diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1060 @@
1
+ # Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import torch
20
+ from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel
21
+
22
+ from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
26
+ from ...models import AutoencoderKL, HunyuanDiT2DControlNetModel, HunyuanDiT2DModel, HunyuanDiT2DMultiControlNetModel
27
+ from ...models.embeddings import get_2d_rotary_pos_embed
28
+ from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
29
+ from ...schedulers import DDPMScheduler
30
+ from ...utils import (
31
+ is_torch_xla_available,
32
+ logging,
33
+ replace_example_docstring,
34
+ )
35
+ from ...utils.torch_utils import randn_tensor
36
+ from ..pipeline_utils import DiffusionPipeline
37
+
38
+
39
+ if is_torch_xla_available():
40
+ import torch_xla.core.xla_model as xm
41
+
42
+ XLA_AVAILABLE = True
43
+ else:
44
+ XLA_AVAILABLE = False
45
+
46
+
47
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
48
+
49
+ EXAMPLE_DOC_STRING = """
50
+ Examples:
51
+ ```py
52
+ from diffusers import HunyuanDiT2DControlNetModel, HunyuanDiTControlNetPipeline
53
+ import torch
54
+
55
+ controlnet = HunyuanDiT2DControlNetModel.from_pretrained(
56
+ "Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny", torch_dtype=torch.float16
57
+ )
58
+
59
+ pipe = HunyuanDiTControlNetPipeline.from_pretrained(
60
+ "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers", controlnet=controlnet, torch_dtype=torch.float16
61
+ )
62
+ pipe.to("cuda")
63
+
64
+ from diffusers.utils import load_image
65
+
66
+ cond_image = load_image(
67
+ "https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1-ControlNet-Diffusers-Canny/resolve/main/canny.jpg?download=true"
68
+ )
69
+
70
+ ## You may also use English prompt as HunyuanDiT supports both English and Chinese
71
+ prompt = "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围"
72
+ # prompt="At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere."
73
+ image = pipe(
74
+ prompt,
75
+ height=1024,
76
+ width=1024,
77
+ control_image=cond_image,
78
+ num_inference_steps=50,
79
+ ).images[0]
80
+ ```
81
+ """
82
+
83
+ STANDARD_RATIO = np.array(
84
+ [
85
+ 1.0, # 1:1
86
+ 4.0 / 3.0, # 4:3
87
+ 3.0 / 4.0, # 3:4
88
+ 16.0 / 9.0, # 16:9
89
+ 9.0 / 16.0, # 9:16
90
+ ]
91
+ )
92
+ STANDARD_SHAPE = [
93
+ [(1024, 1024), (1280, 1280)], # 1:1
94
+ [(1024, 768), (1152, 864), (1280, 960)], # 4:3
95
+ [(768, 1024), (864, 1152), (960, 1280)], # 3:4
96
+ [(1280, 768)], # 16:9
97
+ [(768, 1280)], # 9:16
98
+ ]
99
+ STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE]
100
+ SUPPORTED_SHAPE = [
101
+ (1024, 1024),
102
+ (1280, 1280), # 1:1
103
+ (1024, 768),
104
+ (1152, 864),
105
+ (1280, 960), # 4:3
106
+ (768, 1024),
107
+ (864, 1152),
108
+ (960, 1280), # 3:4
109
+ (1280, 768), # 16:9
110
+ (768, 1280), # 9:16
111
+ ]
112
+
113
+
114
+ def map_to_standard_shapes(target_width, target_height):
115
+ target_ratio = target_width / target_height
116
+ closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio))
117
+ closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height))
118
+ width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx]
119
+ return width, height
120
+
121
+
122
+ def get_resize_crop_region_for_grid(src, tgt_size):
123
+ th = tw = tgt_size
124
+ h, w = src
125
+
126
+ r = h / w
127
+
128
+ # resize
129
+ if r > 1:
130
+ resize_height = th
131
+ resize_width = int(round(th / h * w))
132
+ else:
133
+ resize_width = tw
134
+ resize_height = int(round(tw / w * h))
135
+
136
+ crop_top = int(round((th - resize_height) / 2.0))
137
+ crop_left = int(round((tw - resize_width) / 2.0))
138
+
139
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
140
+
141
+
142
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
143
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
144
+ r"""
145
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
146
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
147
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
148
+
149
+ Args:
150
+ noise_cfg (`torch.Tensor`):
151
+ The predicted noise tensor for the guided diffusion process.
