snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -354,12 +353,7 @@ class LogisticRegressionCV(BaseTransformer):
354
353
  )
355
354
  return selected_cols
356
355
 
357
- @telemetry.send_api_usage_telemetry(
358
- project=_PROJECT,
359
- subproject=_SUBPROJECT,
360
- custom_tags=dict([("autogen", True)]),
361
- )
362
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegressionCV":
356
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegressionCV":
363
357
  """Fit the model according to the given training data
364
358
  For more details on this function, see [sklearn.linear_model.LogisticRegressionCV.fit]
365
359
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html#sklearn.linear_model.LogisticRegressionCV.fit)
@@ -386,12 +380,14 @@ class LogisticRegressionCV(BaseTransformer):
386
380
 
387
381
  self._snowpark_cols = dataset.select(self.input_cols).columns
388
382
 
389
- # If we are already in a stored procedure, no need to kick off another one.
383
+ # If we are already in a stored procedure, no need to kick off another one.
390
384
  if SNOWML_SPROC_ENV in os.environ:
391
385
  statement_params = telemetry.get_function_usage_statement_params(
392
386
  project=_PROJECT,
393
387
  subproject=_SUBPROJECT,
394
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LogisticRegressionCV.__class__.__name__),
388
+ function_name=telemetry.get_statement_params_full_func_name(
389
+ inspect.currentframe(), LogisticRegressionCV.__class__.__name__
390
+ ),
395
391
  api_calls=[Session.call],
396
392
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
397
393
  )
@@ -412,7 +408,7 @@ class LogisticRegressionCV(BaseTransformer):
412
408
  )
413
409
  self._sklearn_object = model_trainer.train()
414
410
  self._is_fitted = True
415
- self._get_model_signatures(dataset)
411
+ self._generate_model_signatures(dataset)
416
412
  return self
417
413
 
418
414
  def _batch_inference_validate_snowpark(
@@ -488,7 +484,9 @@ class LogisticRegressionCV(BaseTransformer):
488
484
  # when it is classifier, infer the datatype from label columns
489
485
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
490
486
  # Batch inference takes a single expected output column type. Use the first columns type for now.
491
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
487
+ label_cols_signatures = [
488
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
489
+ ]
492
490
  if len(label_cols_signatures) == 0:
493
491
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
494
492
  raise exceptions.SnowflakeMLException(
@@ -496,25 +494,22 @@ class LogisticRegressionCV(BaseTransformer):
496
494
  original_exception=ValueError(error_str),
497
495
  )
498
496
 
499
- expected_type_inferred = convert_sp_to_sf_type(
500
- label_cols_signatures[0].as_snowpark_type()
501
- )
497
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
502
498
 
503
499
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
504
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
500
+ assert isinstance(
501
+ dataset._session, Session
502
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
505
503
 
506
504
  transform_kwargs = dict(
507
- session = dataset._session,
508
- dependencies = self._deps,
509
- drop_input_cols = self._drop_input_cols,
510
- expected_output_cols_type = expected_type_inferred,
505
+ session=dataset._session,
506
+ dependencies=self._deps,
507
+ drop_input_cols=self._drop_input_cols,
508
+ expected_output_cols_type=expected_type_inferred,
511
509
  )
512
510
 
513
511
  elif isinstance(dataset, pd.DataFrame):
514
- transform_kwargs = dict(
515
- snowpark_input_cols = self._snowpark_cols,
516
- drop_input_cols = self._drop_input_cols
517
- )
512
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
518
513
 
519
514
  transform_handlers = ModelTransformerBuilder.build(
520
515
  dataset=dataset,
@@ -554,7 +549,7 @@ class LogisticRegressionCV(BaseTransformer):
554
549
  Transformed dataset.
555
550
  """
556
551
  super()._check_dataset_type(dataset)
557
- inference_method="transform"
552
+ inference_method = "transform"
558
553
 
559
554
  # This dictionary contains optional kwargs for batch inference. These kwargs
560
555
  # are specific to the type of dataset used.
@@ -591,17 +586,14 @@ class LogisticRegressionCV(BaseTransformer):
591
586
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
592
587
 
