snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -354,12 +353,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
354
353
|
)
|
355
354
|
return selected_cols
|
356
355
|
|
357
|
-
|
358
|
-
project=_PROJECT,
|
359
|
-
subproject=_SUBPROJECT,
|
360
|
-
custom_tags=dict([("autogen", True)]),
|
361
|
-
)
|
362
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegressionCV":
|
356
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegressionCV":
|
363
357
|
"""Fit the model according to the given training data
|
364
358
|
For more details on this function, see [sklearn.linear_model.LogisticRegressionCV.fit]
|
365
359
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html#sklearn.linear_model.LogisticRegressionCV.fit)
|
@@ -386,12 +380,14 @@ class LogisticRegressionCV(BaseTransformer):
|
|
386
380
|
|
387
381
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
388
382
|
|
389
|
-
|
383
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
390
384
|
if SNOWML_SPROC_ENV in os.environ:
|
391
385
|
statement_params = telemetry.get_function_usage_statement_params(
|
392
386
|
project=_PROJECT,
|
393
387
|
subproject=_SUBPROJECT,
|
394
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
388
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
389
|
+
inspect.currentframe(), LogisticRegressionCV.__class__.__name__
|
390
|
+
),
|
395
391
|
api_calls=[Session.call],
|
396
392
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
397
393
|
)
|
@@ -412,7 +408,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
412
408
|
)
|
413
409
|
self._sklearn_object = model_trainer.train()
|
414
410
|
self._is_fitted = True
|
415
|
-
self.
|
411
|
+
self._generate_model_signatures(dataset)
|
416
412
|
return self
|
417
413
|
|
418
414
|
def _batch_inference_validate_snowpark(
|
@@ -488,7 +484,9 @@ class LogisticRegressionCV(BaseTransformer):
|
|
488
484
|
# when it is classifier, infer the datatype from label columns
|
489
485
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
490
486
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
491
|
-
label_cols_signatures = [
|
487
|
+
label_cols_signatures = [
|
488
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
489
|
+
]
|
492
490
|
if len(label_cols_signatures) == 0:
|
493
491
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
494
492
|
raise exceptions.SnowflakeMLException(
|
@@ -496,25 +494,22 @@ class LogisticRegressionCV(BaseTransformer):
|
|
496
494
|
original_exception=ValueError(error_str),
|
497
495
|
)
|
498
496
|
|
499
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
500
|
-
label_cols_signatures[0].as_snowpark_type()
|
501
|
-
)
|
497
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
502
498
|
|
503
499
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
504
|
-
assert isinstance(
|
500
|
+
assert isinstance(
|
501
|
+
dataset._session, Session
|
502
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
505
503
|
|
506
504
|
transform_kwargs = dict(
|
507
|
-
session
|
508
|
-
dependencies
|
509
|
-
drop_input_cols
|
510
|
-
expected_output_cols_type
|
505
|
+
session=dataset._session,
|
506
|
+
dependencies=self._deps,
|
507
|
+
drop_input_cols=self._drop_input_cols,
|
508
|
+
expected_output_cols_type=expected_type_inferred,
|
511
509
|
)
|
512
510
|
|
513
511
|
elif isinstance(dataset, pd.DataFrame):
|
514
|
-
transform_kwargs = dict(
|
515
|
-
snowpark_input_cols = self._snowpark_cols,
|
516
|
-
drop_input_cols = self._drop_input_cols
|
517
|
-
)
|
512
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
518
513
|
|
519
514
|
transform_handlers = ModelTransformerBuilder.build(
|
520
515
|
dataset=dataset,
|
@@ -554,7 +549,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
554
549
|
Transformed dataset.