152
+ noise_pred_text (`torch.Tensor`):
153
+ The predicted noise tensor for the text-guided diffusion process.
154
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
155
+ A rescale factor applied to the noise predictions.
156
+
157
+ Returns:
158
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
159
+ """
160
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
161
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
162
+ # rescale the results from guidance (fixes overexposure)
163
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
164
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
165
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
166
+ return noise_cfg
167
+
168
+
169
+ class HunyuanDiTControlNetPipeline(DiffusionPipeline):
170
+ r"""
171
+ Pipeline for English/Chinese-to-image generation using HunyuanDiT.
172
+
173
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
174
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
175
+
176
+ HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
177
+ ourselves)
178
+
179
+ Args:
180
+ vae ([`AutoencoderKL`]):
181
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
182
+ `sdxl-vae-fp16-fix`.
183
+ text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
184
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
185
+ HunyuanDiT uses a fine-tuned [bilingual CLIP].
186
+ tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
187
+ A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
188
+ transformer ([`HunyuanDiT2DModel`]):
189
+ The HunyuanDiT model designed by Tencent Hunyuan.
190
+ text_encoder_2 (`T5EncoderModel`):
191
+ The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
192
+ tokenizer_2 (`MT5Tokenizer`):
193
+ The tokenizer for the mT5 embedder.
194
+ scheduler ([`DDPMScheduler`]):
195
+ A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
196
+ controlnet ([`HunyuanDiT2DControlNetModel`] or `List[HunyuanDiT2DControlNetModel]` or [`HunyuanDiT2DControlNetModel`]):
197
+ Provides additional conditioning to the `unet` during the denoising process. If you set multiple
198
+ ControlNets as a list, the outputs from each ControlNet are added together to create one combined
199
+ additional conditioning.
200
+ """
201
+
202
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
203
+ _optional_components = [
204
+ "safety_checker",
205
+ "feature_extractor",
206
+ "text_encoder_2",
207
+ "tokenizer_2",
208
+ "text_encoder",
209
+ "tokenizer",
210
+ ]
211
+ _exclude_from_cpu_offload = ["safety_checker"]
212
+ _callback_tensor_inputs = [
213
+ "latents",
214
+ "prompt_embeds",
215
+ "negative_prompt_embeds",
216
+ "prompt_embeds_2",
217
+ "negative_prompt_embeds_2",
218
+ ]
219
+
220
+ def __init__(
221
+ self,
222
+ vae: AutoencoderKL,
223
+ text_encoder: BertModel,
224
+ tokenizer: BertTokenizer,
225
+ transformer: HunyuanDiT2DModel,
226
+ scheduler: DDPMScheduler,
227
+ safety_checker: StableDiffusionSafetyChecker,
228
+ feature_extractor: CLIPImageProcessor,
229
+ controlnet: Union[
230
+ HunyuanDiT2DControlNetModel,
231
+ List[HunyuanDiT2DControlNetModel],
232
+ Tuple[HunyuanDiT2DControlNetModel],
233
+ HunyuanDiT2DMultiControlNetModel,
234
+ ],
235
+ text_encoder_2=T5EncoderModel,
236
+ tokenizer_2=MT5Tokenizer,
237
+ requires_safety_checker: bool = True,
238
+ ):
239
+ super().__init__()
240
+ if isinstance(controlnet, (list, tuple)):
241
+ controlnet = HunyuanDiT2DMultiControlNetModel(controlnet)
242
+
243
+ self.register_modules(
244
+ vae=vae,
245
+ text_encoder=text_encoder,
246
+ tokenizer=tokenizer,
247
+ tokenizer_2=tokenizer_2,
248
+ transformer=transformer,
249
+ scheduler=scheduler,
250
+ safety_checker=safety_checker,
251
+ feature_extractor=feature_extractor,
252
+ text_encoder_2=text_encoder_2,
253
+ controlnet=controlnet,
254
+ )
255
+
256
+ if safety_checker is None and requires_safety_checker:
257
+ logger.warning(
258
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
259
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
260
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
261
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
262
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
263
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
264
+ )
265
+
266
+ if safety_checker is not None and feature_extractor is None:
267
+ raise ValueError(
268
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
269
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
270
+ )
271
+
272
+ self.vae_scale_factor = (
273
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
274
+ )
275
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
276
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
277
+ self.default_sample_size = (
278
+ self.transformer.config.sample_size
279
+ if hasattr(self, "transformer") and self.transformer is not None
280
+ else 128
281
+ )
282
+
283
+ # Copied from diffusers.pipelines.hunyuandit.pipeline_hunyuandit.HunyuanDiTPipeline.encode_prompt
284
+ def encode_prompt(
285
+ self,
286
+ prompt: str,
287
+ device: torch.device = None,
288
+ dtype: torch.dtype = None,
289
+ num_images_per_prompt: int = 1,
290
+ do_classifier_free_guidance: bool = True,
291
+ negative_prompt: Optional[str] = None,
292
+ prompt_embeds: Optional[torch.Tensor] = None,
293
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
294
+ prompt_attention_mask: Optional[torch.Tensor] = None,
295
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
296
+ max_sequence_length: Optional[int] = None,
297
+ text_encoder_index: int = 0,
298
+ ):
299
+ r"""
300
+ Encodes the prompt into text encoder hidden states.