593
588
  transform_kwargs = dict(
594
- session = dataset._session,
595
- dependencies = self._deps,
596
- drop_input_cols = self._drop_input_cols,
597
- expected_output_cols_type = expected_dtype,
589
+ session=dataset._session,
590
+ dependencies=self._deps,
591
+ drop_input_cols=self._drop_input_cols,
592
+ expected_output_cols_type=expected_dtype,
598
593
  )
599
594
 
600
595
  elif isinstance(dataset, pd.DataFrame):
601
- transform_kwargs = dict(
602
- snowpark_input_cols = self._snowpark_cols,
603
- drop_input_cols = self._drop_input_cols
604
- )
596
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
605
597
 
606
598
  transform_handlers = ModelTransformerBuilder.build(
607
599
  dataset=dataset,
@@ -620,7 +612,11 @@ class LogisticRegressionCV(BaseTransformer):
620
612
  return output_df
621
613
 
622
614
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
623
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
615
+ def fit_predict(
616
+ self,
617
+ dataset: Union[DataFrame, pd.DataFrame],
618
+ output_cols_prefix: str = "fit_predict_",
619
+ ) -> Union[DataFrame, pd.DataFrame]:
624
620
  """ Method not supported for this class.
625
621
 
626
622
 
@@ -645,7 +641,9 @@ class LogisticRegressionCV(BaseTransformer):
645
641
  )
646
642
  output_result, fitted_estimator = model_trainer.train_fit_predict(
647
643
  drop_input_cols=self._drop_input_cols,
648
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
644
+ expected_output_cols_list=(
645
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
646
+ ),
649
647
  )
650
648
  self._sklearn_object = fitted_estimator
651
649
  self._is_fitted = True
@@ -662,6 +660,62 @@ class LogisticRegressionCV(BaseTransformer):
662
660
  assert self._sklearn_object is not None
663
661
  return self._sklearn_object.embedding_
664
662
 
663
+
664
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
665
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
666
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
667
+ """
668
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
669
+ # The following condition is introduced for kneighbors methods, and not used in other methods
670
+ if output_cols:
671
+ output_cols = [
672
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
673
+ for c in output_cols
674
+ ]
675
+ elif getattr(self._sklearn_object, "classes_", None) is None:
676
+ output_cols = [output_cols_prefix]
677
+ elif self._sklearn_object is not None:
678
+ classes = self._sklearn_object.classes_
679
+ if isinstance(classes, numpy.ndarray):
680
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
681
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
682
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
683
+ output_cols = []
684
+ for i, cl in enumerate(classes):
685
+ # For binary classification, there is only one output column for each class
686
+ # ndarray as the two classes are complementary.
687
+ if len(cl) == 2:
688
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
689
+ else:
690
+ output_cols.extend([
691
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
692
+ ])
693
+ else:
694
+ output_cols = []
695
+
696
+ # Make sure column names are valid snowflake identifiers.
697
+ assert output_cols is not None # Make MyPy happy
698
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
699
+
700
+ return rv
701
+
702
+ def _align_expected_output_names(
703
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
704
+ ) -> List[str]:
705
+ # in case the inferred output column names dimension is different
706
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
707
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
708
+ output_df_columns = list(output_df_pd.columns)
709
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
710
+ if self.sample_weight_col:
711
+ output_df_columns_set -= set(self.sample_weight_col)
712
+ # if the dimension of inferred output column names is correct; use it
713
+ if len(expected_output_cols_list) == len(output_df_columns_set):
714
+ return expected_output_cols_list
715
+ # otherwise, use the sklearn estimator's output
716
+ else:
717
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
718
+
665
719
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
666
720
  @telemetry.send_api_usage_telemetry(
667
721
  project=_PROJECT,
@@ -694,24 +748,28 @@ class LogisticRegressionCV(BaseTransformer):
694
748
  # are specific to the type of dataset used.
695
749
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
696
750
 
