snowflake-ml-python 1.3.1__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +11 -1
- snowflake/ml/_internal/human_readable_id/adjectives.txt +128 -0
- snowflake/ml/_internal/human_readable_id/animals.txt +128 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator.py +40 -0
- snowflake/ml/_internal/human_readable_id/hrid_generator_base.py +135 -0
- snowflake/ml/_internal/utils/formatting.py +1 -1
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/feature_store/feature_store.py +166 -184
- snowflake/ml/feature_store/feature_view.py +12 -24
- snowflake/ml/fileset/sfcfs.py +56 -50
- snowflake/ml/fileset/stage_fs.py +48 -13
- snowflake/ml/model/_client/model/model_version_impl.py +6 -49
- snowflake/ml/model/_client/ops/model_ops.py +78 -29
- snowflake/ml/model/_client/sql/model.py +23 -2
- snowflake/ml/model/_client/sql/model_version.py +22 -1
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +1 -3
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +5 -2
- snowflake/ml/model/_model_composer/model_composer.py +7 -5
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +19 -54
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +8 -1
- snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template +1 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +13 -1
- snowflake/ml/model/_packager/model_handlers/xgboost.py +1 -1
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +36 -6
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -2
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/custom_model.py +3 -1
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/model_specifications.py +3 -1
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +545 -0
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +8 -5
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +195 -123
- snowflake/ml/modeling/cluster/affinity_propagation.py +195 -123
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +195 -123
- snowflake/ml/modeling/cluster/birch.py +195 -123
- snowflake/ml/modeling/cluster/bisecting_k_means.py +195 -123
- snowflake/ml/modeling/cluster/dbscan.py +195 -123
- snowflake/ml/modeling/cluster/feature_agglomeration.py +195 -123
- snowflake/ml/modeling/cluster/k_means.py +195 -123
- snowflake/ml/modeling/cluster/mean_shift.py +195 -123
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +195 -123
- snowflake/ml/modeling/cluster/optics.py +195 -123
- snowflake/ml/modeling/cluster/spectral_biclustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_clustering.py +195 -123
- snowflake/ml/modeling/cluster/spectral_coclustering.py +195 -123
- snowflake/ml/modeling/compose/column_transformer.py +195 -123
- snowflake/ml/modeling/compose/transformed_target_regressor.py +195 -123
- snowflake/ml/modeling/covariance/elliptic_envelope.py +195 -123
- snowflake/ml/modeling/covariance/empirical_covariance.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso.py +195 -123
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +195 -123
- snowflake/ml/modeling/covariance/ledoit_wolf.py +195 -123
- snowflake/ml/modeling/covariance/min_cov_det.py +195 -123
- snowflake/ml/modeling/covariance/oas.py +195 -123
- snowflake/ml/modeling/covariance/shrunk_covariance.py +195 -123
- snowflake/ml/modeling/decomposition/dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/factor_analysis.py +195 -123
- snowflake/ml/modeling/decomposition/fast_ica.py +195 -123
- snowflake/ml/modeling/decomposition/incremental_pca.py +195 -123
- snowflake/ml/modeling/decomposition/kernel_pca.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +195 -123
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/pca.py +195 -123
- snowflake/ml/modeling/decomposition/sparse_pca.py +195 -123
- snowflake/ml/modeling/decomposition/truncated_svd.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/bagging_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/isolation_forest.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/stacking_regressor.py +195 -123
- snowflake/ml/modeling/ensemble/voting_classifier.py +195 -123
- snowflake/ml/modeling/ensemble/voting_regressor.py +195 -123
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fdr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fpr.py +195 -123
- snowflake/ml/modeling/feature_selection/select_fwe.py +195 -123
- snowflake/ml/modeling/feature_selection/select_k_best.py +195 -123
- snowflake/ml/modeling/feature_selection/select_percentile.py +195 -123
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +195 -123
- snowflake/ml/modeling/feature_selection/variance_threshold.py +195 -123
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +24 -6
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +195 -123
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +195 -123
- snowflake/ml/modeling/impute/iterative_imputer.py +195 -123
- snowflake/ml/modeling/impute/knn_imputer.py +195 -123
- snowflake/ml/modeling/impute/missing_indicator.py +195 -123
- snowflake/ml/modeling/impute/simple_imputer.py +4 -15
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/nystroem.py +195 -123
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +195 -123
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +195 -123
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +195 -123
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +195 -123
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +198 -125
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +198 -125