|
555
550
|
"""
|
556
551
|
super()._check_dataset_type(dataset)
|
557
|
-
inference_method="transform"
|
552
|
+
inference_method = "transform"
|
558
553
|
|
559
554
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
560
555
|
# are specific to the type of dataset used.
|
@@ -591,17 +586,14 @@ class LogisticRegressionCV(BaseTransformer):
|
|
591
586
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
592
587
|
|
593
588
|
transform_kwargs = dict(
|
594
|
-
session
|
595
|
-
dependencies
|
596
|
-
drop_input_cols
|
597
|
-
expected_output_cols_type
|
589
|
+
session=dataset._session,
|
590
|
+
dependencies=self._deps,
|
591
|
+
drop_input_cols=self._drop_input_cols,
|
592
|
+
expected_output_cols_type=expected_dtype,
|
598
593
|
)
|
599
594
|
|
600
595
|
elif isinstance(dataset, pd.DataFrame):
|
601
|
-
transform_kwargs = dict(
|
602
|
-
snowpark_input_cols = self._snowpark_cols,
|
603
|
-
drop_input_cols = self._drop_input_cols
|
604
|
-
)
|
596
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
605
597
|
|
606
598
|
transform_handlers = ModelTransformerBuilder.build(
|
607
599
|
dataset=dataset,
|
@@ -620,7 +612,11 @@ class LogisticRegressionCV(BaseTransformer):
|
|
620
612
|
return output_df
|
621
613
|
|
622
614
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
623
|
-
def fit_predict(
|
615
|
+
def fit_predict(
|
616
|
+
self,
|
617
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
618
|
+
output_cols_prefix: str = "fit_predict_",
|
619
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
624
620
|
""" Method not supported for this class.
|
625
621
|
|
626
622
|
|
@@ -645,7 +641,9 @@ class LogisticRegressionCV(BaseTransformer):
|
|
645
641
|
)
|
646
642
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
647
643
|
drop_input_cols=self._drop_input_cols,
|
648
|
-
expected_output_cols_list=
|
644
|
+
expected_output_cols_list=(
|
645
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
646
|
+
),
|
649
647
|
)
|
650
648
|
self._sklearn_object = fitted_estimator
|
651
649
|
self._is_fitted = True
|
@@ -662,6 +660,62 @@ class LogisticRegressionCV(BaseTransformer):
|
|
662
660
|
assert self._sklearn_object is not None
|
663
661
|
return self._sklearn_object.embedding_
|
664
662
|
|
663
|
+
|
664
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
665
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
666
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
667
|
+
"""
|
668
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
669
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
670
|
+
if output_cols:
|
671
|
+
output_cols = [
|
672
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
673
|
+
for c in output_cols
|
674
|
+
]
|
675
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
676
|
+
output_cols = [output_cols_prefix]
|
677
|
+
elif self._sklearn_object is not None:
|
678
|
+
classes = self._sklearn_object.classes_
|
679
|
+
if isinstance(classes, numpy.ndarray):
|
680
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
681
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
682
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
683
|
+
output_cols = []
|
684
|
+
for i, cl in enumerate(classes):
|
685
|
+
# For binary classification, there is only one output column for each class
|
686
|
+
# ndarray as the two classes are complementary.
|
687
|
+
if len(cl) == 2:
|
688
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
689
|
+
else:
|
690
|
+
output_cols.extend([
|
691
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
692
|
+
])
|
693
|
+
else:
|
694
|
+
output_cols = []
|
695
|
+
|
696
|
+
# Make sure column names are valid snowflake identifiers.
|
697
|
+
assert output_cols is not None # Make MyPy happy
|
698
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
699
|
+
|
700
|
+
return rv
|
701
|
+
|
702
|
+
def _align_expected_output_names(
|
703
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
704
|
+
) -> List[str]:
|
705
|
+
# in case the inferred output column names dimension is different
|
706
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
707
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
708
|
+
output_df_columns = list(output_df_pd.columns)
|
709
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
710
|
+
if self.sample_weight_col:
|
711
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
712
|
+
# if the dimension of inferred output column names is correct; use it
|
713
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
714
|
+
return expected_output_cols_list
|
715
|
+
# otherwise, use the sklearn estimator's output
|
716
|
+
else:
|
717
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
718
|
+
|
665
719
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
666
720
|
@telemetry.send_api_usage_telemetry(
|
667
721
|
project=_PROJECT,
|
@@ -694,24 +748,28 @@ class LogisticRegressionCV(BaseTransformer):