751
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
752
+
697
753
  if isinstance(dataset, DataFrame):
698
754
  self._deps = self._batch_inference_validate_snowpark(
699
755
  dataset=dataset,
700
756
  inference_method=inference_method,
701
757
  )
702
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
758
+ assert isinstance(
759
+ dataset._session, Session
760
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
703
761
  transform_kwargs = dict(
704
762
  session=dataset._session,
705
763
  dependencies=self._deps,
706
- drop_input_cols = self._drop_input_cols,
764
+ drop_input_cols=self._drop_input_cols,
707
765
  expected_output_cols_type="float",
708
766
  )
767
+ expected_output_cols = self._align_expected_output_names(
768
+ inference_method, dataset, expected_output_cols, output_cols_prefix
769
+ )
709
770
 
710
771
  elif isinstance(dataset, pd.DataFrame):
711
- transform_kwargs = dict(
712
- snowpark_input_cols = self._snowpark_cols,
713
- drop_input_cols = self._drop_input_cols
714
- )
772
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
715
773
 
716
774
  transform_handlers = ModelTransformerBuilder.build(
717
775
  dataset=dataset,
@@ -723,7 +781,7 @@ class LogisticRegressionCV(BaseTransformer):
723
781
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
724
782
  inference_method=inference_method,
725
783
  input_cols=self.input_cols,
726
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
784
+ expected_output_cols=expected_output_cols,
727
785
  **transform_kwargs
728
786
  )
729
787
  return output_df
@@ -755,7 +813,8 @@ class LogisticRegressionCV(BaseTransformer):
755
813
  Output dataset with log probability of the sample for each class in the model.
756
814
  """
757
815
  super()._check_dataset_type(dataset)
758
- inference_method="predict_log_proba"
816
+ inference_method = "predict_log_proba"
817
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
759
818
 
760
819
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
820
  # are specific to the type of dataset used.
@@ -766,18 +825,20 @@ class LogisticRegressionCV(BaseTransformer):
766
825
  dataset=dataset,
767
826
  inference_method=inference_method,
768
827
  )
769
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
828
+ assert isinstance(
829
+ dataset._session, Session
830
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
770
831
  transform_kwargs = dict(
771
832
  session=dataset._session,
772
833
  dependencies=self._deps,
773
- drop_input_cols = self._drop_input_cols,
834
+ drop_input_cols=self._drop_input_cols,
774
835
  expected_output_cols_type="float",
775
836
  )
837
+ expected_output_cols = self._align_expected_output_names(
838
+ inference_method, dataset, expected_output_cols, output_cols_prefix
839
+ )
776
840
  elif isinstance(dataset, pd.DataFrame):
777
- transform_kwargs = dict(
778
- snowpark_input_cols = self._snowpark_cols,
779
- drop_input_cols = self._drop_input_cols
780
- )
841
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
781
842
 
782
843
  transform_handlers = ModelTransformerBuilder.build(
783
844
  dataset=dataset,
@@ -790,7 +851,7 @@ class LogisticRegressionCV(BaseTransformer):
790
851
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
791
852
  inference_method=inference_method,
792
853
  input_cols=self.input_cols,
793
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
854
+ expected_output_cols=expected_output_cols,
794
855
  **transform_kwargs
795
856
  )
796
857
  return output_df
@@ -818,30 +879,34 @@ class LogisticRegressionCV(BaseTransformer):
818
879
  Output dataset with results of the decision function for the samples in input dataset.
819
880
  """
820
881
  super()._check_dataset_type(dataset)
821
- inference_method="decision_function"
882
+ inference_method = "decision_function"
822
883
 
823
884
  # This dictionary contains optional kwargs for batch inference. These kwargs
824
885
  # are specific to the type of dataset used.
825
886
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
826
887
 
