snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. snowflake/ml/_internal/env_utils.py +11 -1
  2. snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
  3. snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
  4. snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
  5. snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
  6. snowflake/ml/_internal/utils/formatting.py +1 -1
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/feature_store/feature_store.py +166 -184
  10. snowflake/ml/feature_store/feature_view.py +12 -24
  11. snowflake/ml/fileset/sfcfs.py +56 -50
  12. snowflake/ml/fileset/stage_fs.py +48 -13
  13. snowflake/ml/model/_client/model/model_version_impl.py +6 -49
  14. snowflake/ml/model/_client/ops/model_ops.py +78 -29
  15. snowflake/ml/model/_client/sql/model.py +23 -2
  16. snowflake/ml/model/_client/sql/model_version.py +22 -1
  17. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
  18. snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
  19. snowflake/ml/model/_model_composer/model_composer.py +7 -5
  20. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
  21. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
  22. snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
  23. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  24. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  25. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  26. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  27. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
  28. snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
  29. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  30. snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
  31. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  32. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  33. snowflake/ml/model/_packager/model_packager.py +2 -2
  34. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  35. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  36. snowflake/ml/model/custom_model.py +3 -1
  37. snowflake/ml/model/type_hints.py +21 -2
  38. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  39. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  40. snowflake/ml/modeling/_internal/model_specifications.py +3 -1
  41. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
  42. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
  43. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
  44. snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
  45. snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
  46. snowflake/ml/modeling/cluster/birch.py +195 -123
  47. snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
  48. snowflake/ml/modeling/cluster/dbscan.py +195 -123
  49. snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
  50. snowflake/ml/modeling/cluster/k_means.py +195 -123
  51. snowflake/ml/modeling/cluster/mean_shift.py +195 -123
  52. snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
  53. snowflake/ml/modeling/cluster/optics.py +195 -123
  54. snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
  55. snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
  56. snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
  57. snowflake/ml/modeling/compose/column_transformer.py +195 -123
  58. snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
  59. snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
  60. snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
  61. snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
  62. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
  63. snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
  64. snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
  65. snowflake/ml/modeling/covariance/oas.py +195 -123
  66. snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
  67. snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
  68. snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
  69. snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
  70. snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
  71. snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
  72. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
  73. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
  74. snowflake/ml/modeling/decomposition/pca.py +195 -123
  75. snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
  76. snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
  77. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
  78. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
  79. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
  80. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
  81. snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
  82. snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
  83. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
  84. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
  85. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
  86. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
  87. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
  88. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
  89. snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
  90. snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
  91. snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
  92. snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
  93. snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
  94. snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
  95. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
  96. snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
  97. snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
  98. snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
  99. snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
  100. snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
  101. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
  102. snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
  103. snowflake/ml/modeling/framework/_utils.py +8 -1
  104. snowflake/ml/modeling/framework/base.py +24 -6
  105. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
  106. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
  107. snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
  108. snowflake/ml/modeling/impute/knn_imputer.py +195 -123
  109. snowflake/ml/modeling/impute/missing_indicator.py +195 -123
  110. snowflake/ml/modeling/impute/simple_imputer.py +4 -15
  111. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
  112. snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
  113. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
  114. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
  115. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
  116. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
  117. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
  118. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
  119. snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
  120. snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
  121. snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
  122. snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
  123. snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
  124. snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
  125. snowflake/ml/modeling/linear_model/lars.py +195 -123
  126. snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
  127. snowflake/ml/modeling/linear_model/lasso.py +195 -123
  128. snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
  129. snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
  130. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
  131. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
  132. snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
  133. snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
  134. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
  135. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
  136. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
  137. snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
  138. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
  139. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
  140. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
  141. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
  142. snowflake/ml/modeling/linear_model/perceptron.py +195 -123
  143. snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
  144. snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
  145. snowflake/ml/modeling/linear_model/ridge.py +195 -123
  146. snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
  147. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
  148. snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
  149. snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
  150. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
  151. snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
  152. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
  153. snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
  154. snowflake/ml/modeling/manifold/isomap.py +195 -123
  155. snowflake/ml/modeling/manifold/mds.py +195 -123
  156. snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
  157. snowflake/ml/modeling/manifold/tsne.py +195 -123
  158. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
  159. snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
  160. snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
  161. snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
  162. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
  163. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
  164. snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
  165. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
  166. snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
  167. snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
  168. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
  169. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
  170. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
  171. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
  172. snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
  173. snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
  174. snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
  175. snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
  176. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
  177. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
  178. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
  179. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
  180. snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
  181. snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
  182. snowflake/ml/modeling/pipeline/pipeline.py +4 -4
  183. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  184. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  185. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  186. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  187. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  188. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  189. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
  190. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  191. snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
  192. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  193. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  194. snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
  195. snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
  196. snowflake/ml/modeling/svm/linear_svc.py +195 -123
  197. snowflake/ml/modeling/svm/linear_svr.py +195 -123
  198. snowflake/ml/modeling/svm/nu_svc.py +195 -123
  199. snowflake/ml/modeling/svm/nu_svr.py +195 -123
  200. snowflake/ml/modeling/svm/svc.py +195 -123
  201. snowflake/ml/modeling/svm/svr.py +195 -123
  202. snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
  203. snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
  204. snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
  205. snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
  206. snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
  207. snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
  208. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
  209. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
  210. snowflake/ml/registry/_manager/model_manager.py +5 -1
  211. snowflake/ml/registry/model_registry.py +99 -26
  212. snowflake/ml/registry/registry.py +3 -2
  213. snowflake/ml/version.py +1 -1
  214. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
  215. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
  216. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  217. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
  218. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
  219. {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -322,12 +321,7 @@ class TSNE(BaseTransformer):
322
321
  )
323
322
  return selected_cols
324
323
 
