snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -267,12 +266,7 @@ class CalibratedClassifierCV(BaseTransformer):
267
266
  )
268
267
  return selected_cols
269
268
 
270
- @telemetry.send_api_usage_telemetry(
271
- project=_PROJECT,
272
- subproject=_SUBPROJECT,
273
- custom_tags=dict([("autogen", True)]),
274
- )
275
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "CalibratedClassifierCV":
269
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "CalibratedClassifierCV":
276
270
  """Fit the calibrated model
277
271
  For more details on this function, see [sklearn.calibration.CalibratedClassifierCV.fit]
278
272
  (https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV.fit)
@@ -299,12 +293,14 @@ class CalibratedClassifierCV(BaseTransformer):
299
293
 
300
294
  self._snowpark_cols = dataset.select(self.input_cols).columns
301
295
 
302
- # If we are already in a stored procedure, no need to kick off another one.
296
+ # If we are already in a stored procedure, no need to kick off another one.
303
297
  if SNOWML_SPROC_ENV in os.environ:
304
298
  statement_params = telemetry.get_function_usage_statement_params(
305
299
  project=_PROJECT,
306
300
  subproject=_SUBPROJECT,
307
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), CalibratedClassifierCV.__class__.__name__),
301
+ function_name=telemetry.get_statement_params_full_func_name(
302
+ inspect.currentframe(), CalibratedClassifierCV.__class__.__name__
303
+ ),
308
304
  api_calls=[Session.call],
309
305
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
310
306
  )
@@ -325,7 +321,7 @@ class CalibratedClassifierCV(BaseTransformer):
325
321
  )
326
322
  self._sklearn_object = model_trainer.train()
327
323
  self._is_fitted = True
328
- self._get_model_signatures(dataset)
324
+ self._generate_model_signatures(dataset)
329
325
  return self
330
326
 
331
327
  def _batch_inference_validate_snowpark(
@@ -401,7 +397,9 @@ class CalibratedClassifierCV(BaseTransformer):
401
397
  # when it is classifier, infer the datatype from label columns
402
398
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
403
399
  # Batch inference takes a single expected output column type. Use the first columns type for now.
404
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
400
+ label_cols_signatures = [
401
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
402
+ ]
405
403
  if len(label_cols_signatures) == 0:
406
404
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
407
405
  raise exceptions.SnowflakeMLException(
@@ -409,25 +407,22 @@ class CalibratedClassifierCV(BaseTransformer):
409
407
  original_exception=ValueError(error_str),
410
408
  )
411
409
 
412
- expected_type_inferred = convert_sp_to_sf_type(
413
- label_cols_signatures[0].as_snowpark_type()
414
- )
410
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
415
411
 
416
412
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
417
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
413
+ assert isinstance(
414
+ dataset._session, Session
415
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
418
416
 
419
417
  transform_kwargs = dict(
420
- session = dataset._session,
421
- dependencies = self._deps,
422
- drop_input_cols = self._drop_input_cols,
423
- expected_output_cols_type = expected_type_inferred,
418
+ session=dataset._session,
419
+ dependencies=self._deps,
420
+ drop_input_cols=self._drop_input_cols,
421
+ expected_output_cols_type=expected_type_inferred,
424
422
  )
425
423
 
426
424
  elif isinstance(dataset, pd.DataFrame):
427
- transform_kwargs = dict(
428
- snowpark_input_cols = self._snowpark_cols,
429
- drop_input_cols = self._drop_input_cols
430
- )
425
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
431
426
 
432
427
  transform_handlers = ModelTransformerBuilder.build(
433
428
  dataset=dataset,
@@ -467,7 +462,7 @@ class CalibratedClassifierCV(BaseTransformer):
467
462
  Transformed dataset.
468
463
  """
469
464
  super()._check_dataset_type(dataset)
470
- inference_method="transform"
465
+ inference_method = "transform"
471
466
 
472
467
  # This dictionary contains optional kwargs for batch inference. These kwargs
473
468
  # are specific to the type of dataset used.
@@ -504,17 +499,14 @@ class CalibratedClassifierCV(BaseTransformer):
504
499
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
505
500
 