301
+
302
+ Args:
303
+ prompt (`str` or `List[str]`, *optional*):
304
+ prompt to be encoded
305
+ device: (`torch.device`):
306
+ torch device
307
+ dtype (`torch.dtype`):
308
+ torch dtype
309
+ num_images_per_prompt (`int`):
310
+ number of images that should be generated per prompt
311
+ do_classifier_free_guidance (`bool`):
312
+ whether to use classifier free guidance or not
313
+ negative_prompt (`str` or `List[str]`, *optional*):
314
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
315
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
316
+ less than `1`).
317
+ prompt_embeds (`torch.Tensor`, *optional*):
318
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
319
+ provided, text embeddings will be generated from `prompt` input argument.
320
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
321
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
322
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
323
+ argument.
324
+ prompt_attention_mask (`torch.Tensor`, *optional*):
325
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
326
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
327
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
328
+ max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
329
+ text_encoder_index (`int`, *optional*):
330
+ Index of the text encoder to use. `0` for clip and `1` for T5.
331
+ """
332
+ if dtype is None:
333
+ if self.text_encoder_2 is not None:
334
+ dtype = self.text_encoder_2.dtype
335
+ elif self.transformer is not None:
336
+ dtype = self.transformer.dtype
337
+ else:
338
+ dtype = None
339
+
340
+ if device is None:
341
+ device = self._execution_device
342
+
343
+ tokenizers = [self.tokenizer, self.tokenizer_2]
344
+ text_encoders = [self.text_encoder, self.text_encoder_2]
345
+
346
+ tokenizer = tokenizers[text_encoder_index]
347
+ text_encoder = text_encoders[text_encoder_index]
348
+
349
+ if max_sequence_length is None:
350
+ if text_encoder_index == 0:
351
+ max_length = 77
352
+ if text_encoder_index == 1:
353
+ max_length = 256
354
+ else:
355
+ max_length = max_sequence_length
356
+
357
+ if prompt is not None and isinstance(prompt, str):
358
+ batch_size = 1
359
+ elif prompt is not None and isinstance(prompt, list):
360
+ batch_size = len(prompt)
361
+ else:
362
+ batch_size = prompt_embeds.shape[0]
363
+
364
+ if prompt_embeds is None:
365
+ text_inputs = tokenizer(
366
+ prompt,
367
+ padding="max_length",
368
+ max_length=max_length,
369
+ truncation=True,
370
+ return_attention_mask=True,
371
+ return_tensors="pt",
372
+ )
373
+ text_input_ids = text_inputs.input_ids
374
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
375
+
376
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
377
+ text_input_ids, untruncated_ids
378
+ ):
379
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
380
+ logger.warning(
381
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
382
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
383
+ )
384
+
385
+ prompt_attention_mask = text_inputs.attention_mask.to(device)
386
+ prompt_embeds = text_encoder(
387
+ text_input_ids.to(device),
388
+ attention_mask=prompt_attention_mask,
389
+ )
390
+ prompt_embeds = prompt_embeds[0]
391
+ prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
392
+
393
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
394
+
395
+ bs_embed, seq_len, _ = prompt_embeds.shape
396
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
397
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
398
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
399
+
400
+ # get unconditional embeddings for classifier free guidance
401
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
402
+ uncond_tokens: List[str]
403
+ if negative_prompt is None:
404
+ uncond_tokens = [""] * batch_size
405
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
406
+ raise TypeError(
407
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
408
+ f" {type(prompt)}."