- snowflake/ml/modeling/linear_model/ard_regression.py +195 -123
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/gamma_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/huber_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/lars.py +195 -123
- snowflake/ml/modeling/linear_model/lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +195 -123
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +195 -123
- snowflake/ml/modeling/linear_model/linear_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression.py +195 -123
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +195 -123
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +195 -123
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/perceptron.py +195 -123
- snowflake/ml/modeling/linear_model/poisson_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ransac_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/ridge.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +195 -123
- snowflake/ml/modeling/linear_model/ridge_cv.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_classifier.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +195 -123
- snowflake/ml/modeling/linear_model/sgd_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +195 -123
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +195 -123
- snowflake/ml/modeling/manifold/isomap.py +195 -123
- snowflake/ml/modeling/manifold/mds.py +195 -123
- snowflake/ml/modeling/manifold/spectral_embedding.py +195 -123
- snowflake/ml/modeling/manifold/tsne.py +195 -123
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +195 -123
- snowflake/ml/modeling/mixture/gaussian_mixture.py +195 -123
- snowflake/ml/modeling/model_selection/grid_search_cv.py +42 -18
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +42 -18
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +195 -123
- snowflake/ml/modeling/multiclass/output_code_classifier.py +195 -123
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/complement_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +195 -123
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neighbors/kernel_density.py +195 -123
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_centroid.py +195 -123
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +195 -123
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +195 -123
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +195 -123
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_classifier.py +195 -123
- snowflake/ml/modeling/neural_network/mlp_regressor.py +195 -123
- snowflake/ml/modeling/pipeline/pipeline.py +4 -4
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +195 -123
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +195 -123
- snowflake/ml/modeling/semi_supervised/label_spreading.py +195 -123
- snowflake/ml/modeling/svm/linear_svc.py +195 -123
- snowflake/ml/modeling/svm/linear_svr.py +195 -123
- snowflake/ml/modeling/svm/nu_svc.py +195 -123
- snowflake/ml/modeling/svm/nu_svr.py +195 -123
- snowflake/ml/modeling/svm/svc.py +195 -123
- snowflake/ml/modeling/svm/svr.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/decision_tree_regressor.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_classifier.py +195 -123
- snowflake/ml/modeling/tree/extra_tree_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgb_regressor.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +195 -123
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +195 -123
- snowflake/ml/registry/_manager/model_manager.py +5 -1
- snowflake/ml/registry/model_registry.py +99 -26
- snowflake/ml/registry/registry.py +3 -2
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/METADATA +94 -55
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/RECORD +218 -212
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.3.1.dist-info → snowflake_ml_python-1.4.1.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -209,12 +208,7 @@ class LedoitWolf(BaseTransformer):
|
|
209
208
|
)
|
210
209
|
return selected_cols
|
211
210
|
|
212
|
-
|
213
|
-
project=_PROJECT,
|
214
|
-
subproject=_SUBPROJECT,
|
215
|
-
custom_tags=dict([("autogen", True)]),
|
216
|
-
)
|
217
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LedoitWolf":
|
211
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LedoitWolf":
|
218
212
|
"""Fit the Ledoit-Wolf shrunk covariance model to X
|
219
213
|
For more details on this function, see [sklearn.covariance.LedoitWolf.fit]
|
220
214
|
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html#sklearn.covariance.LedoitWolf.fit)
|
@@ -241,12 +235,14 @@ class LedoitWolf(BaseTransformer):
|
|
241
235
|
|
242
236
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
243
237
|
|
244
|
-
|
238
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
245
239
|
if SNOWML_SPROC_ENV in os.environ:
|
246
240
|
statement_params = telemetry.get_function_usage_statement_params(
|
247
241
|
project=_PROJECT,
|
248
242
|
subproject=_SUBPROJECT,
|
249
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
243
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
244
|
+
inspect.currentframe(), LedoitWolf.__class__.__name__
|
245
|
+
),
|
250
246
|
api_calls=[Session.call],
|
251
247
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
252
248
|
)
|
@@ -267,7 +263,7 @@ class LedoitWolf(BaseTransformer):
|
|
267
263
|
)
|
268
264
|
self._sklearn_object = model_trainer.train()
|
269
265
|
self._is_fitted = True
|
270
|
-
self.