506
501
  transform_kwargs = dict(
507
- session = dataset._session,
508
- dependencies = self._deps,
509
- drop_input_cols = self._drop_input_cols,
510
- expected_output_cols_type = expected_dtype,
502
+ session=dataset._session,
503
+ dependencies=self._deps,
504
+ drop_input_cols=self._drop_input_cols,
505
+ expected_output_cols_type=expected_dtype,
511
506
  )
512
507
 
513
508
  elif isinstance(dataset, pd.DataFrame):
514
- transform_kwargs = dict(
515
- snowpark_input_cols = self._snowpark_cols,
516
- drop_input_cols = self._drop_input_cols
517
- )
509
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
518
510
 
519
511
  transform_handlers = ModelTransformerBuilder.build(
520
512
  dataset=dataset,
@@ -533,7 +525,11 @@ class CalibratedClassifierCV(BaseTransformer):
533
525
  return output_df
534
526
 
535
527
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
536
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
528
+ def fit_predict(
529
+ self,
530
+ dataset: Union[DataFrame, pd.DataFrame],
531
+ output_cols_prefix: str = "fit_predict_",
532
+ ) -> Union[DataFrame, pd.DataFrame]:
537
533
  """ Method not supported for this class.
538
534
 
539
535
 
@@ -558,7 +554,9 @@ class CalibratedClassifierCV(BaseTransformer):
558
554
  )
559
555
  output_result, fitted_estimator = model_trainer.train_fit_predict(
560
556
  drop_input_cols=self._drop_input_cols,
561
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
557
+ expected_output_cols_list=(
558
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
559
+ ),
562
560
  )
563
561
  self._sklearn_object = fitted_estimator
564
562
  self._is_fitted = True
@@ -575,6 +573,62 @@ class CalibratedClassifierCV(BaseTransformer):
575
573
  assert self._sklearn_object is not None
576
574
  return self._sklearn_object.embedding_
577
575
 
576
+
577
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
578
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
579
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
580
+ """
581
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
582
+ # The following condition is introduced for kneighbors methods, and not used in other methods
583
+ if output_cols:
584
+ output_cols = [
585
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
586
+ for c in output_cols
587
+ ]
588
+ elif getattr(self._sklearn_object, "classes_", None) is None:
589
+ output_cols = [output_cols_prefix]
590
+ elif self._sklearn_object is not None:
591
+ classes = self._sklearn_object.classes_
592
+ if isinstance(classes, numpy.ndarray):
593
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
594
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
595
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
596
+ output_cols = []
597
+ for i, cl in enumerate(classes):
598
+ # For binary classification, there is only one output column for each class
599
+ # ndarray as the two classes are complementary.
600
+ if len(cl) == 2:
601
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
602
+ else:
603
+ output_cols.extend([
604
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
605
+ ])
606
+ else:
607
+ output_cols = []
608
+
609
+ # Make sure column names are valid snowflake identifiers.
610
+ assert output_cols is not None # Make MyPy happy
611
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
612
+
613
+ return rv
614
+
615
+ def _align_expected_output_names(
616
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
617
+ ) -> List[str]:
618
+ # in case the inferred output column names dimension is different
619
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
620
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
621
+ output_df_columns = list(output_df_pd.columns)
622
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
623
+ if self.sample_weight_col:
624
+ output_df_columns_set -= set(self.sample_weight_col)
625
+ # if the dimension of inferred output column names is correct; use it
626
+ if len(expected_output_cols_list) == len(output_df_columns_set):
627
+ return expected_output_cols_list
628
+ # otherwise, use the sklearn estimator's output
629
+ else:
630
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
631
+
578
632
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
579
633
  @telemetry.send_api_usage_telemetry(
580
634
  project=_PROJECT,
@@ -607,24 +661,28 @@ class CalibratedClassifierCV(BaseTransformer):
607
661
  # are specific to the type of dataset used.
608
662
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
609
663
 