409
+ )
410
+ elif isinstance(negative_prompt, str):
411
+ uncond_tokens = [negative_prompt]
412
+ elif batch_size != len(negative_prompt):
413
+ raise ValueError(
414
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
415
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
416
+ " the batch size of `prompt`."
417
+ )
418
+ else:
419
+ uncond_tokens = negative_prompt
420
+
421
+ max_length = prompt_embeds.shape[1]
422
+ uncond_input = tokenizer(
423
+ uncond_tokens,
424
+ padding="max_length",
425
+ max_length=max_length,
426
+ truncation=True,
427
+ return_tensors="pt",
428
+ )
429
+
430
+ negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
431
+ negative_prompt_embeds = text_encoder(
432
+ uncond_input.input_ids.to(device),
433
+ attention_mask=negative_prompt_attention_mask,
434
+ )
435
+ negative_prompt_embeds = negative_prompt_embeds[0]
436
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
437
+
438
+ if do_classifier_free_guidance:
439
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
440
+ seq_len = negative_prompt_embeds.shape[1]
441
+
442
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
443
+
444
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
445
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
446
+
447
+ return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask
448
+
449
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
450
+ def run_safety_checker(self, image, device, dtype):
451
+ if self.safety_checker is None:
452
+ has_nsfw_concept = None
453
+ else:
454
+ if torch.is_tensor(image):
455
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
456
+ else:
457
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
458
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
459
+ image, has_nsfw_concept = self.safety_checker(
460
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
461
+ )
462
+ return image, has_nsfw_concept
463
+
464
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
465
+ def prepare_extra_step_kwargs(self, generator, eta):
466
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
467
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
468
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
469
+ # and should be between [0, 1]
470
+
471
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
472
+ extra_step_kwargs = {}
473
+ if accepts_eta:
474
+ extra_step_kwargs["eta"] = eta
475
+
476
+ # check if the scheduler accepts generator
477
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
478
+ if accepts_generator:
479
+ extra_step_kwargs["generator"] = generator
480
+ return extra_step_kwargs
481
+
482
+ # Copied from diffusers.pipelines.hunyuandit.pipeline_hunyuandit.HunyuanDiTPipeline.check_inputs
483
+ def check_inputs(
484
+ self,
485
+ prompt,
486
+ height,
487
+ width,
488
+ negative_prompt=None,
489
+ prompt_embeds=None,
490
+ negative_prompt_embeds=None,
491
+ prompt_attention_mask=None,
492
+ negative_prompt_attention_mask=None,
493
+ prompt_embeds_2=None,
494
+ negative_prompt_embeds_2=None,
495
+ prompt_attention_mask_2=None,
496
+ negative_prompt_attention_mask_2=None,
497
+ callback_on_step_end_tensor_inputs=None,
498
+ ):
499
+ if height % 8 != 0 or width % 8 != 0:
500
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
501
+
502
+ if callback_on_step_end_tensor_inputs is not None and not all(
503
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
504
+ ):
505
+ raise ValueError(
506
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
507
+ )
508
+
509
+ if prompt is not None and prompt_embeds is not None:
510
+ raise ValueError(
511
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
512
+ " only forward one of the two."
513
+ )
514
+ elif prompt is None and prompt_embeds is None:
515
+ raise ValueError(
516
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
517
+ )
518
+ elif prompt is None and prompt_embeds_2 is None:
519
+ raise ValueError(
520
+ "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
521
+ )
522
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
523
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
524
+
525
+ if prompt_embeds is not None and prompt_attention_mask is None:
526
+ raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
527
+
528
+ if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
529
+ raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
530
+
531
+ if negative_prompt is not None and negative_prompt_embeds is not None:
532
+ raise ValueError(
533
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
534
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
535
+ )
536
+
537
+ if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
538
+ raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
539
+
540
+ if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
541
+ raise ValueError(
542
+ "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
543
+ )
544
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
545
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
546
+ raise ValueError(
547
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
548
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
549
+ f" {negative_prompt_embeds.shape}."
