snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -300,12 +299,7 @@ class Perceptron(BaseTransformer):
|
|
300
299
|
)
|
301
300
|
return selected_cols
|
302
301
|
|
303
|
-
|
304
|
-
project=_PROJECT,
|
305
|
-
subproject=_SUBPROJECT,
|
306
|
-
custom_tags=dict([("autogen", True)]),
|
307
|
-
)
|
308
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Perceptron":
|
302
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Perceptron":
|
309
303
|
"""Fit linear model with Stochastic Gradient Descent
|
310
304
|
For more details on this function, see [sklearn.linear_model.Perceptron.fit]
|
311
305
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html#sklearn.linear_model.Perceptron.fit)
|
@@ -332,12 +326,14 @@ class Perceptron(BaseTransformer):
|
|
332
326
|
|
333
327
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
334
328
|
|
335
|
-
|
329
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
336
330
|
if SNOWML_SPROC_ENV in os.environ:
|
337
331
|
statement_params = telemetry.get_function_usage_statement_params(
|
338
332
|
project=_PROJECT,
|
339
333
|
subproject=_SUBPROJECT,
|
340
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
334
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
335
|
+
inspect.currentframe(), Perceptron.__class__.__name__
|
336
|
+
),
|
341
337
|
api_calls=[Session.call],
|
342
338
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
343
339
|
)
|
@@ -358,7 +354,7 @@ class Perceptron(BaseTransformer):
|
|
358
354
|
)
|
359
355
|
self._sklearn_object = model_trainer.train()
|
360
356
|
self._is_fitted = True
|
361
|
-
self.
|
357
|
+
self._generate_model_signatures(dataset)
|
362
358
|
return self
|
363
359
|
|
364
360
|
def _batch_inference_validate_snowpark(
|
@@ -434,7 +430,9 @@ class Perceptron(BaseTransformer):
|
|
434
430
|
# when it is classifier, infer the datatype from label columns
|
435
431
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
436
432
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
437
|
-
label_cols_signatures = [
|
433
|
+
label_cols_signatures = [
|
434
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
435
|
+
]
|
438
436
|
if len(label_cols_signatures) == 0:
|
439
437
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
440
438
|
raise exceptions.SnowflakeMLException(
|
@@ -442,25 +440,22 @@ class Perceptron(BaseTransformer):
|
|
442
440
|
original_exception=ValueError(error_str),
|
443
441
|
)
|
444
442
|
|
445
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
446
|
-
label_cols_signatures[0].as_snowpark_type()
|
447
|
-
)
|
443
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
448
444
|
|
449
445
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
450
|
-
assert isinstance(
|
446
|
+
assert isinstance(
|
447
|
+
dataset._session, Session
|
448
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
451
449
|
|
452
450
|
transform_kwargs = dict(
|
453
|
-
session
|
454
|
-
dependencies
|
455
|
-
drop_input_cols
|
456
|
-
expected_output_cols_type
|
451
|
+
session=dataset._session,
|
452
|
+
dependencies=self._deps,
|
453
|
+
drop_input_cols=self._drop_input_cols,
|
454
|
+
expected_output_cols_type=expected_type_inferred,
|
457
455
|
)
|
458
456
|
|
459
457
|
elif isinstance(dataset, pd.DataFrame):
|
460
|
-
transform_kwargs = dict(
|
461
|
-
snowpark_input_cols = self._snowpark_cols,
|
462
|
-
drop_input_cols = self._drop_input_cols
|
463
|
-
)
|
458
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
464
459
|
|
465
460
|
transform_handlers = ModelTransformerBuilder.build(
|
466
461
|
dataset=dataset,
|
@@ -500,7 +495,7 @@ class Perceptron(BaseTransformer):
|
|
500
495
|
Transformed dataset.