325
- @telemetry.send_api_usage_telemetry(
326
- project=_PROJECT,
327
- subproject=_SUBPROJECT,
328
- custom_tags=dict([("autogen", True)]),
329
- )
330
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TSNE":
324
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TSNE":
331
325
  """Fit X into an embedded space
332
326
  For more details on this function, see [sklearn.manifold.TSNE.fit]
333
327
  (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE.fit)
@@ -354,12 +348,14 @@ class TSNE(BaseTransformer):
354
348
 
355
349
  self._snowpark_cols = dataset.select(self.input_cols).columns
356
350
 
357
- # If we are already in a stored procedure, no need to kick off another one.
351
+ # If we are already in a stored procedure, no need to kick off another one.
358
352
  if SNOWML_SPROC_ENV in os.environ:
359
353
  statement_params = telemetry.get_function_usage_statement_params(
360
354
  project=_PROJECT,
361
355
  subproject=_SUBPROJECT,
362
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TSNE.__class__.__name__),
356
+ function_name=telemetry.get_statement_params_full_func_name(
357
+ inspect.currentframe(), TSNE.__class__.__name__
358
+ ),
363
359
  api_calls=[Session.call],
364
360
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
365
361
  )
@@ -380,7 +376,7 @@ class TSNE(BaseTransformer):
380
376
  )
381
377
  self._sklearn_object = model_trainer.train()
382
378
  self._is_fitted = True
383
- self._get_model_signatures(dataset)
379
+ self._generate_model_signatures(dataset)
384
380
  return self
385
381
 
386
382
  def _batch_inference_validate_snowpark(
@@ -454,7 +450,9 @@ class TSNE(BaseTransformer):
454
450
  # when it is classifier, infer the datatype from label columns
455
451
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
456
452
  # Batch inference takes a single expected output column type. Use the first columns type for now.
457
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
453
+ label_cols_signatures = [
454
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
455
+ ]
458
456
  if len(label_cols_signatures) == 0:
459
457
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
460
458
  raise exceptions.SnowflakeMLException(
@@ -462,25 +460,22 @@ class TSNE(BaseTransformer):
462
460
  original_exception=ValueError(error_str),
463
461
  )
464
462
 
465
- expected_type_inferred = convert_sp_to_sf_type(
466
- label_cols_signatures[0].as_snowpark_type()
467
- )
463
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
468
464
 
469
465
  self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
470
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
466
+ assert isinstance(
467
+ dataset._session, Session
468
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
471
469
 