550
+ )
551
+ if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
552
+ if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
553
+ raise ValueError(
554
+ "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
555
+ f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
556
+ f" {negative_prompt_embeds_2.shape}."
557
+ )
558
+
559
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
560
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
561
+ shape = (
562
+ batch_size,
563
+ num_channels_latents,
564
+ int(height) // self.vae_scale_factor,
565
+ int(width) // self.vae_scale_factor,
566
+ )
567
+ if isinstance(generator, list) and len(generator) != batch_size:
568
+ raise ValueError(
569
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
570
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
571
+ )
572
+
573
+ if latents is None:
574
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
575
+ else:
576
+ latents = latents.to(device)
577
+
578
+ # scale the initial noise by the standard deviation required by the scheduler
579
+ latents = latents * self.scheduler.init_noise_sigma
580
+ return latents
581
+
582
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
583
+ def prepare_image(
584
+ self,
585
+ image,
586
+ width,
587
+ height,
588
+ batch_size,
589
+ num_images_per_prompt,
590
+ device,
591
+ dtype,
592
+ do_classifier_free_guidance=False,
593
+ guess_mode=False,
594
+ ):
595
+ if isinstance(image, torch.Tensor):
596
+ pass
597
+ else:
598
+ image = self.image_processor.preprocess(image, height=height, width=width)
599
+
600
+ image_batch_size = image.shape[0]
601
+
602
+ if image_batch_size == 1:
603
+ repeat_by = batch_size
604
+ else:
605
+ # image batch size is the same as prompt batch size
606
+ repeat_by = num_images_per_prompt
607
+
608
+ image = image.repeat_interleave(repeat_by, dim=0)
609
+
610
+ image = image.to(device=device, dtype=dtype)
611
+
612
+ if do_classifier_free_guidance and not guess_mode:
613
+ image = torch.cat([image] * 2)
614
+
615
+ return image
616
+
617
+ @property
618
+ def guidance_scale(self):
619
+ return self._guidance_scale
620
+
621
+ @property
622
+ def guidance_rescale(self):
623
+ return self._guidance_rescale
624
+
625
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
626
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
627
+ # corresponds to doing no classifier free guidance.
628
+ @property
629
+ def do_classifier_free_guidance(self):
630
+ return self._guidance_scale > 1
631
+
632
+ @property
633
+ def num_timesteps(self):
634
+ return self._num_timesteps
635
+
636
+ @property
637
+ def interrupt(self):
638
+ return self._interrupt
639
+
640
+ @torch.no_grad()
641
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
642
+ def __call__(
643
+ self,
644
+ prompt: Union[str, List[str]] = None,
645
+ height: Optional[int] = None,
646
+ width: Optional[int] = None,
647
+ num_inference_steps: Optional[int] = 50,
648
+ guidance_scale: Optional[float] = 5.0,
649
+ control_image: PipelineImageInput = None,
650
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
651
+ negative_prompt: Optional[Union[str, List[str]]] = None,
652
+ num_images_per_prompt: Optional[int] = 1,
653
+ eta: Optional[float] = 0.0,
654
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
655
+ latents: Optional[torch.Tensor] = None,
656
+ prompt_embeds: Optional[torch.Tensor] = None,
657
+ prompt_embeds_2: Optional[torch.Tensor] = None,
658
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
659
+ negative_prompt_embeds_2: Optional[torch.Tensor] = None,
660
+ prompt_attention_mask: Optional[torch.Tensor] = None,
661
+ prompt_attention_mask_2: Optional[torch.Tensor] = None,
662
+ negative_prompt_attention_mask: Optional[torch.Tensor] = None,
663
+ negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
664
+ output_type: Optional[str] = "pil",
665
+ return_dict: bool = True,
666
+ callback_on_step_end: Optional[
667
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
668
+ ] = None,
669
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
670
+ guidance_rescale: float = 0.0,
671
+ original_size: Optional[Tuple[int, int]] = (1024, 1024),
672
+ target_size: Optional[Tuple[int, int]] = None,
673
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
674
+ use_resolution_binning: bool = True,
675
+ ):
676
+ r"""
677
+ The call function to the pipeline for generation with HunyuanDiT.
