snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -253,12 +252,7 @@ class MeanShift(BaseTransformer):
253
252
  )
254
253
  return selected_cols
255
254
 
256
- @telemetry.send_api_usage_telemetry(
257
- project=_PROJECT,
258
- subproject=_SUBPROJECT,
259
- custom_tags=dict([("autogen", True)]),
260
- )
261
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MeanShift":
255
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MeanShift":
262
256
  """Perform clustering
263
257
  For more details on this function, see [sklearn.cluster.MeanShift.fit]
264
258
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift.fit)
@@ -285,12 +279,14 @@ class MeanShift(BaseTransformer):
285
279
 
286
280
  self._snowpark_cols = dataset.select(self.input_cols).columns
287
281
 
288
- # If we are already in a stored procedure, no need to kick off another one.
282
+ # If we are already in a stored procedure, no need to kick off another one.
289
283
  if SNOWML_SPROC_ENV in os.environ:
290
284
  statement_params = telemetry.get_function_usage_statement_params(
291
285
  project=_PROJECT,
292
286
  subproject=_SUBPROJECT,
293
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MeanShift.__class__.__name__),
287
+ function_name=telemetry.get_statement_params_full_func_name(
288
+ inspect.currentframe(), MeanShift.__class__.__name__
289
+ ),
294
290
  api_calls=[Session.call],
295
291
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
296
292
  )
@@ -311,7 +307,7 @@ class MeanShift(BaseTransformer):
311
307
  )
312
308
  self._sklearn_object = model_trainer.train()
313
309
  self._is_fitted = True
314
- self._get_model_signatures(dataset)
310
+ self._generate_model_signatures(dataset)
315
311
  return self
316
312
 
317
313
  def _batch_inference_validate_snowpark(
@@ -387,7 +383,9 @@ class MeanShift(BaseTransformer):
387
383
  # when it is classifier, infer the datatype from label columns
388
384
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
389
385
  # Batch inference takes a single expected output column type. Use the first columns type for now.
390
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
386
+ label_cols_signatures = [
387
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
388
+ ]
391
389
  if len(label_cols_signatures) == 0:
392
390
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
393
391
  raise exceptions.SnowflakeMLException(
@@ -395,25 +393,22 @@ class MeanShift(BaseTransformer):
395
393
  original_exception=ValueError(error_str),
396
394
  )
397
395
 
398
- expected_type_inferred = convert_sp_to_sf_type(
399
- label_cols_signatures[0].as_snowpark_type()
400
- )
396
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
401
397
 
402
398
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
403
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
399
+ assert isinstance(
400
+ dataset._session, Session
401
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
404
402
 
405
403
  transform_kwargs = dict(
406
- session = dataset._session,
407
- dependencies = self._deps,
408
- drop_input_cols = self._drop_input_cols,
409
- expected_output_cols_type = expected_type_inferred,
404
+ session=dataset._session,
405
+ dependencies=self._deps,
406
+ drop_input_cols=self._drop_input_cols,
407
+ expected_output_cols_type=expected_type_inferred,
410
408
  )
411
409
 
412
410
  elif isinstance(dataset, pd.DataFrame):
413
- transform_kwargs = dict(
414
- snowpark_input_cols = self._snowpark_cols,
415
- drop_input_cols = self._drop_input_cols
416
- )
411
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
417
412
 
418
413
  transform_handlers = ModelTransformerBuilder.build(
419
414
  dataset=dataset,
@@ -453,7 +448,7 @@ class MeanShift(BaseTransformer):
453
448
  Transformed dataset.
454
449
  """
455
450
  super()._check_dataset_type(dataset)
456
- inference_method="transform"
451
+ inference_method = "transform"
457
452
 
458
453
  # This dictionary contains optional kwargs for batch inference. These kwargs
459
454
  # are specific to the type of dataset used.
@@ -490,17 +485,14 @@ class MeanShift(BaseTransformer):
490
485
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
491
486
 