472
470
  transform_kwargs = dict(
473
- session = dataset._session,
474
- dependencies = self._deps,
475
- drop_input_cols = self._drop_input_cols,
476
- expected_output_cols_type = expected_type_inferred,
471
+ session=dataset._session,
472
+ dependencies=self._deps,
473
+ drop_input_cols=self._drop_input_cols,
474
+ expected_output_cols_type=expected_type_inferred,
477
475
  )
478
476
 
479
477
  elif isinstance(dataset, pd.DataFrame):
480
- transform_kwargs = dict(
481
- snowpark_input_cols = self._snowpark_cols,
482
- drop_input_cols = self._drop_input_cols
483
- )
478
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
484
479
 
485
480
  transform_handlers = ModelTransformerBuilder.build(
486
481
  dataset=dataset,
@@ -520,7 +515,7 @@ class TSNE(BaseTransformer):
520
515
  Transformed dataset.
521
516
  """
522
517
  super()._check_dataset_type(dataset)
523
- inference_method="transform"
518
+ inference_method = "transform"
524
519
 
525
520
  # This dictionary contains optional kwargs for batch inference. These kwargs
526
521
  # are specific to the type of dataset used.
@@ -557,17 +552,14 @@ class TSNE(BaseTransformer):
557
552
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
558
553
 
559
554
  transform_kwargs = dict(
560
- session = dataset._session,
561
- dependencies = self._deps,
562
- drop_input_cols = self._drop_input_cols,
563
- expected_output_cols_type = expected_dtype,
555
+ session=dataset._session,
556
+ dependencies=self._deps,
557
+ drop_input_cols=self._drop_input_cols,
558
+ expected_output_cols_type=expected_dtype,
564
559
  )
565
560
 
566
561
  elif isinstance(dataset, pd.DataFrame):
567
- transform_kwargs = dict(
568
- snowpark_input_cols = self._snowpark_cols,
569
- drop_input_cols = self._drop_input_cols
570
- )
562
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
571
563
 
572
564
  transform_handlers = ModelTransformerBuilder.build(
573
565
  dataset=dataset,
@@ -586,7 +578,11 @@ class TSNE(BaseTransformer):
586
578
  return output_df
587
579
 
588
580
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
589
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
581
+ def fit_predict(
582
+ self,
583
+ dataset: Union[DataFrame, pd.DataFrame],
584
+ output_cols_prefix: str = "fit_predict_",
585
+ ) -> Union[DataFrame, pd.DataFrame]:
590
586
  """ Method not supported for this class.
591
587
 
592
588
 
@@ -611,7 +607,9 @@ class TSNE(BaseTransformer):
611
607
  )
612
608
  output_result, fitted_estimator = model_trainer.train_fit_predict(
613
609
  drop_input_cols=self._drop_input_cols,
614
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
610
+ expected_output_cols_list=(
611
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
612
+ ),
615
613
  )
616
614
  self._sklearn_object = fitted_estimator
617
615
  self._is_fitted = True
@@ -628,6 +626,62 @@ class TSNE(BaseTransformer):
628
626
  assert self._sklearn_object is not None
629
627
  return self._sklearn_object.embedding_
630
628
 
629
+
630
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
631
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
632
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
633
+ """
634
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
635
+ # The following condition is introduced for kneighbors methods, and not used in other methods
636
+ if output_cols:
637
+ output_cols = [
638
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
639
+ for c in output_cols
640
+ ]
641
+ elif getattr(self._sklearn_object, "classes_", None) is None:
642
+ output_cols = [output_cols_prefix]
643
+ elif self._sklearn_object is not None:
644
+ classes = self._sklearn_object.classes_
645
+ if isinstance(classes, numpy.ndarray):
646
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
647
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
648
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
649
+ output_cols = []
650
+ for i, cl in enumerate(classes):
651
+ # For binary classification, there is only one output column for each class
652
+ # ndarray as the two classes are complementary.
653
+ if len(cl) == 2:
654
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
655
+ else:
656
+ output_cols.extend([
657
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
658
+ ])
659
+ else:
660
+ output_cols = []
661
+
662
+ # Make sure column names are valid snowflake identifiers.
663
+ assert output_cols is not None # Make MyPy happy
664
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
665
+
666
+ return rv
667
+
668
+ def _align_expected_output_names(
669
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
670
+ ) -> List[str]:
671
+ # in case the inferred output column names dimension is different
672
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
673
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
674
+ output_df_columns = list(output_df_pd.columns)
675
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
676
+ if self.sample_weight_col:
677
+ output_df_columns_set -= set(self.sample_weight_col)
678
+ # if the dimension of inferred output column names is correct; use it
679
+ if len(expected_output_cols_list) == len(output_df_columns_set):
680
+ return expected_output_cols_list
681
+ # otherwise, use the sklearn estimator's output
682
+ else:
683
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
684
+
631
685
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
632
686
  @telemetry.send_api_usage_telemetry(
633
687
  project=_PROJECT,
@@ -658,24 +712,28 @@ class TSNE(BaseTransformer):
658
712
  # are specific to the type of dataset used.
659
713
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
660
714
 
