:
1040
1144
  raise exceptions.SnowflakeMLException(
@@ -1042,35 +1146,3 @@ class BayesianRidge(BaseTransformer):
1042
1146
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1043
1147
  )
1044
1148
  return self._model_signature_dict
1045
-
1046
- def to_sklearn(self) -> Any:
1047
- """Get sklearn.linear_model.BayesianRidge object.
1048
- """
1049
- if self._sklearn_object is None:
1050
- self._sklearn_object = self._create_sklearn_object()
1051
- return self._sklearn_object
1052
-
1053
- def to_xgboost(self) -> Any:
1054
- raise exceptions.SnowflakeMLException(
1055
- error_code=error_codes.METHOD_NOT_ALLOWED,
1056
- original_exception=AttributeError(
1057
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1058
- "to_xgboost()",
1059
- "to_sklearn()"
1060
- )
1061
- ),
1062
- )
1063
-
1064
- def to_lightgbm(self) -> Any:
1065
- raise exceptions.SnowflakeMLException(
1066
- error_code=error_codes.METHOD_NOT_ALLOWED,
1067
- original_exception=AttributeError(
1068
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1069
- "to_lightgbm()",
1070
- "to_sklearn()"
1071
- )
1072
- ),
1073
- )
1074
-
1075
- def _get_dependencies(self) -> List[str]:
1076
- return self._deps