664
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
665
+
610
666
  if isinstance(dataset, DataFrame):
611
667
  self._deps = self._batch_inference_validate_snowpark(
612
668
  dataset=dataset,
613
669
  inference_method=inference_method,
614
670
  )
615
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
+ assert isinstance(
672
+ dataset._session, Session
673
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
616
674
  transform_kwargs = dict(
617
675
  session=dataset._session,
618
676
  dependencies=self._deps,
619
- drop_input_cols = self._drop_input_cols,
677
+ drop_input_cols=self._drop_input_cols,
620
678
  expected_output_cols_type="float",
621
679
  )
680
+ expected_output_cols = self._align_expected_output_names(
681
+ inference_method, dataset, expected_output_cols, output_cols_prefix
682
+ )
622
683
 
623
684
  elif isinstance(dataset, pd.DataFrame):
624
- transform_kwargs = dict(
625
- snowpark_input_cols = self._snowpark_cols,
626
- drop_input_cols = self._drop_input_cols
627
- )
685
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
628
686
 
629
687
  transform_handlers = ModelTransformerBuilder.build(
630
688
  dataset=dataset,
@@ -636,7 +694,7 @@ class CalibratedClassifierCV(BaseTransformer):
636
694
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
637
695
  inference_method=inference_method,
638
696
  input_cols=self.input_cols,
639
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
697
+ expected_output_cols=expected_output_cols,
640
698
  **transform_kwargs
641
699
  )
642
700
  return output_df
@@ -668,7 +726,8 @@ class CalibratedClassifierCV(BaseTransformer):
668
726
  Output dataset with log probability of the sample for each class in the model.
669
727
  """
670
728
  super()._check_dataset_type(dataset)
671
- inference_method="predict_log_proba"
729
+ inference_method = "predict_log_proba"
730
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
672
731
 
673
732
  # This dictionary contains optional kwargs for batch inference. These kwargs
674
733
  # are specific to the type of dataset used.
@@ -679,18 +738,20 @@ class CalibratedClassifierCV(BaseTransformer):
679
738
  dataset=dataset,
680
739
  inference_method=inference_method,
681
740
  )
682
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
741
+ assert isinstance(
742
+ dataset._session, Session
743
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
683
744
  transform_kwargs = dict(
684
745
  session=dataset._session,
685
746
  dependencies=self._deps,
686
- drop_input_cols = self._drop_input_cols,
747
+ drop_input_cols=self._drop_input_cols,
687
748
  expected_output_cols_type="float",
688
749
  )
750
+ expected_output_cols = self._align_expected_output_names(
751
+ inference_method, dataset, expected_output_cols, output_cols_prefix
752
+ )
689
753
  elif isinstance(dataset, pd.DataFrame):
690
- transform_kwargs = dict(
691
- snowpark_input_cols = self._snowpark_cols,
692
- drop_input_cols = self._drop_input_cols
693
- )
754
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
694
755
 
695
756
  transform_handlers = ModelTransformerBuilder.build(
696
757
  dataset=dataset,
@@ -703,7 +764,7 @@ class CalibratedClassifierCV(BaseTransformer):
703
764
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
704
765
  inference_method=inference_method,
705
766
  input_cols=self.input_cols,
706
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
767
+ expected_output_cols=expected_output_cols,
707
768
  **transform_kwargs
708
769
  )
709
770
  return output_df
@@ -729,30 +790,34 @@ class CalibratedClassifierCV(BaseTransformer):
729
790
  Output dataset with results of the decision function for the samples in input dataset.
730
791
  """
731
792
  super()._check_dataset_type(dataset)
732
- inference_method="decision_function"
793
+ inference_method = "decision_function"
733
794
 
734
795
  # This dictionary contains optional kwargs for batch inference. These kwargs
735
796
  # are specific to the type of dataset used.
736
797
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
737
798
 