715
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
716
+
661
717
  if isinstance(dataset, DataFrame):
662
718
  self._deps = self._batch_inference_validate_snowpark(
663
719
  dataset=dataset,
664
720
  inference_method=inference_method,
665
721
  )
666
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
722
+ assert isinstance(
723
+ dataset._session, Session
724
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
667
725
  transform_kwargs = dict(
668
726
  session=dataset._session,
669
727
  dependencies=self._deps,
670
- drop_input_cols = self._drop_input_cols,
728
+ drop_input_cols=self._drop_input_cols,
671
729
  expected_output_cols_type="float",
672
730
  )
731
+ expected_output_cols = self._align_expected_output_names(
732
+ inference_method, dataset, expected_output_cols, output_cols_prefix
733
+ )
673
734
 
674
735
  elif isinstance(dataset, pd.DataFrame):
675
- transform_kwargs = dict(
676
- snowpark_input_cols = self._snowpark_cols,
677
- drop_input_cols = self._drop_input_cols
678
- )
736
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
679
737
 
680
738
  transform_handlers = ModelTransformerBuilder.build(
681
739
  dataset=dataset,
@@ -687,7 +745,7 @@ class TSNE(BaseTransformer):
687
745
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
688
746
  inference_method=inference_method,
689
747
  input_cols=self.input_cols,
690
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
748
+ expected_output_cols=expected_output_cols,
691
749
  **transform_kwargs
692
750
  )
693
751
  return output_df
@@ -717,7 +775,8 @@ class TSNE(BaseTransformer):
717
775
  Output dataset with log probability of the sample for each class in the model.
718
776
  """
719
777
  super()._check_dataset_type(dataset)
720
- inference_method="predict_log_proba"
778
+ inference_method = "predict_log_proba"
779
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
721
780
 
722
781
  # This dictionary contains optional kwargs for batch inference. These kwargs
723
782
  # are specific to the type of dataset used.
@@ -728,18 +787,20 @@ class TSNE(BaseTransformer):
728
787
  dataset=dataset,
729
788
  inference_method=inference_method,
730
789
  )
731
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
790
+ assert isinstance(
791
+ dataset._session, Session
792
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
732
793
  transform_kwargs = dict(
733
794
  session=dataset._session,
734
795
  dependencies=self._deps,
735
- drop_input_cols = self._drop_input_cols,
796
+ drop_input_cols=self._drop_input_cols,
736
797
  expected_output_cols_type="float",
737
798
  )
799
+ expected_output_cols = self._align_expected_output_names(
800
+ inference_method, dataset, expected_output_cols, output_cols_prefix
801
+ )
738
802
  elif isinstance(dataset, pd.DataFrame):
739
- transform_kwargs = dict(
740
- snowpark_input_cols = self._snowpark_cols,
741
- drop_input_cols = self._drop_input_cols
742
- )
803
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
743
804
 
744
805
  transform_handlers = ModelTransformerBuilder.build(
745
806
  dataset=dataset,
@@ -752,7 +813,7 @@ class TSNE(BaseTransformer):
752
813
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
753
814
  inference_method=inference_method,
754
815
  input_cols=self.input_cols,
755
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
816
+ expected_output_cols=expected_output_cols,
756
817
  **transform_kwargs
757
818
  )
758
819
  return output_df
@@ -778,30 +839,34 @@ class TSNE(BaseTransformer):
778
839
  Output dataset with results of the decision function for the samples in input dataset.
779
840
  """
780
841
  super()._check_dataset_type(dataset)
781
- inference_method="decision_function"
842
+ inference_method = "decision_function"
782
843
 
