snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -297,12 +296,7 @@ class RidgeClassifier(BaseTransformer):
297
296
  )
298
297
  return selected_cols
299
298
 
300
- @telemetry.send_api_usage_telemetry(
301
- project=_PROJECT,
302
- subproject=_SUBPROJECT,
303
- custom_tags=dict([("autogen", True)]),
304
- )
305
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifier":
299
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifier":
306
300
  """Fit Ridge classifier model
307
301
  For more details on this function, see [sklearn.linear_model.RidgeClassifier.fit]
308
302
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier.fit)
@@ -329,12 +323,14 @@ class RidgeClassifier(BaseTransformer):
329
323
 
330
324
  self._snowpark_cols = dataset.select(self.input_cols).columns
331
325
 
332
- # If we are already in a stored procedure, no need to kick off another one.
326
+ # If we are already in a stored procedure, no need to kick off another one.
333
327
  if SNOWML_SPROC_ENV in os.environ:
334
328
  statement_params = telemetry.get_function_usage_statement_params(
335
329
  project=_PROJECT,
336
330
  subproject=_SUBPROJECT,
337
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeClassifier.__class__.__name__),
331
+ function_name=telemetry.get_statement_params_full_func_name(
332
+ inspect.currentframe(), RidgeClassifier.__class__.__name__
333
+ ),
338
334
  api_calls=[Session.call],
339
335
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
340
336
  )
@@ -355,7 +351,7 @@ class RidgeClassifier(BaseTransformer):
355
351
  )
356
352
  self._sklearn_object = model_trainer.train()
357
353
  self._is_fitted = True
358
- self._get_model_signatures(dataset)
354
+ self._generate_model_signatures(dataset)
359
355
  return self
360
356
 
361
357
  def _batch_inference_validate_snowpark(
@@ -431,7 +427,9 @@ class RidgeClassifier(BaseTransformer):
431
427
  # when it is classifier, infer the datatype from label columns
432
428
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
433
429
  # Batch inference takes a single expected output column type. Use the first columns type for now.
434
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
430
+ label_cols_signatures = [
431
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
432
+ ]
435
433
  if len(label_cols_signatures) == 0:
436
434
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
437
435
  raise exceptions.SnowflakeMLException(
@@ -439,25 +437,22 @@ class RidgeClassifier(BaseTransformer):
439
437
  original_exception=ValueError(error_str),
440
438
  )
441
439
 
442
- expected_type_inferred = convert_sp_to_sf_type(
443
- label_cols_signatures[0].as_snowpark_type()
444
- )
440
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
445
441
 
446
442
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
447
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
443
+ assert isinstance(
444
+ dataset._session, Session
445
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
448
446
 
449
447
  transform_kwargs = dict(
450
- session = dataset._session,
451
- dependencies = self._deps,
452
- drop_input_cols = self._drop_input_cols,
453
- expected_output_cols_type = expected_type_inferred,
448
+ session=dataset._session,
449
+ dependencies=self._deps,
450
+ drop_input_cols=self._drop_input_cols,
451
+ expected_output_cols_type=expected_type_inferred,
454
452
  )
455
453
 
456
454
  elif isinstance(dataset, pd.DataFrame):
457
- transform_kwargs = dict(
458
- snowpark_input_cols = self._snowpark_cols,
459
- drop_input_cols = self._drop_input_cols
460
- )
455
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
461
456
 
462
457
  transform_handlers = ModelTransformerBuilder.build(
463
458
  dataset=dataset,
@@ -497,7 +492,7 @@ class RidgeClassifier(BaseTransformer):
497
492
  Transformed dataset.
498
493
  """
499
494
  super()._check_dataset_type(dataset)
500
- inference_method="transform"
495
+ inference_method = "transform"
501
496
 
502
497
  # This dictionary contains optional kwargs for batch inference. These kwargs
503
498
  # are specific to the type of dataset used.
@@ -534,17 +529,14 @@ class RidgeClassifier(BaseTransformer):
534
529
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
535
530
 