|
501
496
|
"""
|
502
497
|
super()._check_dataset_type(dataset)
|
503
|
-
inference_method="transform"
|
498
|
+
inference_method = "transform"
|
504
499
|
|
505
500
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
506
501
|
# are specific to the type of dataset used.
|
@@ -537,17 +532,14 @@ class Perceptron(BaseTransformer):
|
|
537
532
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
538
533
|
|
539
534
|
transform_kwargs = dict(
|
540
|
-
session
|
541
|
-
dependencies
|
542
|
-
drop_input_cols
|
543
|
-
expected_output_cols_type
|
535
|
+
session=dataset._session,
|
536
|
+
dependencies=self._deps,
|
537
|
+
drop_input_cols=self._drop_input_cols,
|
538
|
+
expected_output_cols_type=expected_dtype,
|
544
539
|
)
|
545
540
|
|
546
541
|
elif isinstance(dataset, pd.DataFrame):
|
547
|
-
transform_kwargs = dict(
|
548
|
-
snowpark_input_cols = self._snowpark_cols,
|
549
|
-
drop_input_cols = self._drop_input_cols
|
550
|
-
)
|
542
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
551
543
|
|
552
544
|
transform_handlers = ModelTransformerBuilder.build(
|
553
545
|
dataset=dataset,
|
@@ -566,7 +558,11 @@ class Perceptron(BaseTransformer):
|
|
566
558
|
return output_df
|
567
559
|
|
568
560
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
569
|
-
def fit_predict(
|
561
|
+
def fit_predict(
|
562
|
+
self,
|
563
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
564
|
+
output_cols_prefix: str = "fit_predict_",
|
565
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
570
566
|
""" Method not supported for this class.
|
571
567
|
|
572
568
|
|
@@ -591,7 +587,9 @@ class Perceptron(BaseTransformer):
|
|
591
587
|
)
|
592
588
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
593
589
|
drop_input_cols=self._drop_input_cols,
|
594
|
-
expected_output_cols_list=
|
590
|
+
expected_output_cols_list=(
|
591
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
592
|
+
),
|
595
593
|
)
|
596
594
|
self._sklearn_object = fitted_estimator
|
597
595
|
self._is_fitted = True
|
@@ -608,6 +606,62 @@ class Perceptron(BaseTransformer):
|
|
608
606
|
assert self._sklearn_object is not None
|
609
607
|
return self._sklearn_object.embedding_
|
610
608
|
|
609
|
+
|
610
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
611
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
612
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
613
|
+
"""
|
614
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
615
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
616
|
+
if output_cols:
|
617
|
+
output_cols = [
|
618
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
619
|
+
for c in output_cols
|
620
|
+
]
|
621
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
622
|
+
output_cols = [output_cols_prefix]
|
623
|
+
elif self._sklearn_object is not None:
|
624
|
+
classes = self._sklearn_object.classes_
|
625
|
+
if isinstance(classes, numpy.ndarray):
|
626
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
627
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
628
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
629
|
+
output_cols = []
|
630
|
+
for i, cl in enumerate(classes):
|
631
|
+
# For binary classification, there is only one output column for each class
|
632
|
+
# ndarray as the two classes are complementary.
|
633
|
+
if len(cl) == 2:
|
634
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
635
|
+
else:
|
636
|
+
output_cols.extend([
|
637
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
638
|
+
])
|
639
|
+
else:
|
640
|
+
output_cols = []
|
641
|
+
|
642
|
+
# Make sure column names are valid snowflake identifiers.
|
643
|
+
assert output_cols is not None # Make MyPy happy
|
644
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
645
|
+
|
646
|
+
return rv
|
647
|
+
|
648
|
+
def _align_expected_output_names(
|
649
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
650
|
+
) -> List[str]:
|
651
|
+
# in case the inferred output column names dimension is different
|
652
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
653
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
654
|
+
output_df_columns = list(output_df_pd.columns)
|
655
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
656
|
+
if self.sample_weight_col:
|
657
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
658
|
+
# if the dimension of inferred output column names is correct; use it
|
659
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
660
|
+
return expected_output_cols_list
|
661
|
+
# otherwise, use the sklearn estimator's output
|
662
|
+
else:
|
663
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
664
|
+
|
611
665
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
612
666
|
@telemetry.send_api_usage_telemetry(
|
613
667
|
project=_PROJECT,
|
@@ -638,24 +692,28 @@ class Perceptron(BaseTransformer):