492
487
  transform_kwargs = dict(
493
- session = dataset._session,
494
- dependencies = self._deps,
495
- drop_input_cols = self._drop_input_cols,
496
- expected_output_cols_type = expected_dtype,
488
+ session=dataset._session,
489
+ dependencies=self._deps,
490
+ drop_input_cols=self._drop_input_cols,
491
+ expected_output_cols_type=expected_dtype,
497
492
  )
498
493
 
499
494
  elif isinstance(dataset, pd.DataFrame):
500
- transform_kwargs = dict(
501
- snowpark_input_cols = self._snowpark_cols,
502
- drop_input_cols = self._drop_input_cols
503
- )
495
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
504
496
 
505
497
  transform_handlers = ModelTransformerBuilder.build(
506
498
  dataset=dataset,
@@ -519,7 +511,11 @@ class MeanShift(BaseTransformer):
519
511
  return output_df
520
512
 
521
513
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
522
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
514
+ def fit_predict(
515
+ self,
516
+ dataset: Union[DataFrame, pd.DataFrame],
517
+ output_cols_prefix: str = "fit_predict_",
518
+ ) -> Union[DataFrame, pd.DataFrame]:
523
519
  """ Perform clustering on `X` and returns cluster labels
524
520
  For more details on this function, see [sklearn.cluster.MeanShift.fit_predict]
525
521
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift.fit_predict)
@@ -546,7 +542,9 @@ class MeanShift(BaseTransformer):
546
542
  )
547
543
  output_result, fitted_estimator = model_trainer.train_fit_predict(
548
544
  drop_input_cols=self._drop_input_cols,
549
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
545
+ expected_output_cols_list=(
546
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
547
+ ),
550
548
  )
551
549
  self._sklearn_object = fitted_estimator
552
550
  self._is_fitted = True
@@ -563,6 +561,62 @@ class MeanShift(BaseTransformer):
563
561
  assert self._sklearn_object is not None
564
562
  return self._sklearn_object.embedding_
565
563
 
564
+
565
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
566
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
567
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
568
+ """
569
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
570
+ # The following condition is introduced for kneighbors methods, and not used in other methods
571
+ if output_cols:
572
+ output_cols = [
573
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
574
+ for c in output_cols
575
+ ]
576
+ elif getattr(self._sklearn_object, "classes_", None) is None:
577
+ output_cols = [output_cols_prefix]
578
+ elif self._sklearn_object is not None:
579
+ classes = self._sklearn_object.classes_
580
+ if isinstance(classes, numpy.ndarray):
581
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
582
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
583
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
584
+ output_cols = []
585
+ for i, cl in enumerate(classes):
586
+ # For binary classification, there is only one output column for each class
587
+ # ndarray as the two classes are complementary.
588
+ if len(cl) == 2:
589
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
590
+ else:
591
+ output_cols.extend([
592
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
593
+ ])
594
+ else:
595
+ output_cols = []
596
+
597
+ # Make sure column names are valid snowflake identifiers.
598
+ assert output_cols is not None # Make MyPy happy
599
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
600
+
601
+ return rv
602
+
603
+ def _align_expected_output_names(
604
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
605
+ ) -> List[str]:
606
+ # in case the inferred output column names dimension is different
607
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
608
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
609
+ output_df_columns = list(output_df_pd.columns)
610
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
611
+ if self.sample_weight_col:
612
+ output_df_columns_set -= set(self.sample_weight_col)
613
+ # if the dimension of inferred output column names is correct; use it
614
+ if len(expected_output_cols_list) == len(output_df_columns_set):
615
+ return expected_output_cols_list
616
+ # otherwise, use the sklearn estimator's output
617
+ else:
618
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
619
+
566
620
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
567
621
  @telemetry.send_api_usage_telemetry(
568
622
  project=_PROJECT,
@@ -593,24 +647,28 @@ class MeanShift(BaseTransformer):
593
647
  # are specific to the type of dataset used.
594
648
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
595
649
 