536
531
  transform_kwargs = dict(
537
- session = dataset._session,
538
- dependencies = self._deps,
539
- drop_input_cols = self._drop_input_cols,
540
- expected_output_cols_type = expected_dtype,
532
+ session=dataset._session,
533
+ dependencies=self._deps,
534
+ drop_input_cols=self._drop_input_cols,
535
+ expected_output_cols_type=expected_dtype,
541
536
  )
542
537
 
543
538
  elif isinstance(dataset, pd.DataFrame):
544
- transform_kwargs = dict(
545
- snowpark_input_cols = self._snowpark_cols,
546
- drop_input_cols = self._drop_input_cols
547
- )
539
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
548
540
 
549
541
  transform_handlers = ModelTransformerBuilder.build(
550
542
  dataset=dataset,
@@ -563,7 +555,11 @@ class RidgeClassifier(BaseTransformer):
563
555
  return output_df
564
556
 
565
557
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
566
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
558
+ def fit_predict(
559
+ self,
560
+ dataset: Union[DataFrame, pd.DataFrame],
561
+ output_cols_prefix: str = "fit_predict_",
562
+ ) -> Union[DataFrame, pd.DataFrame]:
567
563
  """ Method not supported for this class.
568
564
 
569
565
 
@@ -588,7 +584,9 @@ class RidgeClassifier(BaseTransformer):
588
584
  )
589
585
  output_result, fitted_estimator = model_trainer.train_fit_predict(
590
586
  drop_input_cols=self._drop_input_cols,
591
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
587
+ expected_output_cols_list=(
588
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
589
+ ),
592
590
  )
593
591
  self._sklearn_object = fitted_estimator
594
592
  self._is_fitted = True
@@ -605,6 +603,62 @@ class RidgeClassifier(BaseTransformer):
605
603
  assert self._sklearn_object is not None
606
604
  return self._sklearn_object.embedding_
607
605
 
606
+
607
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
608
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
609
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
610
+ """
611
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
612
+ # The following condition is introduced for kneighbors methods, and not used in other methods
613
+ if output_cols:
614
+ output_cols = [
615
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
616
+ for c in output_cols
617
+ ]
618
+ elif getattr(self._sklearn_object, "classes_", None) is None:
619
+ output_cols = [output_cols_prefix]
620
+ elif self._sklearn_object is not None:
621
+ classes = self._sklearn_object.classes_
622
+ if isinstance(classes, numpy.ndarray):
623
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
624
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
625
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
626
+ output_cols = []
627
+ for i, cl in enumerate(classes):
628
+ # For binary classification, there is only one output column for each class
629
+ # ndarray as the two classes are complementary.
630
+ if len(cl) == 2:
631
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
632
+ else:
633
+ output_cols.extend([
634
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
635
+ ])
636
+ else:
637
+ output_cols = []
638
+
639
+ # Make sure column names are valid snowflake identifiers.
640
+ assert output_cols is not None # Make MyPy happy
641
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
642
+
643
+ return rv
644
+
645
+ def _align_expected_output_names(
646
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
647
+ ) -> List[str]:
648
+ # in case the inferred output column names dimension is different
649
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
650
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
651
+ output_df_columns = list(output_df_pd.columns)
652
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
653
+ if self.sample_weight_col:
654
+ output_df_columns_set -= set(self.sample_weight_col)
655
+ # if the dimension of inferred output column names is correct; use it
656
+ if len(expected_output_cols_list) == len(output_df_columns_set):
657
+ return expected_output_cols_list
658
+ # otherwise, use the sklearn estimator's output
659
+ else:
660
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
661
+
608
662
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
609
663
  @telemetry.send_api_usage_telemetry(
610
664
  project=_PROJECT,
@@ -635,24 +689,28 @@ class RidgeClassifier(BaseTransformer):
635
689
  # are specific to the type of dataset used.
636
690
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
637
691
 