|
|
694
748
|
# are specific to the type of dataset used.
|
695
749
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
696
750
|
|
751
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
752
|
+
|
697
753
|
if isinstance(dataset, DataFrame):
|
698
754
|
self._deps = self._batch_inference_validate_snowpark(
|
699
755
|
dataset=dataset,
|
700
756
|
inference_method=inference_method,
|
701
757
|
)
|
702
|
-
assert isinstance(
|
758
|
+
assert isinstance(
|
759
|
+
dataset._session, Session
|
760
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
703
761
|
transform_kwargs = dict(
|
704
762
|
session=dataset._session,
|
705
763
|
dependencies=self._deps,
|
706
|
-
drop_input_cols
|
764
|
+
drop_input_cols=self._drop_input_cols,
|
707
765
|
expected_output_cols_type="float",
|
708
766
|
)
|
767
|
+
expected_output_cols = self._align_expected_output_names(
|
768
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
769
|
+
)
|
709
770
|
|
710
771
|
elif isinstance(dataset, pd.DataFrame):
|
711
|
-
transform_kwargs = dict(
|
712
|
-
snowpark_input_cols = self._snowpark_cols,
|
713
|
-
drop_input_cols = self._drop_input_cols
|
714
|
-
)
|
772
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
715
773
|
|
716
774
|
transform_handlers = ModelTransformerBuilder.build(
|
717
775
|
dataset=dataset,
|
@@ -723,7 +781,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
723
781
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
724
782
|
inference_method=inference_method,
|
725
783
|
input_cols=self.input_cols,
|
726
|
-
expected_output_cols=
|
784
|
+
expected_output_cols=expected_output_cols,
|
727
785
|
**transform_kwargs
|
728
786
|
)
|
729
787
|
return output_df
|
@@ -755,7 +813,8 @@ class LogisticRegressionCV(BaseTransformer):
|
|
755
813
|
Output dataset with log probability of the sample for each class in the model.
|
756
814
|
"""
|
757
815
|
super()._check_dataset_type(dataset)
|
758
|
-
inference_method="predict_log_proba"
|
816
|
+
inference_method = "predict_log_proba"
|
817
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
759
818
|
|
760
819
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
761
820
|
# are specific to the type of dataset used.
|
@@ -766,18 +825,20 @@ class LogisticRegressionCV(BaseTransformer):
|
|
766
825
|
dataset=dataset,
|
767
826
|
inference_method=inference_method,
|
768
827
|
)
|
769
|
-
assert isinstance(
|
828
|
+
assert isinstance(
|
829
|
+
dataset._session, Session
|
830
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
770
831
|
transform_kwargs = dict(
|
771
832
|
session=dataset._session,
|
772
833
|
dependencies=self._deps,
|
773
|
-
drop_input_cols
|
834
|
+
drop_input_cols=self._drop_input_cols,
|
774
835
|
expected_output_cols_type="float",
|
775
836
|
)
|
837
|
+
expected_output_cols = self._align_expected_output_names(
|
838
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
839
|
+
)
|
776
840
|
elif isinstance(dataset, pd.DataFrame):
|
777
|
-
transform_kwargs = dict(
|
778
|
-
snowpark_input_cols = self._snowpark_cols,
|
779
|
-
drop_input_cols = self._drop_input_cols
|
780
|
-
)
|
841
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
781
842
|
|
782
843
|
transform_handlers = ModelTransformerBuilder.build(
|
783
844
|
dataset=dataset,
|
@@ -790,7 +851,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
790
851
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
791
852
|
inference_method=inference_method,
|
792
853
|
input_cols=self.input_cols,
|
793
|
-
expected_output_cols=
|
854
|
+
expected_output_cols=expected_output_cols,
|
794
855
|
**transform_kwargs
|
795
856
|
)
|
796
857
|
return output_df
|
@@ -818,30 +879,34 @@ class LogisticRegressionCV(BaseTransformer):
|
|
818
879
|
Output dataset with results of the decision function for the samples in input dataset.
|
819
880
|
"""
|
820
881
|
super()._check_dataset_type(dataset)
|
821
|
-
inference_method="decision_function"
|
882
|
+
inference_method = "decision_function"