783
844
  # This dictionary contains optional kwargs for batch inference. These kwargs
784
845
  # are specific to the type of dataset used.
785
846
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
786
847
 
848
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
849
+
787
850
  if isinstance(dataset, DataFrame):
788
851
  self._deps = self._batch_inference_validate_snowpark(
789
852
  dataset=dataset,
790
853
  inference_method=inference_method,
791
854
  )
792
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
855
+ assert isinstance(
856
+ dataset._session, Session
857
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
793
858
  transform_kwargs = dict(
794
859
  session=dataset._session,
795
860
  dependencies=self._deps,
796
- drop_input_cols = self._drop_input_cols,
861
+ drop_input_cols=self._drop_input_cols,
797
862
  expected_output_cols_type="float",
798
863
  )
864
+ expected_output_cols = self._align_expected_output_names(
865
+ inference_method, dataset, expected_output_cols, output_cols_prefix
866
+ )
799
867
 
800
868
  elif isinstance(dataset, pd.DataFrame):
801
- transform_kwargs = dict(
802
- snowpark_input_cols = self._snowpark_cols,
803
- drop_input_cols = self._drop_input_cols
804
- )
869
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
805
870
 
806
871
  transform_handlers = ModelTransformerBuilder.build(
807
872
  dataset=dataset,
@@ -814,7 +879,7 @@ class TSNE(BaseTransformer):
814
879
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
815
880
  inference_method=inference_method,
816
881
  input_cols=self.input_cols,
817
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
882
+ expected_output_cols=expected_output_cols,
818
883
  **transform_kwargs
819
884
  )
820
885
  return output_df
@@ -843,12 +908,14 @@ class TSNE(BaseTransformer):
843
908
  Output dataset with probability of the sample for each class in the model.
844
909
  """
845
910
  super()._check_dataset_type(dataset)
846
- inference_method="score_samples"
911
+ inference_method = "score_samples"
847
912
 
848
913
  # This dictionary contains optional kwargs for batch inference. These kwargs
849
914
  # are specific to the type of dataset used.
850
915
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
851
916
 
917
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
918
+
852
919
  if isinstance(dataset, DataFrame):
853
920
  self._deps = self._batch_inference_validate_snowpark(
854
921
  dataset=dataset,
@@ -861,6 +928,9 @@ class TSNE(BaseTransformer):
861
928
  drop_input_cols = self._drop_input_cols,
862
929
  expected_output_cols_type="float",
863
930
  )
931
+ expected_output_cols = self._align_expected_output_names(
932
+ inference_method, dataset, expected_output_cols, output_cols_prefix
933
+ )
864
934
 
865
935
  elif isinstance(dataset, pd.DataFrame):
866
936
  transform_kwargs = dict(
@@ -879,7 +949,7 @@ class TSNE(BaseTransformer):
879
949
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
880
950
  inference_method=inference_method,
881
951
  input_cols=self.input_cols,
882
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
952
+ expected_output_cols=expected_output_cols,
883
953
  **transform_kwargs
884
954
  )
885
955
  return output_df
@@ -1024,50 +1094,84 @@ class TSNE(BaseTransformer):
1024
1094
  )
1025
1095
  return output_df
1026
1096
 
1097
+
1098
+
1099
+ def to_sklearn(self) -> Any:
1100
+ """Get sklearn.manifold.TSNE object.
1101
+ """
1102
+ if self._sklearn_object is None:
1103
+ self._sklearn_object = self._create_sklearn_object()
1104
+ return self._sklearn_object
1105
+
1106
+ def to_xgboost(self) -> Any:
1107
+ raise exceptions.SnowflakeMLException(
1108
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1109
+ original_exception=AttributeError(
1110
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1111
+ "to_xgboost()",
1112
+ "to_sklearn()"
1113
+ )
1114
+ ),
1115
+ )
1116
+
1117
+ def to_lightgbm(self) -> Any:
1118
+ raise exceptions.SnowflakeMLException(
1119
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1120
+ original_exception=AttributeError(
1121
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1122
+ "to_lightgbm()",
1123
+ "to_sklearn()"
1124
+ )
1125
+ ),
1126
+ )
1027
1127
 