|
266
|
+
self._generate_model_signatures(dataset)
|
271
267
|
return self
|
272
268
|
|
273
269
|
def _batch_inference_validate_snowpark(
|
@@ -341,7 +337,9 @@ class LedoitWolf(BaseTransformer):
|
|
341
337
|
# when it is classifier, infer the datatype from label columns
|
342
338
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
343
339
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
344
|
-
label_cols_signatures = [
|
340
|
+
label_cols_signatures = [
|
341
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
342
|
+
]
|
345
343
|
if len(label_cols_signatures) == 0:
|
346
344
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
347
345
|
raise exceptions.SnowflakeMLException(
|
@@ -349,25 +347,22 @@ class LedoitWolf(BaseTransformer):
|
|
349
347
|
original_exception=ValueError(error_str),
|
350
348
|
)
|
351
349
|
|
352
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
353
|
-
label_cols_signatures[0].as_snowpark_type()
|
354
|
-
)
|
350
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
355
351
|
|
356
352
|
self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
357
|
-
assert isinstance(
|
353
|
+
assert isinstance(
|
354
|
+
dataset._session, Session
|
355
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
358
356
|
|
359
357
|
transform_kwargs = dict(
|
360
|
-
session
|
361
|
-
dependencies
|
362
|
-
drop_input_cols
|
363
|
-
expected_output_cols_type
|
358
|
+
session=dataset._session,
|
359
|
+
dependencies=self._deps,
|
360
|
+
drop_input_cols=self._drop_input_cols,
|
361
|
+
expected_output_cols_type=expected_type_inferred,
|
364
362
|
)
|
365
363
|
|
366
364
|
elif isinstance(dataset, pd.DataFrame):
|
367
|
-
transform_kwargs = dict(
|
368
|
-
snowpark_input_cols = self._snowpark_cols,
|
369
|
-
drop_input_cols = self._drop_input_cols
|
370
|
-
)
|
365
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
371
366
|
|
372
367
|
transform_handlers = ModelTransformerBuilder.build(
|
373
368
|
dataset=dataset,
|
@@ -407,7 +402,7 @@ class LedoitWolf(BaseTransformer):
|
|
407
402
|
Transformed dataset.
|
408
403
|
"""
|
409
404
|
super()._check_dataset_type(dataset)
|
410
|
-
inference_method="transform"
|
405
|
+
inference_method = "transform"
|
411
406
|
|
412
407
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
413
408
|
# are specific to the type of dataset used.
|
@@ -444,17 +439,14 @@ class LedoitWolf(BaseTransformer):
|
|
444
439
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
445
440
|
|
446
441
|
transform_kwargs = dict(
|
447
|
-
session
|
448
|
-
dependencies
|
449
|
-
drop_input_cols
|
450
|
-
expected_output_cols_type
|
442
|
+
session=dataset._session,
|
443
|
+
dependencies=self._deps,
|
444
|
+
drop_input_cols=self._drop_input_cols,
|
445
|
+
expected_output_cols_type=expected_dtype,
|
451
446
|
)
|
452
447
|
|
453
448
|
elif isinstance(dataset, pd.DataFrame):
|
454
|
-
transform_kwargs = dict(
|
455
|
-
snowpark_input_cols = self._snowpark_cols,
|
456
|
-
drop_input_cols = self._drop_input_cols
|
457
|
-
)
|
449
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
458
450
|
|
459
451
|
transform_handlers = ModelTransformerBuilder.build(
|
460
452
|
dataset=dataset,
|
@@ -473,7 +465,11 @@ class LedoitWolf(BaseTransformer):
|
|
473
465
|
return output_df
|
474
466
|
|
475
467
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
476
|
-
def fit_predict(
|
468
|
+
def fit_predict(
|
469
|
+
self,
|
470
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
471
|
+
output_cols_prefix: str = "fit_predict_",
|
472
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
477
473
|
""" Method not supported for this class.