650
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
651
+
596
652
  if isinstance(dataset, DataFrame):
597
653
  self._deps = self._batch_inference_validate_snowpark(
598
654
  dataset=dataset,
599
655
  inference_method=inference_method,
600
656
  )
601
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
657
+ assert isinstance(
658
+ dataset._session, Session
659
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
602
660
  transform_kwargs = dict(
603
661
  session=dataset._session,
604
662
  dependencies=self._deps,
605
- drop_input_cols = self._drop_input_cols,
663
+ drop_input_cols=self._drop_input_cols,
606
664
  expected_output_cols_type="float",
607
665
  )
666
+ expected_output_cols = self._align_expected_output_names(
667
+ inference_method, dataset, expected_output_cols, output_cols_prefix
668
+ )
608
669
 
609
670
  elif isinstance(dataset, pd.DataFrame):
610
- transform_kwargs = dict(
611
- snowpark_input_cols = self._snowpark_cols,
612
- drop_input_cols = self._drop_input_cols
613
- )
671
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
614
672
 
615
673
  transform_handlers = ModelTransformerBuilder.build(
616
674
  dataset=dataset,
@@ -622,7 +680,7 @@ class MeanShift(BaseTransformer):
622
680
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
623
681
  inference_method=inference_method,
624
682
  input_cols=self.input_cols,
625
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
683
+ expected_output_cols=expected_output_cols,
626
684
  **transform_kwargs
627
685
  )
628
686
  return output_df
@@ -652,7 +710,8 @@ class MeanShift(BaseTransformer):
652
710
  Output dataset with log probability of the sample for each class in the model.
653
711
  """
654
712
  super()._check_dataset_type(dataset)
655
- inference_method="predict_log_proba"
713
+ inference_method = "predict_log_proba"
714
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
656
715
 
657
716
  # This dictionary contains optional kwargs for batch inference. These kwargs
658
717
  # are specific to the type of dataset used.
@@ -663,18 +722,20 @@ class MeanShift(BaseTransformer):
663
722
  dataset=dataset,
664
723
  inference_method=inference_method,
665
724
  )
666
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
725
+ assert isinstance(
726
+ dataset._session, Session
727
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
667
728
  transform_kwargs = dict(
668
729
  session=dataset._session,
669
730
  dependencies=self._deps,
670
- drop_input_cols = self._drop_input_cols,
731
+ drop_input_cols=self._drop_input_cols,
671
732
  expected_output_cols_type="float",
672
733
  )
734
+ expected_output_cols = self._align_expected_output_names(
735
+ inference_method, dataset, expected_output_cols, output_cols_prefix
736
+ )
673
737
  elif isinstance(dataset, pd.DataFrame):
674
- transform_kwargs = dict(
675
- snowpark_input_cols = self._snowpark_cols,
676
- drop_input_cols = self._drop_input_cols
677
- )
738
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
678
739
 
679
740
  transform_handlers = ModelTransformerBuilder.build(
680
741
  dataset=dataset,
@@ -687,7 +748,7 @@ class MeanShift(BaseTransformer):
687
748
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
688
749
  inference_method=inference_method,
689
750
  input_cols=self.input_cols,
690
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
751
+ expected_output_cols=expected_output_cols,
691
752
  **transform_kwargs
692
753
  )
693
754
  return output_df
@@ -713,30 +774,34 @@ class MeanShift(BaseTransformer):
713
774
  Output dataset with results of the decision function for the samples in input dataset.
714
775
  """
715
776
  super()._check_dataset_type(dataset)
716
- inference_method="decision_function"
777
+ inference_method = "decision_function"
717
778
 
718
779
  # This dictionary contains optional kwargs for batch inference. These kwargs
719
780
  # are specific to the type of dataset used.
720
781
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
721
782
 