678
+
679
+ Args:
680
+ prompt (`str` or `List[str]`, *optional*):
681
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
682
+ height (`int`):
683
+ The height in pixels of the generated image.
684
+ width (`int`):
685
+ The width in pixels of the generated image.
686
+ num_inference_steps (`int`, *optional*, defaults to 50):
687
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
688
+ expense of slower inference. This parameter is modulated by `strength`.
689
+ guidance_scale (`float`, *optional*, defaults to 7.5):
690
+ A higher guidance scale value encourages the model to generate images closely linked to the text
691
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
692
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
693
+ The percentage of total steps at which the ControlNet starts applying.
694
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
695
+ The percentage of total steps at which the ControlNet stops applying.
696
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
697
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
698
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
699
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
700
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
701
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
702
+ images must be passed as a list such that each element of the list can be correctly batched for input
703
+ to a single ControlNet.
704
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
705
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
706
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
707
+ the corresponding scale as a list.
708
+ negative_prompt (`str` or `List[str]`, *optional*):
709
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
710
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
711
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
712
+ The number of images to generate per prompt.
713
+ eta (`float`, *optional*, defaults to 0.0):
714
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
715
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
716
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
717
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
718
+ generation deterministic.
719
+ prompt_embeds (`torch.Tensor`, *optional*):
720
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
721
+ provided, text embeddings are generated from the `prompt` input argument.
722
+ prompt_embeds_2 (`torch.Tensor`, *optional*):
723
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
724
+ provided, text embeddings are generated from the `prompt` input argument.
725
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
726
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
727
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
728
+ negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
729
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
730
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
731
+ prompt_attention_mask (`torch.Tensor`, *optional*):
732
+ Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
733
+ prompt_attention_mask_2 (`torch.Tensor`, *optional*):
734
+ Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
735
+ negative_prompt_attention_mask (`torch.Tensor`, *optional*):
736
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
737
+ negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
738
+ Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
739
+ output_type (`str`, *optional*, defaults to `"pil"`):
740
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
741
+ return_dict (`bool`, *optional*, defaults to `True`):
742
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
743
+ plain tuple.
744
+ callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
745
+ A callback function or a list of callback functions to be called at the end of each denoising step.
746
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
747
+ A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
748
+ inputs will be passed.
749
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
750
+ Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
751
+ Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
752
+ original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
753
+ The original size of the image. Used to calculate the time ids.
754
+ target_size (`Tuple[int, int]`, *optional*):
755
+ The target size of the image. Used to calculate the time ids.
756
+ crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
757
+ The top left coordinates of the crop. Used to calculate the time ids.
758
+ use_resolution_binning (`bool`, *optional*, defaults to `True`):
759
+ Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
760
+ standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
761
+ 768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.
762
+
763
+ Examples:
764
+
765
+ Returns:
766
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
767
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
768
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
769
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