|
478
474
|
|
479
475
|
|
@@ -498,7 +494,9 @@ class LedoitWolf(BaseTransformer):
|
|
498
494
|
)
|
499
495
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
500
496
|
drop_input_cols=self._drop_input_cols,
|
501
|
-
expected_output_cols_list=
|
497
|
+
expected_output_cols_list=(
|
498
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
499
|
+
),
|
502
500
|
)
|
503
501
|
self._sklearn_object = fitted_estimator
|
504
502
|
self._is_fitted = True
|
@@ -515,6 +513,62 @@ class LedoitWolf(BaseTransformer):
|
|
515
513
|
assert self._sklearn_object is not None
|
516
514
|
return self._sklearn_object.embedding_
|
517
515
|
|
516
|
+
|
517
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
518
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
519
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
520
|
+
"""
|
521
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
522
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
523
|
+
if output_cols:
|
524
|
+
output_cols = [
|
525
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
526
|
+
for c in output_cols
|
527
|
+
]
|
528
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
529
|
+
output_cols = [output_cols_prefix]
|
530
|
+
elif self._sklearn_object is not None:
|
531
|
+
classes = self._sklearn_object.classes_
|
532
|
+
if isinstance(classes, numpy.ndarray):
|
533
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
534
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
535
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
536
|
+
output_cols = []
|
537
|
+
for i, cl in enumerate(classes):
|
538
|
+
# For binary classification, there is only one output column for each class
|
539
|
+
# ndarray as the two classes are complementary.
|
540
|
+
if len(cl) == 2:
|
541
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
542
|
+
else:
|
543
|
+
output_cols.extend([
|
544
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
545
|
+
])
|
546
|
+
else:
|
547
|
+
output_cols = []
|
548
|
+
|
549
|
+
# Make sure column names are valid snowflake identifiers.
|
550
|
+
assert output_cols is not None # Make MyPy happy
|
551
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
552
|
+
|
553
|
+
return rv
|
554
|
+
|
555
|
+
def _align_expected_output_names(
|
556
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
557
|
+
) -> List[str]:
|
558
|
+
# in case the inferred output column names dimension is different
|
559
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
560
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
561
|
+
output_df_columns = list(output_df_pd.columns)
|
562
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
563
|
+
if self.sample_weight_col:
|
564
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
565
|
+
# if the dimension of inferred output column names is correct; use it
|
566
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
567
|
+
return expected_output_cols_list
|
568
|
+
# otherwise, use the sklearn estimator's output
|
569
|
+
else:
|
570
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
571
|
+
|
518
572
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
519
573
|
@telemetry.send_api_usage_telemetry(
|
520
574
|
project=_PROJECT,
|
@@ -545,24 +599,28 @@ class LedoitWolf(BaseTransformer):