692
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
693
+
638
694
  if isinstance(dataset, DataFrame):
639
695
  self._deps = self._batch_inference_validate_snowpark(
640
696
  dataset=dataset,
641
697
  inference_method=inference_method,
642
698
  )
643
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
699
+ assert isinstance(
700
+ dataset._session, Session
701
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
644
702
  transform_kwargs = dict(
645
703
  session=dataset._session,
646
704
  dependencies=self._deps,
647
- drop_input_cols = self._drop_input_cols,
705
+ drop_input_cols=self._drop_input_cols,
648
706
  expected_output_cols_type="float",
649
707
  )
708
+ expected_output_cols = self._align_expected_output_names(
709
+ inference_method, dataset, expected_output_cols, output_cols_prefix
710
+ )
650
711
 
651
712
  elif isinstance(dataset, pd.DataFrame):
652
- transform_kwargs = dict(
653
- snowpark_input_cols = self._snowpark_cols,
654
- drop_input_cols = self._drop_input_cols
655
- )
713
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
656
714
 
657
715
  transform_handlers = ModelTransformerBuilder.build(
658
716
  dataset=dataset,
@@ -664,7 +722,7 @@ class RidgeClassifier(BaseTransformer):
664
722
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
665
723
  inference_method=inference_method,
666
724
  input_cols=self.input_cols,
667
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
725
+ expected_output_cols=expected_output_cols,
668
726
  **transform_kwargs
669
727
  )
670
728
  return output_df
@@ -694,7 +752,8 @@ class RidgeClassifier(BaseTransformer):
694
752
  Output dataset with log probability of the sample for each class in the model.
695
753
  """
696
754
  super()._check_dataset_type(dataset)
697
- inference_method="predict_log_proba"
755
+ inference_method = "predict_log_proba"
756
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
698
757
 
699
758
  # This dictionary contains optional kwargs for batch inference. These kwargs
700
759
  # are specific to the type of dataset used.
@@ -705,18 +764,20 @@ class RidgeClassifier(BaseTransformer):
705
764
  dataset=dataset,
706
765
  inference_method=inference_method,
707
766
  )
708
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
767
+ assert isinstance(
768
+ dataset._session, Session
769
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
709
770
  transform_kwargs = dict(
710
771
  session=dataset._session,
711
772
  dependencies=self._deps,
712
- drop_input_cols = self._drop_input_cols,
773
+ drop_input_cols=self._drop_input_cols,
713
774
  expected_output_cols_type="float",
714
775
  )
776
+ expected_output_cols = self._align_expected_output_names(
777
+ inference_method, dataset, expected_output_cols, output_cols_prefix
778
+ )
715
779
  elif isinstance(dataset, pd.DataFrame):
716
- transform_kwargs = dict(
717
- snowpark_input_cols = self._snowpark_cols,
718
- drop_input_cols = self._drop_input_cols
719
- )
780
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
720
781
 
721
782
  transform_handlers = ModelTransformerBuilder.build(
722
783
  dataset=dataset,
@@ -729,7 +790,7 @@ class RidgeClassifier(BaseTransformer):
729
790
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
730
791
  inference_method=inference_method,
731
792
  input_cols=self.input_cols,
732
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
793
+ expected_output_cols=expected_output_cols,
733
794
  **transform_kwargs
734
795
  )
735
796
  return output_df
@@ -757,30 +818,34 @@ class RidgeClassifier(BaseTransformer):
757
818
  Output dataset with results of the decision function for the samples in input dataset.
758
819
  """
759
820
  super()._check_dataset_type(dataset)
760
- inference_method="decision_function"
821
+ inference_method = "decision_function"
761
822
 
762
823
  # This dictionary contains optional kwargs for batch inference. These kwargs
763
824
  # are specific to the type of dataset used.
764
825
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
765
826
 