|
|
638
692
|
# are specific to the type of dataset used.
|
639
693
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
640
694
|
|
695
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
696
|
+
|
641
697
|
if isinstance(dataset, DataFrame):
|
642
698
|
self._deps = self._batch_inference_validate_snowpark(
|
643
699
|
dataset=dataset,
|
644
700
|
inference_method=inference_method,
|
645
701
|
)
|
646
|
-
assert isinstance(
|
702
|
+
assert isinstance(
|
703
|
+
dataset._session, Session
|
704
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
647
705
|
transform_kwargs = dict(
|
648
706
|
session=dataset._session,
|
649
707
|
dependencies=self._deps,
|
650
|
-
drop_input_cols
|
708
|
+
drop_input_cols=self._drop_input_cols,
|
651
709
|
expected_output_cols_type="float",
|
652
710
|
)
|
711
|
+
expected_output_cols = self._align_expected_output_names(
|
712
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
713
|
+
)
|
653
714
|
|
654
715
|
elif isinstance(dataset, pd.DataFrame):
|
655
|
-
transform_kwargs = dict(
|
656
|
-
snowpark_input_cols = self._snowpark_cols,
|
657
|
-
drop_input_cols = self._drop_input_cols
|
658
|
-
)
|
716
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
659
717
|
|
660
718
|
transform_handlers = ModelTransformerBuilder.build(
|
661
719
|
dataset=dataset,
|
@@ -667,7 +725,7 @@ class Perceptron(BaseTransformer):
|
|
667
725
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
668
726
|
inference_method=inference_method,
|
669
727
|
input_cols=self.input_cols,
|
670
|
-
expected_output_cols=
|
728
|
+
expected_output_cols=expected_output_cols,
|
671
729
|
**transform_kwargs
|
672
730
|
)
|
673
731
|
return output_df
|
@@ -697,7 +755,8 @@ class Perceptron(BaseTransformer):
|
|
697
755
|
Output dataset with log probability of the sample for each class in the model.
|
698
756
|
"""
|
699
757
|
super()._check_dataset_type(dataset)
|
700
|
-
inference_method="predict_log_proba"
|
758
|
+
inference_method = "predict_log_proba"
|
759
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
701
760
|
|
702
761
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
703
762
|
# are specific to the type of dataset used.
|
@@ -708,18 +767,20 @@ class Perceptron(BaseTransformer):
|
|
708
767
|
dataset=dataset,
|
709
768
|
inference_method=inference_method,
|
710
769
|
)
|
711
|
-
assert isinstance(
|
770
|
+
assert isinstance(
|
771
|
+
dataset._session, Session
|
772
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
712
773
|
transform_kwargs = dict(
|
713
774
|
session=dataset._session,
|
714
775
|
dependencies=self._deps,
|
715
|
-
drop_input_cols
|
776
|
+
drop_input_cols=self._drop_input_cols,
|
716
777
|
expected_output_cols_type="float",
|
717
778
|
)
|
779
|
+
expected_output_cols = self._align_expected_output_names(
|
780
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
781
|
+
)
|
718
782
|
elif isinstance(dataset, pd.DataFrame):
|
719
|
-
transform_kwargs = dict(
|
720
|
-
snowpark_input_cols = self._snowpark_cols,
|
721
|
-
drop_input_cols = self._drop_input_cols
|
722
|
-
)
|
783
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
723
784
|
|
724
785
|
transform_handlers = ModelTransformerBuilder.build(
|
725
786
|
dataset=dataset,
|
@@ -732,7 +793,7 @@ class Perceptron(BaseTransformer):
|
|
732
793
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
733
794
|
inference_method=inference_method,
|
734
795
|
input_cols=self.input_cols,
|
735
|
-
expected_output_cols=
|
796
|
+
expected_output_cols=expected_output_cols,
|
736
797
|
**transform_kwargs
|
737
798
|
)
|
738
799
|
return output_df
|
@@ -760,30 +821,34 @@ class Perceptron(BaseTransformer):
|
|
760
821
|
Output dataset with results of the decision function for the samples in input dataset.