|
|
545
599
|
# are specific to the type of dataset used.
|
546
600
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
547
601
|
|
602
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
603
|
+
|
548
604
|
if isinstance(dataset, DataFrame):
|
549
605
|
self._deps = self._batch_inference_validate_snowpark(
|
550
606
|
dataset=dataset,
|
551
607
|
inference_method=inference_method,
|
552
608
|
)
|
553
|
-
assert isinstance(
|
609
|
+
assert isinstance(
|
610
|
+
dataset._session, Session
|
611
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
554
612
|
transform_kwargs = dict(
|
555
613
|
session=dataset._session,
|
556
614
|
dependencies=self._deps,
|
557
|
-
drop_input_cols
|
615
|
+
drop_input_cols=self._drop_input_cols,
|
558
616
|
expected_output_cols_type="float",
|
559
617
|
)
|
618
|
+
expected_output_cols = self._align_expected_output_names(
|
619
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
620
|
+
)
|
560
621
|
|
561
622
|
elif isinstance(dataset, pd.DataFrame):
|
562
|
-
transform_kwargs = dict(
|
563
|
-
snowpark_input_cols = self._snowpark_cols,
|
564
|
-
drop_input_cols = self._drop_input_cols
|
565
|
-
)
|
623
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
566
624
|
|
567
625
|
transform_handlers = ModelTransformerBuilder.build(
|
568
626
|
dataset=dataset,
|
@@ -574,7 +632,7 @@ class LedoitWolf(BaseTransformer):
|
|
574
632
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
575
633
|
inference_method=inference_method,
|
576
634
|
input_cols=self.input_cols,
|
577
|
-
expected_output_cols=
|
635
|
+
expected_output_cols=expected_output_cols,
|
578
636
|
**transform_kwargs
|
579
637
|
)
|
580
638
|
return output_df
|
@@ -604,7 +662,8 @@ class LedoitWolf(BaseTransformer):
|
|
604
662
|
Output dataset with log probability of the sample for each class in the model.
|
605
663
|
"""
|
606
664
|
super()._check_dataset_type(dataset)
|
607
|
-
inference_method="predict_log_proba"
|
665
|
+
inference_method = "predict_log_proba"
|
666
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
608
667
|
|
609
668
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
610
669
|
# are specific to the type of dataset used.
|
@@ -615,18 +674,20 @@ class LedoitWolf(BaseTransformer):
|
|
615
674
|
dataset=dataset,
|
616
675
|
inference_method=inference_method,
|
617
676
|
)
|
618
|
-
assert isinstance(
|
677
|
+
assert isinstance(
|
678
|
+
dataset._session, Session
|
679
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
619
680
|
transform_kwargs = dict(
|
620
681
|
session=dataset._session,
|
621
682
|
dependencies=self._deps,
|
622
|
-
drop_input_cols
|
683
|
+
drop_input_cols=self._drop_input_cols,
|
623
684
|
expected_output_cols_type="float",
|
624
685
|
)
|
686
|
+
expected_output_cols = self._align_expected_output_names(
|
687
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
688
|
+
)
|
625
689
|
elif isinstance(dataset, pd.DataFrame):
|
626
|
-
transform_kwargs = dict(
|
627
|
-
snowpark_input_cols = self._snowpark_cols,
|
628
|
-
drop_input_cols = self._drop_input_cols
|
629
|
-
)
|
690
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
630
691
|
|
631
692
|
transform_handlers = ModelTransformerBuilder.build(
|
632
693
|
dataset=dataset,
|
@@ -639,7 +700,7 @@ class LedoitWolf(BaseTransformer):
|
|
639
700
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
640
701
|
inference_method=inference_method,
|
641
702
|
input_cols=self.input_cols,
|
642
|
-
expected_output_cols=
|
703
|
+
expected_output_cols=expected_output_cols,
|
643
704
|
**transform_kwargs
|
644
705
|
)
|
645
706
|
return output_df
|
@@ -665,30 +726,34 @@ class LedoitWolf(BaseTransformer):
|
|
665
726
|
Output dataset with results of the decision function for the samples in input dataset.
|
666
727
|
"""
|
667
728
|
super()._check_dataset_type(dataset)
|
668
|
-
inference_method="decision_function"
|
729
|
+
inference_method = "decision_function"