783
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
784
+
722
785
  if isinstance(dataset, DataFrame):
723
786
  self._deps = self._batch_inference_validate_snowpark(
724
787
  dataset=dataset,
725
788
  inference_method=inference_method,
726
789
  )
727
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
790
+ assert isinstance(
791
+ dataset._session, Session
792
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
728
793
  transform_kwargs = dict(
729
794
  session=dataset._session,
730
795
  dependencies=self._deps,
731
- drop_input_cols = self._drop_input_cols,
796
+ drop_input_cols=self._drop_input_cols,
732
797
  expected_output_cols_type="float",
733
798
  )
799
+ expected_output_cols = self._align_expected_output_names(
800
+ inference_method, dataset, expected_output_cols, output_cols_prefix
801
+ )
734
802
 
735
803
  elif isinstance(dataset, pd.DataFrame):
736
- transform_kwargs = dict(
737
- snowpark_input_cols = self._snowpark_cols,
738
- drop_input_cols = self._drop_input_cols
739
- )
804
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
740
805
 
741
806
  transform_handlers = ModelTransformerBuilder.build(
742
807
  dataset=dataset,
@@ -749,7 +814,7 @@ class MeanShift(BaseTransformer):
749
814
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
750
815
  inference_method=inference_method,
751
816
  input_cols=self.input_cols,
752
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
817
+ expected_output_cols=expected_output_cols,
753
818
  **transform_kwargs
754
819
  )
755
820
  return output_df
@@ -778,12 +843,14 @@ class MeanShift(BaseTransformer):
778
843
  Output dataset with probability of the sample for each class in the model.
779
844
  """
780
845
  super()._check_dataset_type(dataset)
781
- inference_method="score_samples"
846
+ inference_method = "score_samples"
782
847
 
783
848
  # This dictionary contains optional kwargs for batch inference. These kwargs
784
849
  # are specific to the type of dataset used.
785
850
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
786
851
 
852
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
853
+
787
854
  if isinstance(dataset, DataFrame):
788
855
  self._deps = self._batch_inference_validate_snowpark(
789
856
  dataset=dataset,
@@ -796,6 +863,9 @@ class MeanShift(BaseTransformer):
796
863
  drop_input_cols = self._drop_input_cols,
797
864
  expected_output_cols_type="float",
798
865
  )
866
+ expected_output_cols = self._align_expected_output_names(
867
+ inference_method, dataset, expected_output_cols, output_cols_prefix
868
+ )
799
869
 
800
870
  elif isinstance(dataset, pd.DataFrame):
801
871
  transform_kwargs = dict(
@@ -814,7 +884,7 @@ class MeanShift(BaseTransformer):
814
884
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
815
885
  inference_method=inference_method,
816
886
  input_cols=self.input_cols,
817
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
887
+ expected_output_cols=expected_output_cols,
818
888
  **transform_kwargs
819
889
  )
820
890
  return output_df
@@ -959,50 +1029,84 @@ class MeanShift(BaseTransformer):
959
1029
  )
960
1030
  return output_df
961
1031
 
1032
+
1033
+
1034
+ def to_sklearn(self) -> Any:
1035
+ """Get sklearn.cluster.MeanShift object.
1036
+ """
1037
+ if self._sklearn_object is None:
1038
+ self._sklearn_object = self._create_sklearn_object()
1039
+ return self._sklearn_object
1040
+
1041
+ def to_xgboost(self) -> Any:
1042
+ raise exceptions.SnowflakeMLException(
1043
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1044
+ original_exception=AttributeError(
1045
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1046
+ "to_xgboost()",
1047
+ "to_sklearn()"
1048
+ )
1049
+ ),
1050
+ )
1051
+
1052
+ def to_lightgbm(self) -> Any:
1053
+ raise exceptions.SnowflakeMLException(
1054
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1055
+ original_exception=AttributeError(
1056
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
+ "to_lightgbm()",
1058
+ "to_sklearn()"
1059
+ )
1060
+ ),
1061
+ )
962
1062
 
963
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1063
+ def _get_dependencies(self) -> List[str]:
1064
+ return self._deps
1065
+
1066
+
1067
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
964
1068
  self._model_signature_dict = dict()
965
1069
 