|
761
822
|
"""
|
762
823
|
super()._check_dataset_type(dataset)
|
763
|
-
inference_method="decision_function"
|
824
|
+
inference_method = "decision_function"
|
764
825
|
|
765
826
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
766
827
|
# are specific to the type of dataset used.
|
767
828
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
768
829
|
|
830
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
831
|
+
|
769
832
|
if isinstance(dataset, DataFrame):
|
770
833
|
self._deps = self._batch_inference_validate_snowpark(
|
771
834
|
dataset=dataset,
|
772
835
|
inference_method=inference_method,
|
773
836
|
)
|
774
|
-
assert isinstance(
|
837
|
+
assert isinstance(
|
838
|
+
dataset._session, Session
|
839
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
775
840
|
transform_kwargs = dict(
|
776
841
|
session=dataset._session,
|
777
842
|
dependencies=self._deps,
|
778
|
-
drop_input_cols
|
843
|
+
drop_input_cols=self._drop_input_cols,
|
779
844
|
expected_output_cols_type="float",
|
780
845
|
)
|
846
|
+
expected_output_cols = self._align_expected_output_names(
|
847
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
848
|
+
)
|
781
849
|
|
782
850
|
elif isinstance(dataset, pd.DataFrame):
|
783
|
-
transform_kwargs = dict(
|
784
|
-
snowpark_input_cols = self._snowpark_cols,
|
785
|
-
drop_input_cols = self._drop_input_cols
|
786
|
-
)
|
851
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
787
852
|
|
788
853
|
transform_handlers = ModelTransformerBuilder.build(
|
789
854
|
dataset=dataset,
|
@@ -796,7 +861,7 @@ class Perceptron(BaseTransformer):
|
|
796
861
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
797
862
|
inference_method=inference_method,
|
798
863
|
input_cols=self.input_cols,
|
799
|
-
expected_output_cols=
|
864
|
+
expected_output_cols=expected_output_cols,
|
800
865
|
**transform_kwargs
|
801
866
|
)
|
802
867
|
return output_df
|
@@ -825,12 +890,14 @@ class Perceptron(BaseTransformer):
|
|
825
890
|
Output dataset with probability of the sample for each class in the model.
|
826
891
|
"""
|
827
892
|
super()._check_dataset_type(dataset)
|
828
|
-
inference_method="score_samples"
|
893
|
+
inference_method = "score_samples"
|
829
894
|
|
830
895
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
831
896
|
# are specific to the type of dataset used.
|
832
897
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
833
898
|
|
899
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
900
|
+
|
834
901
|
if isinstance(dataset, DataFrame):
|
835
902
|
self._deps = self._batch_inference_validate_snowpark(
|
836
903
|
dataset=dataset,
|
@@ -843,6 +910,9 @@ class Perceptron(BaseTransformer):
|
|
843
910
|
drop_input_cols = self._drop_input_cols,
|
844
911
|
expected_output_cols_type="float",
|
845
912
|
)
|
913
|
+
expected_output_cols = self._align_expected_output_names(
|
914
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
915
|
+
)
|
846
916
|
|
847
917
|
elif isinstance(dataset, pd.DataFrame):
|
848
918
|
transform_kwargs = dict(
|
@@ -861,7 +931,7 @@ class Perceptron(BaseTransformer):
|
|
861
931
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
862
932
|
inference_method=inference_method,
|
863
933
|
input_cols=self.input_cols,
|
864
|
-
expected_output_cols=
|
934
|
+
expected_output_cols=expected_output_cols,
|
865
935
|
**transform_kwargs
|
866
936
|
)
|
867
937
|
return output_df
|
@@ -1008,50 +1078,84 @@ class Perceptron(BaseTransformer):
|
|
1008
1078
|
)
|
1009
1079
|
return output_df
|
1010
1080
|
|
1081
|
+
|
1082
|
+
|
1083
|
+
def to_sklearn(self) -> Any:
|
1084
|
+
"""Get sklearn.linear_model.Perceptron object.