|
822
883
|
|
823
884
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
824
885
|
# are specific to the type of dataset used.
|
825
886
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
826
887
|
|
888
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
889
|
+
|
827
890
|
if isinstance(dataset, DataFrame):
|
828
891
|
self._deps = self._batch_inference_validate_snowpark(
|
829
892
|
dataset=dataset,
|
830
893
|
inference_method=inference_method,
|
831
894
|
)
|
832
|
-
assert isinstance(
|
895
|
+
assert isinstance(
|
896
|
+
dataset._session, Session
|
897
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
833
898
|
transform_kwargs = dict(
|
834
899
|
session=dataset._session,
|
835
900
|
dependencies=self._deps,
|
836
|
-
drop_input_cols
|
901
|
+
drop_input_cols=self._drop_input_cols,
|
837
902
|
expected_output_cols_type="float",
|
838
903
|
)
|
904
|
+
expected_output_cols = self._align_expected_output_names(
|
905
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
906
|
+
)
|
839
907
|
|
840
908
|
elif isinstance(dataset, pd.DataFrame):
|
841
|
-
transform_kwargs = dict(
|
842
|
-
snowpark_input_cols = self._snowpark_cols,
|
843
|
-
drop_input_cols = self._drop_input_cols
|
844
|
-
)
|
909
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
845
910
|
|
846
911
|
transform_handlers = ModelTransformerBuilder.build(
|
847
912
|
dataset=dataset,
|
@@ -854,7 +919,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
854
919
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
855
920
|
inference_method=inference_method,
|
856
921
|
input_cols=self.input_cols,
|
857
|
-
expected_output_cols=
|
922
|
+
expected_output_cols=expected_output_cols,
|
858
923
|
**transform_kwargs
|
859
924
|
)
|
860
925
|
return output_df
|
@@ -883,12 +948,14 @@ class LogisticRegressionCV(BaseTransformer):
|
|
883
948
|
Output dataset with probability of the sample for each class in the model.
|
884
949
|
"""
|
885
950
|
super()._check_dataset_type(dataset)
|
886
|
-
inference_method="score_samples"
|
951
|
+
inference_method = "score_samples"
|
887
952
|
|
888
953
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
889
954
|
# are specific to the type of dataset used.
|
890
955
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
891
956
|
|
957
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
958
|
+
|
892
959
|
if isinstance(dataset, DataFrame):
|
893
960
|
self._deps = self._batch_inference_validate_snowpark(
|
894
961
|
dataset=dataset,
|
@@ -901,6 +968,9 @@ class LogisticRegressionCV(BaseTransformer):
|
|
901
968
|
drop_input_cols = self._drop_input_cols,
|
902
969
|
expected_output_cols_type="float",
|
903
970
|
)
|
971
|
+
expected_output_cols = self._align_expected_output_names(
|
972
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
973
|
+
)
|
904
974
|
|
905
975
|
elif isinstance(dataset, pd.DataFrame):
|
906
976
|
transform_kwargs = dict(
|
@@ -919,7 +989,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
919
989
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
920
990
|
inference_method=inference_method,
|
921
991
|
input_cols=self.input_cols,
|
922
|
-
expected_output_cols=
|
992
|
+
expected_output_cols=expected_output_cols,
|
923
993
|
**transform_kwargs
|
924
994
|
)
|
925
995
|
return output_df
|
@@ -1066,50 +1136,84 @@ class LogisticRegressionCV(BaseTransformer):
|
|
1066
1136
|
)
|
1067
1137
|
return output_df
|
1068
1138
|
|
1139
|
+
|
1140
|
+
|
1141
|
+
def to_sklearn(self) -> Any:
|
1142
|
+
"""Get sklearn.linear_model.LogisticRegressionCV object.