888
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
889
+
827
890
  if isinstance(dataset, DataFrame):
828
891
  self._deps = self._batch_inference_validate_snowpark(
829
892
  dataset=dataset,
830
893
  inference_method=inference_method,
831
894
  )
832
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
895
+ assert isinstance(
896
+ dataset._session, Session
897
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
833
898
  transform_kwargs = dict(
834
899
  session=dataset._session,
835
900
  dependencies=self._deps,
836
- drop_input_cols = self._drop_input_cols,
901
+ drop_input_cols=self._drop_input_cols,
837
902
  expected_output_cols_type="float",
838
903
  )
904
+ expected_output_cols = self._align_expected_output_names(
905
+ inference_method, dataset, expected_output_cols, output_cols_prefix
906
+ )
839
907
 
840
908
  elif isinstance(dataset, pd.DataFrame):
841
- transform_kwargs = dict(
842
- snowpark_input_cols = self._snowpark_cols,
843
- drop_input_cols = self._drop_input_cols
844
- )
909
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
845
910
 
846
911
  transform_handlers = ModelTransformerBuilder.build(
847
912
  dataset=dataset,
@@ -854,7 +919,7 @@ class LogisticRegressionCV(BaseTransformer):
854
919
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
855
920
  inference_method=inference_method,
856
921
  input_cols=self.input_cols,
857
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
922
+ expected_output_cols=expected_output_cols,
858
923
  **transform_kwargs
859
924
  )
860
925
  return output_df
@@ -883,12 +948,14 @@ class LogisticRegressionCV(BaseTransformer):
883
948
  Output dataset with probability of the sample for each class in the model.
884
949
  """
885
950
  super()._check_dataset_type(dataset)
886
- inference_method="score_samples"
951
+ inference_method = "score_samples"
887
952
 
888
953
  # This dictionary contains optional kwargs for batch inference. These kwargs
889
954
  # are specific to the type of dataset used.
890
955
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
891
956
 
957
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
958
+
892
959
  if isinstance(dataset, DataFrame):
893
960
  self._deps = self._batch_inference_validate_snowpark(
894
961
  dataset=dataset,
@@ -901,6 +968,9 @@ class LogisticRegressionCV(BaseTransformer):
901
968
  drop_input_cols = self._drop_input_cols,
902
969
  expected_output_cols_type="float",
903
970
  )
971
+ expected_output_cols = self._align_expected_output_names(
972
+ inference_method, dataset, expected_output_cols, output_cols_prefix
973
+ )
904
974
 
905
975
  elif isinstance(dataset, pd.DataFrame):
906
976
  transform_kwargs = dict(
@@ -919,7 +989,7 @@ class LogisticRegressionCV(BaseTransformer):
919
989
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
920
990
  inference_method=inference_method,
921
991
  input_cols=self.input_cols,
922
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
992
+ expected_output_cols=expected_output_cols,
923
993
  **transform_kwargs
924
994
  )
925
995
  return output_df
@@ -1066,50 +1136,84 @@ class LogisticRegressionCV(BaseTransformer):
1066
1136
  )
1067
1137
  return output_df
1068
1138
 
1139
+
1140
+
1141
+ def to_sklearn(self) -> Any:
1142
+ """Get sklearn.linear_model.LogisticRegressionCV object.
1143
+ """
1144
+ if self._sklearn_object is None:
1145
+ self._sklearn_object = self._create_sklearn_object()
1146
+ return self._sklearn_object
1147
+
1148
+ def to_xgboost(self) -> Any:
1149
+ raise exceptions.SnowflakeMLException(
1150
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1151
+ original_exception=AttributeError(
1152
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1153
+ "to_xgboost()",
1154
+ "to_sklearn()"
1155
+ )
1156
+ ),
1157
+ )
1158
+
1159
+ def to_lightgbm(self) -> Any:
1160
+ raise exceptions.SnowflakeMLException(
1161
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1162
+ original_exception=AttributeError(
1163
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1164
+ "to_lightgbm()",
1165
+ "to_sklearn()"
1166
+ )
1167
+ ),
1168
+ )
1069
1169
 
1070
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1170
+ def _get_dependencies(self) -> List[str]:
1171
+ return self._deps
1172
+
1173
+
1174
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1071
1175
  self._model_signature_dict = dict()
1072
1176
 