|
1085
|
+
"""
|
1086
|
+
if self._sklearn_object is None:
|
1087
|
+
self._sklearn_object = self._create_sklearn_object()
|
1088
|
+
return self._sklearn_object
|
1089
|
+
|
1090
|
+
def to_xgboost(self) -> Any:
|
1091
|
+
raise exceptions.SnowflakeMLException(
|
1092
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1093
|
+
original_exception=AttributeError(
|
1094
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1095
|
+
"to_xgboost()",
|
1096
|
+
"to_sklearn()"
|
1097
|
+
)
|
1098
|
+
),
|
1099
|
+
)
|
1100
|
+
|
1101
|
+
def to_lightgbm(self) -> Any:
|
1102
|
+
raise exceptions.SnowflakeMLException(
|
1103
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1104
|
+
original_exception=AttributeError(
|
1105
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1106
|
+
"to_lightgbm()",
|
1107
|
+
"to_sklearn()"
|
1108
|
+
)
|
1109
|
+
),
|
1110
|
+
)
|
1011
1111
|
|
1012
|
-
def
|
1112
|
+
def _get_dependencies(self) -> List[str]:
|
1113
|
+
return self._deps
|
1114
|
+
|
1115
|
+
|
1116
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1013
1117
|
self._model_signature_dict = dict()
|
1014
1118
|
|
1015
1119
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1016
1120
|
|
1017
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1121
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1018
1122
|
outputs: List[BaseFeatureSpec] = []
|
1019
1123
|
if hasattr(self, "predict"):
|
1020
1124
|
# keep mypy happy
|
1021
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1125
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1022
1126
|
# For classifier, the type of predict is the same as the type of label
|
1023
|
-
if self._sklearn_object._estimator_type ==
|
1024
|
-
|
1127
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1128
|
+
# label columns is the desired type for output
|
1025
1129
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1026
1130
|
# rename the output columns
|
1027
1131
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1028
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1029
|
-
|
1030
|
-
|
1132
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1133
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1134
|
+
)
|
1031
1135
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1032
1136
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1033
|
-
# Clusterer returns int64 cluster labels.
|
1137
|
+
# Clusterer returns int64 cluster labels.
|
1034
1138
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1035
1139
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1036
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1037
|
-
|
1038
|
-
|
1039
|
-
|
1140
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1141
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1142
|
+
)
|
1143
|
+
|
1040
1144
|
# For regressor, the type of predict is float64
|
1041
|
-
elif self._sklearn_object._estimator_type ==
|
1145
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1042
1146
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1043
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1044
|
-
|
1045
|
-
|
1046
|
-
|
1147
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1148
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1149
|
+
)
|
1150
|
+
|
1047
1151
|
for prob_func in PROB_FUNCTIONS:
|
1048
1152
|
if hasattr(self, prob_func):
|
1049
1153
|
output_cols_prefix: str = f"{prob_func}_"
|
1050
1154
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1051
1155
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1052
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1053
|
-
|
1054
|
-
|
1156
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1157
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1158
|
+
)
|
1055
1159
|
|
1056
1160
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1057
1161
|
items = list(self._model_signature_dict.items())
|
@@ -1064,10 +1168,10 @@ class Perceptron(BaseTransformer):
|
|
1064
1168
|
"""Returns model signature of current class.
|
1065
1169
|
|
1066
1170
|
Raises:
|
1067
|
-
|
1171
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1068
1172
|
|
1069
1173
|
Returns:
|
1070
|
-
Dict
|
1174
|
+
Dict with each method and its input output signature
|
1071
1175
|
"""
|
1072
1176
|
if self._model_signature_dict is None:
|
1073
1177
|
raise exceptions.SnowflakeMLException(
|
@@ -1075,35 +1179,3 @@ class Perceptron(BaseTransformer):
|
|
1075
1179
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1076
1180
|
)
|
1077
1181
|
return self._model_signature_dict
|
1078
|
-
|
1079
|
-
def to_sklearn(self) -> Any:
|
1080
|
-
"""Get sklearn.linear_model.Perceptron object.
|
1081
|
-
"""
|
1082
|
-
if self._sklearn_object is None:
|
1083
|
-
self._sklearn_object = self._create_sklearn_object()
|
1084
|
-
return self._sklearn_object
|
1085
|
-
|
1086
|
-
def to_xgboost(self) -> Any:
|
1087
|
-
raise exceptions.SnowflakeMLException(
|
1088
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1089
|
-
original_exception=AttributeError(
|
1090
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1091
|
-
"to_xgboost()",
|
1092
|
-
"to_sklearn()"
|
1093
|
-
)
|
1094
|
-
),
|
1095
|
-
)
|
1096
|
-
|
1097
|
-
def to_lightgbm(self) -> Any:
|
1098
|
-
raise exceptions.SnowflakeMLException(
|
1099
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1100
|
-
original_exception=AttributeError(
|
1101
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1102
|
-
"to_lightgbm()",
|
1103
|
-
"to_sklearn()"
|
1104
|
-
)
|
1105
|
-
),
|
1106
|
-
)
|
1107
|
-
|
1108
|
-
def _get_dependencies(self) -> List[str]:
|
1109
|
-
return self._deps
|