770
+ "not-safe-for-work" (nsfw) content.
771
+ """
772
+
773
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
774
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
775
+
776
+ # 0. default height and width
777
+ height = height or self.default_sample_size * self.vae_scale_factor
778
+ width = width or self.default_sample_size * self.vae_scale_factor
779
+ height = int((height // 16) * 16)
780
+ width = int((width // 16) * 16)
781
+
782
+ if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
783
+ width, height = map_to_standard_shapes(width, height)
784
+ height = int(height)
785
+ width = int(width)
786
+ logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")
787
+
788
+ # 1. Check inputs. Raise error if not correct
789
+ self.check_inputs(
790
+ prompt,
791
+ height,
792
+ width,
793
+ negative_prompt,
794
+ prompt_embeds,
795
+ negative_prompt_embeds,
796
+ prompt_attention_mask,
797
+ negative_prompt_attention_mask,
798
+ prompt_embeds_2,
799
+ negative_prompt_embeds_2,
800
+ prompt_attention_mask_2,
801
+ negative_prompt_attention_mask_2,
802
+ callback_on_step_end_tensor_inputs,
803
+ )
804
+ self._guidance_scale = guidance_scale
805
+ self._guidance_rescale = guidance_rescale
806
+ self._interrupt = False
807
+
808
+ # 2. Define call parameters
809
+ if prompt is not None and isinstance(prompt, str):
810
+ batch_size = 1
811
+ elif prompt is not None and isinstance(prompt, list):
812
+ batch_size = len(prompt)
813
+ else:
814
+ batch_size = prompt_embeds.shape[0]
815
+
816
+ device = self._execution_device
817
+
818
+ # 3. Encode input prompt
819
+
820
+ (
821
+ prompt_embeds,
822
+ negative_prompt_embeds,
823
+ prompt_attention_mask,
824
+ negative_prompt_attention_mask,
825
+ ) = self.encode_prompt(
826
+ prompt=prompt,
827
+ device=device,
828
+ dtype=self.transformer.dtype,
829
+ num_images_per_prompt=num_images_per_prompt,
830
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
831
+ negative_prompt=negative_prompt,
832
+ prompt_embeds=prompt_embeds,
833
+ negative_prompt_embeds=negative_prompt_embeds,
834
+ prompt_attention_mask=prompt_attention_mask,
835
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
836
+ max_sequence_length=77,
837
+ text_encoder_index=0,
838
+ )
839
+ (
840
+ prompt_embeds_2,
841
+ negative_prompt_embeds_2,
842
+ prompt_attention_mask_2,
843
+ negative_prompt_attention_mask_2,
844
+ ) = self.encode_prompt(
845
+ prompt=prompt,
846
+ device=device,
847
+ dtype=self.transformer.dtype,
848
+ num_images_per_prompt=num_images_per_prompt,
849
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
850
+ negative_prompt=negative_prompt,
851
+ prompt_embeds=prompt_embeds_2,
852
+ negative_prompt_embeds=negative_prompt_embeds_2,
853
+ prompt_attention_mask=prompt_attention_mask_2,
854
+ negative_prompt_attention_mask=negative_prompt_attention_mask_2,
855
+ max_sequence_length=256,
856
+ text_encoder_index=1,
857
+ )
858
+
859
+ # 4. Prepare control image
860
+ if isinstance(self.controlnet, HunyuanDiT2DControlNetModel):
861
+ control_image = self.prepare_image(
862
+ image=control_image,
863
+ width=width,
864
+ height=height,
865
+ batch_size=batch_size * num_images_per_prompt,
866
+ num_images_per_prompt=num_images_per_prompt,
867
+ device=device,
868
+ dtype=self.dtype,
869
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
870
+ guess_mode=False,
871
+ )
872
+ height, width = control_image.shape[-2:]
873
+
874
+ control_image = self.vae.encode(control_image).latent_dist.sample()
875
+ control_image = control_image * self.vae.config.scaling_factor
876
+
877
+ elif isinstance(self.controlnet, HunyuanDiT2DMultiControlNetModel):
878
+ control_images = []
879
+
880
+ for control_image_ in control_image:
881
+ control_image_ = self.prepare_image(
882
+ image=control_image_,
883
+ width=width,
884
+ height=height,
885
+ batch_size=batch_size * num_images_per_prompt,
886
+ num_images_per_prompt=num_images_per_prompt,
887
+ device=device,
888
+ dtype=self.dtype,
889
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
890
+ guess_mode=False,
891
+ )
892
+
893
+ control_image_ = self.vae.encode(control_image_).latent_dist.sample()
894
+ control_image_ = control_image_ * self.vae.config.scaling_factor
895
+
896
+ control_images.append(control_image_)
897
+
898
+ control_image = control_images
899
+ else:
900
+ assert False
901
+
902
+ # 5. Prepare timesteps
903
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
904
+ timesteps = self.scheduler.timesteps
905
+
906
+ # 6. Prepare latent variables
907
+ num_channels_latents = self.transformer.config.in_channels
908
+ latents = self.prepare_latents(
909
+ batch_size * num_images_per_prompt,
910
+ num_channels_latents,
911
+ height,
912
+ width,
913
+ prompt_embeds.dtype,
914
+ device,
915
+ generator,
916
+ latents,
917
+ )
918
+
919
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
920
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
921
+
922
+ # 8. create image_rotary_emb, style embedding & time ids
923
+ grid_height = height // 8 // self.transformer.config.patch_size
924
+ grid_width = width // 8 // self.transformer.config.patch_size