799
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
800
+
738
801
  if isinstance(dataset, DataFrame):
739
802
  self._deps = self._batch_inference_validate_snowpark(
740
803
  dataset=dataset,
741
804
  inference_method=inference_method,
742
805
  )
743
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
806
+ assert isinstance(
807
+ dataset._session, Session
808
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
744
809
  transform_kwargs = dict(
745
810
  session=dataset._session,
746
811
  dependencies=self._deps,
747
- drop_input_cols = self._drop_input_cols,
812
+ drop_input_cols=self._drop_input_cols,
748
813
  expected_output_cols_type="float",
749
814
  )
815
+ expected_output_cols = self._align_expected_output_names(
816
+ inference_method, dataset, expected_output_cols, output_cols_prefix
817
+ )
750
818
 
751
819
  elif isinstance(dataset, pd.DataFrame):
752
- transform_kwargs = dict(
753
- snowpark_input_cols = self._snowpark_cols,
754
- drop_input_cols = self._drop_input_cols
755
- )
820
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
756
821
 
757
822
  transform_handlers = ModelTransformerBuilder.build(
758
823
  dataset=dataset,
@@ -765,7 +830,7 @@ class CalibratedClassifierCV(BaseTransformer):
765
830
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
766
831
  inference_method=inference_method,
767
832
  input_cols=self.input_cols,
768
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
833
+ expected_output_cols=expected_output_cols,
769
834
  **transform_kwargs
770
835
  )
771
836
  return output_df
@@ -794,12 +859,14 @@ class CalibratedClassifierCV(BaseTransformer):
794
859
  Output dataset with probability of the sample for each class in the model.
795
860
  """
796
861
  super()._check_dataset_type(dataset)
797
- inference_method="score_samples"
862
+ inference_method = "score_samples"
798
863
 
799
864
  # This dictionary contains optional kwargs for batch inference. These kwargs
800
865
  # are specific to the type of dataset used.
801
866
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
802
867
 
868
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
869
+
803
870
  if isinstance(dataset, DataFrame):
804
871
  self._deps = self._batch_inference_validate_snowpark(
805
872
  dataset=dataset,
@@ -812,6 +879,9 @@ class CalibratedClassifierCV(BaseTransformer):
812
879
  drop_input_cols = self._drop_input_cols,
813
880
  expected_output_cols_type="float",
814
881
  )
882
+ expected_output_cols = self._align_expected_output_names(
883
+ inference_method, dataset, expected_output_cols, output_cols_prefix
884
+ )
815
885
 
816
886
  elif isinstance(dataset, pd.DataFrame):
817
887
  transform_kwargs = dict(
@@ -830,7 +900,7 @@ class CalibratedClassifierCV(BaseTransformer):
830
900
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
831
901
  inference_method=inference_method,
832
902
  input_cols=self.input_cols,
833
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
903
+ expected_output_cols=expected_output_cols,
834
904
  **transform_kwargs
835
905
  )
836
906
  return output_df
@@ -977,50 +1047,84 @@ class CalibratedClassifierCV(BaseTransformer):
977
1047
  )
978
1048
  return output_df
979
1049
 
1050
+
1051
+
1052
+ def to_sklearn(self) -> Any:
1053
+ """Get sklearn.calibration.CalibratedClassifierCV object.
1054
+ """
1055
+ if self._sklearn_object is None:
1056
+ self._sklearn_object = self._create_sklearn_object()
1057
+ return self._sklearn_object
1058
+
1059
+ def to_xgboost(self) -> Any:
1060
+ raise exceptions.SnowflakeMLException(
1061
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1062
+ original_exception=AttributeError(
1063
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1064
+ "to_xgboost()",
1065
+ "to_sklearn()"
1066
+ )
1067
+ ),
1068
+ )
1069
+
1070
+ def to_lightgbm(self) -> Any:
1071
+ raise exceptions.SnowflakeMLException(
1072
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1073
+ original_exception=AttributeError(
1074
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1075
+ "to_lightgbm()",
1076
+ "to_sklearn()"
1077
+ )
1078
+ ),
1079
+ )
980
1080
 
981
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1081
+ def _get_dependencies(self) -> List[str]:
1082
+ return self._deps
1083
+
1084
+
1085
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
982
1086
  self._model_signature_dict = dict()
983
1087
 