1028
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1128
+ def _get_dependencies(self) -> List[str]:
1129
+ return self._deps
1130
+
1131
+
1132
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1029
1133
  self._model_signature_dict = dict()
1030
1134
 
1031
1135
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1032
1136
 
1033
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1137
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1034
1138
  outputs: List[BaseFeatureSpec] = []
1035
1139
  if hasattr(self, "predict"):
1036
1140
  # keep mypy happy
1037
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1141
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1038
1142
  # For classifier, the type of predict is the same as the type of label
1039
- if self._sklearn_object._estimator_type == 'classifier':
1040
- # label columns is the desired type for output
1143
+ if self._sklearn_object._estimator_type == "classifier":
1144
+ # label columns is the desired type for output
1041
1145
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1042
1146
  # rename the output columns
1043
1147
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1044
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1045
- ([] if self._drop_input_cols else inputs)
1046
- + outputs)
1148
+ self._model_signature_dict["predict"] = ModelSignature(
1149
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1150
+ )
1047
1151
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1048
1152
  # For outlier models, returns -1 for outliers and 1 for inliers.
1049
- # Clusterer returns int64 cluster labels.
1153
+ # Clusterer returns int64 cluster labels.
1050
1154
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1051
1155
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1052
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1053
- ([] if self._drop_input_cols else inputs)
1054
- + outputs)
1055
-
1156
+ self._model_signature_dict["predict"] = ModelSignature(
1157
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1158
+ )
1159
+
1056
1160
  # For regressor, the type of predict is float64
1057
- elif self._sklearn_object._estimator_type == 'regressor':
1161
+ elif self._sklearn_object._estimator_type == "regressor":
1058
1162
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1059
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1060
- ([] if self._drop_input_cols else inputs)
1061
- + outputs)
1062
-
1163
+ self._model_signature_dict["predict"] = ModelSignature(
1164
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1165
+ )
1166
+
1063
1167
  for prob_func in PROB_FUNCTIONS:
1064
1168
  if hasattr(self, prob_func):
1065
1169
  output_cols_prefix: str = f"{prob_func}_"
1066
1170
  output_column_names = self._get_output_column_names(output_cols_prefix)
1067
1171
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1068
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1069
- ([] if self._drop_input_cols else inputs)
1070
- + outputs)
1172
+ self._model_signature_dict[prob_func] = ModelSignature(
1173
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1174
+ )
1071
1175
 
1072
1176
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1073
1177
  items = list(self._model_signature_dict.items())
@@ -1080,10 +1184,10 @@ class TSNE(BaseTransformer):
1080
1184
  """Returns model signature of current class.
1081
1185
 
1082
1186
  Raises:
1083
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1187
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1084
1188
 
1085
1189
  Returns:
1086
- Dict[str, ModelSignature]: each method and its input output signature
1190
+ Dict with each method and its input output signature
1087
1191
  """
1088
1192
  if self._model_signature_dict is None:
1089
1193
  raise exceptions.SnowflakeMLException(
@@ -1091,35 +1195,3 @@ class TSNE(BaseTransformer):
1091
1195
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1092
1196
  )
1093
1197
  return self._model_signature_dict
1094
-
1095
- def to_sklearn(self) -> Any:
1096
- """Get sklearn.manifold.TSNE object.
1097
- """
1098
- if self._sklearn_object is None:
1099
- self._sklearn_object = self._create_sklearn_object()
1100
- return self._sklearn_object
1101
-
1102
- def to_xgboost(self) -> Any:
1103
- raise exceptions.SnowflakeMLException(
1104
- error_code=error_codes.METHOD_NOT_ALLOWED,
1105
- original_exception=AttributeError(
1106
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1107
- "to_xgboost()",
1108
- "to_sklearn()"
1109
- )
1110
- ),
1111
- )
1112
-
1113
- def to_lightgbm(self) -> Any:
1114
- raise exceptions.SnowflakeMLException(
1115
- error_code=error_codes.METHOD_NOT_ALLOWED,
1116
- original_exception=AttributeError(
1117
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1118
- "to_lightgbm()",
1119
- "to_sklearn()"
1120
- )
1121
- ),
1122
- )
1123
-
1124
- def _get_dependencies(self) -> List[str]:
1125
- return self._deps