|
1143
|
+
"""
|
1144
|
+
if self._sklearn_object is None:
|
1145
|
+
self._sklearn_object = self._create_sklearn_object()
|
1146
|
+
return self._sklearn_object
|
1147
|
+
|
1148
|
+
def to_xgboost(self) -> Any:
|
1149
|
+
raise exceptions.SnowflakeMLException(
|
1150
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1151
|
+
original_exception=AttributeError(
|
1152
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1153
|
+
"to_xgboost()",
|
1154
|
+
"to_sklearn()"
|
1155
|
+
)
|
1156
|
+
),
|
1157
|
+
)
|
1158
|
+
|
1159
|
+
def to_lightgbm(self) -> Any:
|
1160
|
+
raise exceptions.SnowflakeMLException(
|
1161
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1162
|
+
original_exception=AttributeError(
|
1163
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1164
|
+
"to_lightgbm()",
|
1165
|
+
"to_sklearn()"
|
1166
|
+
)
|
1167
|
+
),
|
1168
|
+
)
|
1069
1169
|
|
1070
|
-
def
|
1170
|
+
def _get_dependencies(self) -> List[str]:
|
1171
|
+
return self._deps
|
1172
|
+
|
1173
|
+
|
1174
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1071
1175
|
self._model_signature_dict = dict()
|
1072
1176
|
|
1073
1177
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1074
1178
|
|
1075
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1179
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1076
1180
|
outputs: List[BaseFeatureSpec] = []
|
1077
1181
|
if hasattr(self, "predict"):
|
1078
1182
|
# keep mypy happy
|
1079
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1183
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1080
1184
|
# For classifier, the type of predict is the same as the type of label
|
1081
|
-
if self._sklearn_object._estimator_type ==
|
1082
|
-
|
1185
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1186
|
+
# label columns is the desired type for output
|
1083
1187
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1084
1188
|
# rename the output columns
|
1085
1189
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1086
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1087
|
-
|
1088
|
-
|
1190
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1191
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1192
|
+
)
|
1089
1193
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1090
1194
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1091
|
-
# Clusterer returns int64 cluster labels.
|
1195
|
+
# Clusterer returns int64 cluster labels.
|
1092
1196
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1093
1197
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1094
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1095
|
-
|
1096
|
-
|
1097
|
-
|
1198
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1199
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1200
|
+
)
|
1201
|
+
|
1098
1202
|
# For regressor, the type of predict is float64
|
1099
|
-
elif self._sklearn_object._estimator_type ==
|
1203
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1100
1204
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1101
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1102
|
-
|
1103
|
-
|
1104
|
-
|
1205
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1206
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1207
|
+
)
|
1208
|
+
|
1105
1209
|
for prob_func in PROB_FUNCTIONS:
|
1106
1210
|
if hasattr(self, prob_func):
|
1107
1211
|
output_cols_prefix: str = f"{prob_func}_"
|
1108
1212
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1109
1213
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1110
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1111
|
-
|
1112
|
-
|
1214
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1215
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1216
|
+
)
|
1113
1217
|
|
1114
1218
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1115
1219
|
items = list(self._model_signature_dict.items())
|
@@ -1122,10 +1226,10 @@ class LogisticRegressionCV(BaseTransformer):
|
|
1122
1226
|
"""Returns model signature of current class.
|
1123
1227
|
|
1124
1228
|
Raises:
|
1125
|
-
|
1229
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1126
1230
|
|
1127
1231
|
Returns:
|
1128
|
-
Dict
|
1232
|
+
Dict with each method and its input output signature
|
1129
1233
|
"""
|
1130
1234
|
if self._model_signature_dict is None:
|
1131
1235
|
raise exceptions.SnowflakeMLException(
|
@@ -1133,35 +1237,3 @@ class LogisticRegressionCV(BaseTransformer):
|
|
1133
1237
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1134
1238
|
)
|
1135
1239
|
return self._model_signature_dict
|
1136
|
-
|
1137
|
-
def to_sklearn(self) -> Any:
|
1138
|
-
"""Get sklearn.linear_model.LogisticRegressionCV object.
|
1139
|
-
"""
|
1140
|
-
if self._sklearn_object is None:
|
1141
|
-
self._sklearn_object = self._create_sklearn_object()
|
1142
|
-
return self._sklearn_object
|
1143
|
-
|
1144
|
-
def to_xgboost(self) -> Any:
|
1145
|
-
raise exceptions.SnowflakeMLException(
|
1146
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1147
|
-
original_exception=AttributeError(
|
1148
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1149
|
-
"to_xgboost()",
|
1150
|
-
"to_sklearn()"
|
1151
|
-
)
|
1152
|
-
),
|
1153
|
-
)
|
1154
|
-
|
1155
|
-
def to_lightgbm(self) -> Any:
|
1156
|
-
raise exceptions.SnowflakeMLException(
|
1157
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1158
|
-
original_exception=AttributeError(
|
1159
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1160
|
-
"to_lightgbm()",
|
1161
|
-
"to_sklearn()"
|
1162
|
-
)
|
1163
|
-
),
|
1164
|
-
)
|
1165
|
-
|
1166
|
-
def _get_dependencies(self) -> List[str]:
|
1167
|
-
return self._deps
|