984
1088
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
985
1089
 
986
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1090
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
987
1091
  outputs: List[BaseFeatureSpec] = []
988
1092
  if hasattr(self, "predict"):
989
1093
  # keep mypy happy
990
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1094
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
991
1095
  # For classifier, the type of predict is the same as the type of label
992
- if self._sklearn_object._estimator_type == 'classifier':
993
- # label columns is the desired type for output
1096
+ if self._sklearn_object._estimator_type == "classifier":
1097
+ # label columns is the desired type for output
994
1098
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
995
1099
  # rename the output columns
996
1100
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
997
- self._model_signature_dict["predict"] = ModelSignature(inputs,
998
- ([] if self._drop_input_cols else inputs)
999
- + outputs)
1101
+ self._model_signature_dict["predict"] = ModelSignature(
1102
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1103
+ )
1000
1104
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1001
1105
  # For outlier models, returns -1 for outliers and 1 for inliers.
1002
- # Clusterer returns int64 cluster labels.
1106
+ # Clusterer returns int64 cluster labels.
1003
1107
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1004
1108
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1005
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1006
- ([] if self._drop_input_cols else inputs)
1007
- + outputs)
1008
-
1109
+ self._model_signature_dict["predict"] = ModelSignature(
1110
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1111
+ )
1112
+
1009
1113
  # For regressor, the type of predict is float64
1010
- elif self._sklearn_object._estimator_type == 'regressor':
1114
+ elif self._sklearn_object._estimator_type == "regressor":
1011
1115
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1012
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1013
- ([] if self._drop_input_cols else inputs)
1014
- + outputs)
1015
-
1116
+ self._model_signature_dict["predict"] = ModelSignature(
1117
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1118
+ )
1119
+
1016
1120
  for prob_func in PROB_FUNCTIONS:
1017
1121
  if hasattr(self, prob_func):
1018
1122
  output_cols_prefix: str = f"{prob_func}_"
1019
1123
  output_column_names = self._get_output_column_names(output_cols_prefix)
1020
1124
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1021
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1022
- ([] if self._drop_input_cols else inputs)
1023
- + outputs)
1125
+ self._model_signature_dict[prob_func] = ModelSignature(
1126
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1127
+ )
1024
1128
 
1025
1129
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1026
1130
  items = list(self._model_signature_dict.items())
@@ -1033,10 +1137,10 @@ class CalibratedClassifierCV(BaseTransformer):
1033
1137
  """Returns model signature of current class.
1034
1138
 
1035
1139
  Raises:
1036
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1140
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1037
1141
 
1038
1142
  Returns:
1039
- Dict[str, ModelSignature]: each method and its input output signature
1143
+ Dict with each method and its input output signature
1040
1144
  """
1041
1145
  if self._model_signature_dict is None:
1042
1146
  raise exceptions.SnowflakeMLException(
@@ -1044,35 +1148,3 @@ class CalibratedClassifierCV(BaseTransformer):
1044
1148
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1045
1149
  )
1046
1150
  return self._model_signature_dict
1047
-
1048
- def to_sklearn(self) -> Any:
1049
- """Get sklearn.calibration.CalibratedClassifierCV object.
1050
- """
1051
- if self._sklearn_object is None:
1052
- self._sklearn_object = self._create_sklearn_object()
1053
- return self._sklearn_object
1054
-
1055
- def to_xgboost(self) -> Any:
1056
- raise exceptions.SnowflakeMLException(
1057
- error_code=error_codes.METHOD_NOT_ALLOWED,
1058
- original_exception=AttributeError(
1059
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1060
- "to_xgboost()",
1061
- "to_sklearn()"
1062
- )
1063
- ),
1064
- )
1065
-
1066
- def to_lightgbm(self) -> Any:
1067
- raise exceptions.SnowflakeMLException(
1068
- error_code=error_codes.METHOD_NOT_ALLOWED,
1069
- original_exception=AttributeError(
1070
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
- "to_lightgbm()",
1072
- "to_sklearn()"
1073
- )
1074
- ),
1075
- )
1076
-
1077
- def _get_dependencies(self) -> List[str]:
1078
- return self._deps