1073
1177
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1074
1178
 
1075
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1179
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1076
1180
  outputs: List[BaseFeatureSpec] = []
1077
1181
  if hasattr(self, "predict"):
1078
1182
  # keep mypy happy
1079
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1183
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1080
1184
  # For classifier, the type of predict is the same as the type of label
1081
- if self._sklearn_object._estimator_type == 'classifier':
1082
- # label columns is the desired type for output
1185
+ if self._sklearn_object._estimator_type == "classifier":
1186
+ # label columns is the desired type for output
1083
1187
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1084
1188
  # rename the output columns
1085
1189
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1086
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1087
- ([] if self._drop_input_cols else inputs)
1088
- + outputs)
1190
+ self._model_signature_dict["predict"] = ModelSignature(
1191
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1192
+ )
1089
1193
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1090
1194
  # For outlier models, returns -1 for outliers and 1 for inliers.
1091
- # Clusterer returns int64 cluster labels.
1195
+ # Clusterer returns int64 cluster labels.
1092
1196
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1093
1197
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1094
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1095
- ([] if self._drop_input_cols else inputs)
1096
- + outputs)
1097
-
1198
+ self._model_signature_dict["predict"] = ModelSignature(
1199
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1200
+ )
1201
+
1098
1202
  # For regressor, the type of predict is float64
1099
- elif self._sklearn_object._estimator_type == 'regressor':
1203
+ elif self._sklearn_object._estimator_type == "regressor":
1100
1204
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1101
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1102
- ([] if self._drop_input_cols else inputs)
1103
- + outputs)
1104
-
1205
+ self._model_signature_dict["predict"] = ModelSignature(
1206
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1207
+ )
1208
+
1105
1209
  for prob_func in PROB_FUNCTIONS:
1106
1210
  if hasattr(self, prob_func):
1107
1211
  output_cols_prefix: str = f"{prob_func}_"
1108
1212
  output_column_names = self._get_output_column_names(output_cols_prefix)
1109
1213
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1110
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1111
- ([] if self._drop_input_cols else inputs)
1112
- + outputs)
1214
+ self._model_signature_dict[prob_func] = ModelSignature(
1215
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1216
+ )
1113
1217
 
1114
1218
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1115
1219
  items = list(self._model_signature_dict.items())
@@ -1122,10 +1226,10 @@ class LogisticRegressionCV(BaseTransformer):
1122
1226
  """Returns model signature of current class.
1123
1227
 
1124
1228
  Raises:
1125
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1229
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1126
1230
 
1127
1231
  Returns:
1128
- Dict[str, ModelSignature]: each method and its input output signature
1232
+ Dict with each method and its input output signature
1129
1233
  """
1130
1234
  if self._model_signature_dict is None:
1131
1235
  raise exceptions.SnowflakeMLException(
@@ -1133,35 +1237,3 @@ class LogisticRegressionCV(BaseTransformer):
1133
1237
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1134
1238
  )
1135
1239
  return self._model_signature_dict
1136
-
1137
- def to_sklearn(self) -> Any:
1138
- """Get sklearn.linear_model.LogisticRegressionCV object.
1139
- """
1140
- if self._sklearn_object is None:
1141
- self._sklearn_object = self._create_sklearn_object()
1142
- return self._sklearn_object
1143
-
1144
- def to_xgboost(self) -> Any:
1145
- raise exceptions.SnowflakeMLException(
1146
- error_code=error_codes.METHOD_NOT_ALLOWED,
1147
- original_exception=AttributeError(
1148
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1149
- "to_xgboost()",
1150
- "to_sklearn()"
1151
- )
1152
- ),
1153
- )
1154
-
1155
- def to_lightgbm(self) -> Any:
1156
- raise exceptions.SnowflakeMLException(
1157
- error_code=error_codes.METHOD_NOT_ALLOWED,
1158
- original_exception=AttributeError(
1159
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1160
- "to_lightgbm()",
1161
- "to_sklearn()"
1162
- )
1163
- ),
1164
- )
1165
-
1166
- def _get_dependencies(self) -> List[str]:
1167
- return self._deps