827
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
828
+
766
829
  if isinstance(dataset, DataFrame):
767
830
  self._deps = self._batch_inference_validate_snowpark(
768
831
  dataset=dataset,
769
832
  inference_method=inference_method,
770
833
  )
771
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
834
+ assert isinstance(
835
+ dataset._session, Session
836
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
772
837
  transform_kwargs = dict(
773
838
  session=dataset._session,
774
839
  dependencies=self._deps,
775
- drop_input_cols = self._drop_input_cols,
840
+ drop_input_cols=self._drop_input_cols,
776
841
  expected_output_cols_type="float",
777
842
  )
843
+ expected_output_cols = self._align_expected_output_names(
844
+ inference_method, dataset, expected_output_cols, output_cols_prefix
845
+ )
778
846
 
779
847
  elif isinstance(dataset, pd.DataFrame):
780
- transform_kwargs = dict(
781
- snowpark_input_cols = self._snowpark_cols,
782
- drop_input_cols = self._drop_input_cols
783
- )
848
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
784
849
 
785
850
  transform_handlers = ModelTransformerBuilder.build(
786
851
  dataset=dataset,
@@ -793,7 +858,7 @@ class RidgeClassifier(BaseTransformer):
793
858
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
794
859
  inference_method=inference_method,
795
860
  input_cols=self.input_cols,
796
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
861
+ expected_output_cols=expected_output_cols,
797
862
  **transform_kwargs
798
863
  )
799
864
  return output_df
@@ -822,12 +887,14 @@ class RidgeClassifier(BaseTransformer):
822
887
  Output dataset with probability of the sample for each class in the model.
823
888
  """
824
889
  super()._check_dataset_type(dataset)
825
- inference_method="score_samples"
890
+ inference_method = "score_samples"
826
891
 
827
892
  # This dictionary contains optional kwargs for batch inference. These kwargs
828
893
  # are specific to the type of dataset used.
829
894
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
830
895
 
896
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
897
+
831
898
  if isinstance(dataset, DataFrame):
832
899
  self._deps = self._batch_inference_validate_snowpark(
833
900
  dataset=dataset,
@@ -840,6 +907,9 @@ class RidgeClassifier(BaseTransformer):
840
907
  drop_input_cols = self._drop_input_cols,
841
908
  expected_output_cols_type="float",
842
909
  )
910
+ expected_output_cols = self._align_expected_output_names(
911
+ inference_method, dataset, expected_output_cols, output_cols_prefix
912
+ )
843
913
 
844
914
  elif isinstance(dataset, pd.DataFrame):
845
915
  transform_kwargs = dict(
@@ -858,7 +928,7 @@ class RidgeClassifier(BaseTransformer):
858
928
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
859
929
  inference_method=inference_method,
860
930
  input_cols=self.input_cols,
861
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
931
+ expected_output_cols=expected_output_cols,
862
932
  **transform_kwargs
863
933
  )
864
934
  return output_df
@@ -1005,50 +1075,84 @@ class RidgeClassifier(BaseTransformer):
1005
1075
  )
1006
1076
  return output_df
1007
1077
 
1078
+
1079
+
1080
+ def to_sklearn(self) -> Any:
1081
+ """Get sklearn.linear_model.RidgeClassifier object.
1082
+ """
1083
+ if self._sklearn_object is None:
1084
+ self._sklearn_object = self._create_sklearn_object()
1085
+ return self._sklearn_object
1086
+
1087
+ def to_xgboost(self) -> Any:
1088
+ raise exceptions.SnowflakeMLException(
1089
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1090
+ original_exception=AttributeError(
1091
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1092
+ "to_xgboost()",
1093
+ "to_sklearn()"
1094
+ )
1095
+ ),
1096
+ )
1097
+
1098
+ def to_lightgbm(self) -> Any:
1099
+ raise exceptions.SnowflakeMLException(
1100
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1101
+ original_exception=AttributeError(
1102
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1103
+ "to_lightgbm()",
1104
+ "to_sklearn()"
1105
+ )
1106
+ ),
1107
+ )
1008
1108
 
1009
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1109
+ def _get_dependencies(self) -> List[str]:
1110
+ return self._deps
1111
+
1112
+
1113
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1010
1114
  self._model_signature_dict = dict()
1011
1115
 