925
+ base_size = 512 // 8 // self.transformer.config.patch_size
926
+ grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
927
+ image_rotary_emb = get_2d_rotary_pos_embed(
928
+ self.transformer.inner_dim // self.transformer.num_heads,
929
+ grid_crops_coords,
930
+ (grid_height, grid_width),
931
+ device=device,
932
+ output_type="pt",
933
+ )
934
+
935
+ style = torch.tensor([0], device=device)
936
+
937
+ target_size = target_size or (height, width)
938
+ add_time_ids = list(original_size + target_size + crops_coords_top_left)
939
+ add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
940
+
941
+ if self.do_classifier_free_guidance:
942
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
943
+ prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
944
+ prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
945
+ prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
946
+ add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
947
+ style = torch.cat([style] * 2, dim=0)
948
+
949
+ prompt_embeds = prompt_embeds.to(device=device)
950
+ prompt_attention_mask = prompt_attention_mask.to(device=device)
951
+ prompt_embeds_2 = prompt_embeds_2.to(device=device)
952
+ prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
953
+ add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
954
+ batch_size * num_images_per_prompt, 1
955
+ )
956
+ style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
957
+
958
+ # 9. Denoising loop
959
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
960
+ self._num_timesteps = len(timesteps)
961
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
962
+ for i, t in enumerate(timesteps):
963
+ if self.interrupt:
964
+ continue
965
+
966
+ # expand the latents if we are doing classifier free guidance
967
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
968
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
969
+
970
+ # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
971
+ t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
972
+ dtype=latent_model_input.dtype
973
+ )
974
+
975
+ # controlnet(s) inference
976
+ control_block_samples = self.controlnet(
977
+ latent_model_input,
978
+ t_expand,
979
+ encoder_hidden_states=prompt_embeds,
980
+ text_embedding_mask=prompt_attention_mask,
981
+ encoder_hidden_states_t5=prompt_embeds_2,
982
+ text_embedding_mask_t5=prompt_attention_mask_2,
983
+ image_meta_size=add_time_ids,
984
+ style=style,
985
+ image_rotary_emb=image_rotary_emb,
986
+ return_dict=False,
987
+ controlnet_cond=control_image,
988
+ conditioning_scale=controlnet_conditioning_scale,
989
+ )[0]
990
+
991
+ # predict the noise residual
992
+ noise_pred = self.transformer(
993
+ latent_model_input,
994
+ t_expand,
995
+ encoder_hidden_states=prompt_embeds,
996
+ text_embedding_mask=prompt_attention_mask,
997
+ encoder_hidden_states_t5=prompt_embeds_2,
998
+ text_embedding_mask_t5=prompt_attention_mask_2,
999
+ image_meta_size=add_time_ids,
1000
+ style=style,
1001
+ image_rotary_emb=image_rotary_emb,
1002
+ return_dict=False,
1003
+ controlnet_block_samples=control_block_samples,
1004
+ )[0]
1005
+
1006
+ noise_pred, _ = noise_pred.chunk(2, dim=1)
1007
+
1008
+ # perform guidance
1009
+ if self.do_classifier_free_guidance:
1010
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1011
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1012
+
1013
+ if self.do_classifier_free_guidance and guidance_rescale > 0.0:
1014
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1015
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
1016
+
1017
+ # compute the previous noisy sample x_t -> x_t-1
1018
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1019
+
1020
+ if callback_on_step_end is not None:
1021
+ callback_kwargs = {}
1022
+ for k in callback_on_step_end_tensor_inputs:
1023
+ callback_kwargs[k] = locals()[k]
1024
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1025
+
1026
+ latents = callback_outputs.pop("latents", latents)
1027
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1028
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1029
+ prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
1030
+ negative_prompt_embeds_2 = callback_outputs.pop(
1031
+ "negative_prompt_embeds_2", negative_prompt_embeds_2
1032
+ )
1033
+
1034
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1035
+ progress_bar.update()
1036
+
1037
+ if XLA_AVAILABLE:
1038
+ xm.mark_step()
1039
+
1040
+ if not output_type == "latent":
1041
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
1042
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1043
+ else:
1044
+ image = latents
1045
+ has_nsfw_concept = None
1046
+
1047
+ if has_nsfw_concept is None:
1048
+ do_denormalize = [True] * image.shape[0]
1049
+ else:
1050
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1051
+
1052
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1053
+
1054
+ # Offload all models
1055
+ self.maybe_free_model_hooks()
1056
+
1057
+ if not return_dict:
1058
+ return (image, has_nsfw_concept)
1059
+
1060
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)