|
669
730
|
|
670
731
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
671
732
|
# are specific to the type of dataset used.
|
672
733
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
673
734
|
|
735
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
736
|
+
|
674
737
|
if isinstance(dataset, DataFrame):
|
675
738
|
self._deps = self._batch_inference_validate_snowpark(
|
676
739
|
dataset=dataset,
|
677
740
|
inference_method=inference_method,
|
678
741
|
)
|
679
|
-
assert isinstance(
|
742
|
+
assert isinstance(
|
743
|
+
dataset._session, Session
|
744
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
680
745
|
transform_kwargs = dict(
|
681
746
|
session=dataset._session,
|
682
747
|
dependencies=self._deps,
|
683
|
-
drop_input_cols
|
748
|
+
drop_input_cols=self._drop_input_cols,
|
684
749
|
expected_output_cols_type="float",
|
685
750
|
)
|
751
|
+
expected_output_cols = self._align_expected_output_names(
|
752
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
753
|
+
)
|
686
754
|
|
687
755
|
elif isinstance(dataset, pd.DataFrame):
|
688
|
-
transform_kwargs = dict(
|
689
|
-
snowpark_input_cols = self._snowpark_cols,
|
690
|
-
drop_input_cols = self._drop_input_cols
|
691
|
-
)
|
756
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
692
757
|
|
693
758
|
transform_handlers = ModelTransformerBuilder.build(
|
694
759
|
dataset=dataset,
|
@@ -701,7 +766,7 @@ class LedoitWolf(BaseTransformer):
|
|
701
766
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
702
767
|
inference_method=inference_method,
|
703
768
|
input_cols=self.input_cols,
|
704
|
-
expected_output_cols=
|
769
|
+
expected_output_cols=expected_output_cols,
|
705
770
|
**transform_kwargs
|
706
771
|
)
|
707
772
|
return output_df
|
@@ -730,12 +795,14 @@ class LedoitWolf(BaseTransformer):
|
|
730
795
|
Output dataset with probability of the sample for each class in the model.
|
731
796
|
"""
|
732
797
|
super()._check_dataset_type(dataset)
|
733
|
-
inference_method="score_samples"
|
798
|
+
inference_method = "score_samples"
|
734
799
|
|
735
800
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
736
801
|
# are specific to the type of dataset used.
|
737
802
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
738
803
|
|
804
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
805
|
+
|
739
806
|
if isinstance(dataset, DataFrame):
|
740
807
|
self._deps = self._batch_inference_validate_snowpark(
|
741
808
|
dataset=dataset,
|
@@ -748,6 +815,9 @@ class LedoitWolf(BaseTransformer):
|
|
748
815
|
drop_input_cols = self._drop_input_cols,
|
749
816
|
expected_output_cols_type="float",
|
750
817
|
)
|
818
|
+
expected_output_cols = self._align_expected_output_names(
|
819
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
820
|
+
)
|
751
821
|
|
752
822
|
elif isinstance(dataset, pd.DataFrame):
|
753
823
|
transform_kwargs = dict(
|
@@ -766,7 +836,7 @@ class LedoitWolf(BaseTransformer):
|
|
766
836
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
767
837
|
inference_method=inference_method,
|
768
838
|
input_cols=self.input_cols,
|
769
|
-
expected_output_cols=
|
839
|
+
expected_output_cols=expected_output_cols,
|
770
840
|
**transform_kwargs
|
771
841
|
)
|
772
842
|
return output_df
|
@@ -913,50 +983,84 @@ class LedoitWolf(BaseTransformer):
|
|
913
983
|
)
|
914
984
|
return output_df
|
915
985
|
|
986
|
+
|
987
|
+
|
988
|
+
def to_sklearn(self) -> Any:
|
989
|
+
"""Get sklearn.covariance.LedoitWolf object.