1012
1116
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1013
1117
 
1014
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1118
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1015
1119
  outputs: List[BaseFeatureSpec] = []
1016
1120
  if hasattr(self, "predict"):
1017
1121
  # keep mypy happy
1018
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1122
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1019
1123
  # For classifier, the type of predict is the same as the type of label
1020
- if self._sklearn_object._estimator_type == 'classifier':
1021
- # label columns is the desired type for output
1124
+ if self._sklearn_object._estimator_type == "classifier":
1125
+ # label columns is the desired type for output
1022
1126
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1023
1127
  # rename the output columns
1024
1128
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1025
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1026
- ([] if self._drop_input_cols else inputs)
1027
- + outputs)
1129
+ self._model_signature_dict["predict"] = ModelSignature(
1130
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1131
+ )
1028
1132
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1029
1133
  # For outlier models, returns -1 for outliers and 1 for inliers.
1030
- # Clusterer returns int64 cluster labels.
1134
+ # Clusterer returns int64 cluster labels.
1031
1135
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1032
1136
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1033
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1034
- ([] if self._drop_input_cols else inputs)
1035
- + outputs)
1036
-
1137
+ self._model_signature_dict["predict"] = ModelSignature(
1138
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1139
+ )
1140
+
1037
1141
  # For regressor, the type of predict is float64
1038
- elif self._sklearn_object._estimator_type == 'regressor':
1142
+ elif self._sklearn_object._estimator_type == "regressor":
1039
1143
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1040
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1041
- ([] if self._drop_input_cols else inputs)
1042
- + outputs)
1043
-
1144
+ self._model_signature_dict["predict"] = ModelSignature(
1145
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1146
+ )
1147
+
1044
1148
  for prob_func in PROB_FUNCTIONS:
1045
1149
  if hasattr(self, prob_func):
1046
1150
  output_cols_prefix: str = f"{prob_func}_"
1047
1151
  output_column_names = self._get_output_column_names(output_cols_prefix)
1048
1152
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1049
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1050
- ([] if self._drop_input_cols else inputs)
1051
- + outputs)
1153
+ self._model_signature_dict[prob_func] = ModelSignature(
1154
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1155
+ )
1052
1156
 
1053
1157
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1054
1158
  items = list(self._model_signature_dict.items())
@@ -1061,10 +1165,10 @@ class RidgeClassifier(BaseTransformer):
1061
1165
  """Returns model signature of current class.
1062
1166
 
1063
1167
  Raises:
1064
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1168
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1065
1169
 
1066
1170
  Returns:
1067
- Dict[str, ModelSignature]: each method and its input output signature
1171
+ Dict with each method and its input output signature
1068
1172
  """
1069
1173
  if self._model_signature_dict is None:
1070
1174
  raise exceptions.SnowflakeMLException(
@@ -1072,35 +1176,3 @@ class RidgeClassifier(BaseTransformer):
1072
1176
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1073
1177
  )
1074
1178
  return self._model_signature_dict
1075
-
1076
- def to_sklearn(self) -> Any:
1077
- """Get sklearn.linear_model.RidgeClassifier object.
1078
- """
1079
- if self._sklearn_object is None:
1080
- self._sklearn_object = self._create_sklearn_object()
1081
- return self._sklearn_object
1082
-
1083
- def to_xgboost(self) -> Any:
1084
- raise exceptions.SnowflakeMLException(
1085
- error_code=error_codes.METHOD_NOT_ALLOWED,
1086
- original_exception=AttributeError(
1087
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1088
- "to_xgboost()",
1089
- "to_sklearn()"
1090
- )
1091
- ),
1092
- )
1093
-
1094
- def to_lightgbm(self) -> Any:
1095
- raise exceptions.SnowflakeMLException(
1096
- error_code=error_codes.METHOD_NOT_ALLOWED,
1097
- original_exception=AttributeError(
1098
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1099
- "to_lightgbm()",
1100
- "to_sklearn()"
1101
- )
1102
- ),
1103
- )
1104
-
1105
- def _get_dependencies(self) -> List[str]:
1106
- return self._deps