966
1070
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
967
1071
 
968
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1072
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
969
1073
  outputs: List[BaseFeatureSpec] = []
970
1074
  if hasattr(self, "predict"):
971
1075
  # keep mypy happy
972
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1076
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
973
1077
  # For classifier, the type of predict is the same as the type of label
974
- if self._sklearn_object._estimator_type == 'classifier':
975
- # label columns is the desired type for output
1078
+ if self._sklearn_object._estimator_type == "classifier":
1079
+ # label columns is the desired type for output
976
1080
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
977
1081
  # rename the output columns
978
1082
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
979
- self._model_signature_dict["predict"] = ModelSignature(inputs,
980
- ([] if self._drop_input_cols else inputs)
981
- + outputs)
1083
+ self._model_signature_dict["predict"] = ModelSignature(
1084
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1085
+ )
982
1086
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
983
1087
  # For outlier models, returns -1 for outliers and 1 for inliers.
984
- # Clusterer returns int64 cluster labels.
1088
+ # Clusterer returns int64 cluster labels.
985
1089
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
986
1090
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
987
- self._model_signature_dict["predict"] = ModelSignature(inputs,
988
- ([] if self._drop_input_cols else inputs)
989
- + outputs)
990
-
1091
+ self._model_signature_dict["predict"] = ModelSignature(
1092
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1093
+ )
1094
+
991
1095
  # For regressor, the type of predict is float64
992
- elif self._sklearn_object._estimator_type == 'regressor':
1096
+ elif self._sklearn_object._estimator_type == "regressor":
993
1097
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
997
-
1098
+ self._model_signature_dict["predict"] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
1101
+
998
1102
  for prob_func in PROB_FUNCTIONS:
999
1103
  if hasattr(self, prob_func):
1000
1104
  output_cols_prefix: str = f"{prob_func}_"
1001
1105
  output_column_names = self._get_output_column_names(output_cols_prefix)
1002
1106
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1003
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1004
- ([] if self._drop_input_cols else inputs)
1005
- + outputs)
1107
+ self._model_signature_dict[prob_func] = ModelSignature(
1108
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1109
+ )
1006
1110
 
1007
1111
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1008
1112
  items = list(self._model_signature_dict.items())
@@ -1015,10 +1119,10 @@ class MeanShift(BaseTransformer):
1015
1119
  """Returns model signature of current class.
1016
1120
 
1017
1121
  Raises:
1018
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1122
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1019
1123
 
1020
1124
  Returns:
1021
- Dict[str, ModelSignature]: each method and its input output signature
1125
+ Dict with each method and its input output signature
1022
1126
  """
1023
1127
  if self._model_signature_dict is None:
1024
1128
  raise exceptions.SnowflakeMLException(
@@ -1026,35 +1130,3 @@ class MeanShift(BaseTransformer):
1026
1130
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1027
1131
  )
1028
1132
  return self._model_signature_dict
1029
-
1030
- def to_sklearn(self) -> Any:
1031
- """Get sklearn.cluster.MeanShift object.
1032
- """
1033
- if self._sklearn_object is None:
1034
- self._sklearn_object = self._create_sklearn_object()
1035
- return self._sklearn_object
1036
-
1037
- def to_xgboost(self) -> Any:
1038
- raise exceptions.SnowflakeMLException(
1039
- error_code=error_codes.METHOD_NOT_ALLOWED,
1040
- original_exception=AttributeError(
1041
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
- "to_xgboost()",
1043
- "to_sklearn()"
1044
- )
1045
- ),
1046
- )
1047
-
1048
- def to_lightgbm(self) -> Any:
1049
- raise exceptions.SnowflakeMLException(
1050
- error_code=error_codes.METHOD_NOT_ALLOWED,
1051
- original_exception=AttributeError(
1052
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
- "to_lightgbm()",
1054
- "to_sklearn()"
1055
- )
1056
- ),
1057
- )
1058
-
1059
- def _get_dependencies(self) -> List[str]:
1060
- return self._deps