|
990
|
+
"""
|
991
|
+
if self._sklearn_object is None:
|
992
|
+
self._sklearn_object = self._create_sklearn_object()
|
993
|
+
return self._sklearn_object
|
994
|
+
|
995
|
+
def to_xgboost(self) -> Any:
|
996
|
+
raise exceptions.SnowflakeMLException(
|
997
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
998
|
+
original_exception=AttributeError(
|
999
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1000
|
+
"to_xgboost()",
|
1001
|
+
"to_sklearn()"
|
1002
|
+
)
|
1003
|
+
),
|
1004
|
+
)
|
1005
|
+
|
1006
|
+
def to_lightgbm(self) -> Any:
|
1007
|
+
raise exceptions.SnowflakeMLException(
|
1008
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1009
|
+
original_exception=AttributeError(
|
1010
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1011
|
+
"to_lightgbm()",
|
1012
|
+
"to_sklearn()"
|
1013
|
+
)
|
1014
|
+
),
|
1015
|
+
)
|
916
1016
|
|
917
|
-
def
|
1017
|
+
def _get_dependencies(self) -> List[str]:
|
1018
|
+
return self._deps
|
1019
|
+
|
1020
|
+
|
1021
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
918
1022
|
self._model_signature_dict = dict()
|
919
1023
|
|
920
1024
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
921
1025
|
|
922
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1026
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
923
1027
|
outputs: List[BaseFeatureSpec] = []
|
924
1028
|
if hasattr(self, "predict"):
|
925
1029
|
# keep mypy happy
|
926
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1030
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
927
1031
|
# For classifier, the type of predict is the same as the type of label
|
928
|
-
if self._sklearn_object._estimator_type ==
|
929
|
-
|
1032
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1033
|
+
# label columns is the desired type for output
|
930
1034
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
931
1035
|
# rename the output columns
|
932
1036
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
933
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
934
|
-
|
935
|
-
|
1037
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1038
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1039
|
+
)
|
936
1040
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
937
1041
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
938
|
-
# Clusterer returns int64 cluster labels.
|
1042
|
+
# Clusterer returns int64 cluster labels.
|
939
1043
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
940
1044
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
941
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
942
|
-
|
943
|
-
|
944
|
-
|
1045
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1046
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1047
|
+
)
|
1048
|
+
|
945
1049
|
# For regressor, the type of predict is float64
|
946
|
-
elif self._sklearn_object._estimator_type ==
|
1050
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
947
1051
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
948
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
949
|
-
|
950
|
-
|
951
|
-
|
1052
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1053
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1054
|
+
)
|
1055
|
+
|
952
1056
|
for prob_func in PROB_FUNCTIONS:
|
953
1057
|
if hasattr(self, prob_func):
|
954
1058
|
output_cols_prefix: str = f"{prob_func}_"
|
955
1059
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
956
1060
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
957
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
958
|
-
|
959
|
-
|
1061
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1062
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1063
|
+
)
|
960
1064
|
|
961
1065
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
962
1066
|
items = list(self._model_signature_dict.items())
|
@@ -969,10 +1073,10 @@ class LedoitWolf(BaseTransformer):
|
|
969
1073
|
"""Returns model signature of current class.
|
970
1074
|
|
971
1075
|
Raises:
|
972
|
-
|
1076
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
973
1077
|
|
974
1078
|
Returns:
|
975
|
-
Dict
|
1079
|
+
Dict with each method and its input output signature
|
976
1080
|
"""
|
977
1081
|
if self._model_signature_dict is None:
|
978
1082
|
raise exceptions.SnowflakeMLException(
|
@@ -980,35 +1084,3 @@ class LedoitWolf(BaseTransformer):
|
|
980
1084
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
981
1085
|
)
|
982
1086
|
return self._model_signature_dict
|
983
|
-
|
984
|
-
def to_sklearn(self) -> Any:
|
985
|
-
"""Get sklearn.covariance.LedoitWolf object.
|
986
|
-
"""
|
987
|
-
if self._sklearn_object is None:
|
988
|
-
self._sklearn_object = self._create_sklearn_object()
|
989
|
-
return self._sklearn_object
|
990
|
-
|
991
|
-
def to_xgboost(self) -> Any:
|
992
|
-
raise exceptions.SnowflakeMLException(
|
993
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
994
|
-
original_exception=AttributeError(
|
995
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
996
|
-
"to_xgboost()",
|
997
|
-
"to_sklearn()"
|
998
|
-
)
|
999
|
-
),
|
1000
|
-
)
|
1001
|
-
|
1002
|
-
def to_lightgbm(self) -> Any:
|
1003
|
-
raise exceptions.SnowflakeMLException(
|
1004
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1005
|
-
original_exception=AttributeError(
|
1006
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1007
|
-
"to_lightgbm()",
|
1008
|
-
"to_sklearn()"
|
1009
|
-
)
|
1010
|
-
),
|
1011
|
-
)
|
1012
|
-
|
1013
|
-
def _get_dependencies(self) -> List[str]:
|
1014
|
-
return self._deps
|