diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1544 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import PIL.Image
19
+ import torch
20
+ from transformers import (
21
+ CLIPImageProcessor,
22
+ CLIPTextModel,
23
+ CLIPTextModelWithProjection,
24
+ CLIPTokenizer,
25
+ CLIPVisionModelWithProjection,
26
+ )
27
+
28
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
29
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
30
+ from ...loaders import (
31
+ FromSingleFileMixin,
32
+ IPAdapterMixin,
33
+ StableDiffusionXLLoraLoaderMixin,
34
+ TextualInversionLoaderMixin,
35
+ )
36
+ from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
37
+ from ...models.attention_processor import (
38
+ AttnProcessor2_0,
39
+ XFormersAttnProcessor,
40
+ )
41
+ from ...models.lora import adjust_lora_scale_text_encoder
42
+ from ...schedulers import KarrasDiffusionSchedulers
43
+ from ...utils import (
44
+ USE_PEFT_BACKEND,
45
+ is_invisible_watermark_available,
46
+ is_torch_xla_available,
47
+ logging,
48
+ replace_example_docstring,
49
+ scale_lora_layers,
50
+ unscale_lora_layers,
51
+ )
52
+ from ...utils.torch_utils import randn_tensor
53
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
54
+ from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
55
+ from .pag_utils import PAGMixin
56
+
57
+
58
+ if is_invisible_watermark_available():
59
+ from ..stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
60
+
61
+ if is_torch_xla_available():
62
+ import torch_xla.core.xla_model as xm
63
+
64
+ XLA_AVAILABLE = True
65
+ else:
66
+ XLA_AVAILABLE = False
67
+
68
+
69
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
70
+
71
+ EXAMPLE_DOC_STRING = """
72
+ Examples:
73
+ ```py
74
+ >>> import torch
75
+ >>> from diffusers import AutoPipelineForImage2Image
76
+ >>> from diffusers.utils import load_image
77
+
78
+ >>> pipe = AutoPipelineForImage2Image.from_pretrained(
79
+ ... "stabilityai/stable-diffusion-xl-refiner-1.0",
80
+ ... torch_dtype=torch.float16,
81
+ ... enable_pag=True,
82
+ ... )
83
+ >>> pipe = pipe.to("cuda")
84
+ >>> url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"
85
+
86
+ >>> init_image = load_image(url).convert("RGB")
87
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
88
+ >>> image = pipe(prompt, image=init_image, pag_scale=0.3).images[0]
89
+ ```
90
+ """
91
+
92
+
93
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
94
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
95
+ r"""
96
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
97
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
98
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
99
+
100
+ Args:
101
+ noise_cfg (`torch.Tensor`):
102
+ The predicted noise tensor for the guided diffusion process.
103
+ noise_pred_text (`torch.Tensor`):
104
+ The predicted noise tensor for the text-guided diffusion process.
105
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
106
+ A rescale factor applied to the noise predictions.
107
+
108
+ Returns:
109
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
110
+ """
111
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
112
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
113
+ # rescale the results from guidance (fixes overexposure)
114
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
115
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
116
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
117
+ return noise_cfg
118
+
119
+
120
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
121
+ def retrieve_latents(
122
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
123
+ ):
124
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
125
+ return encoder_output.latent_dist.sample(generator)
126
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
127
+ return encoder_output.latent_dist.mode()
128
+ elif hasattr(encoder_output, "latents"):
129
+ return encoder_output.latents
130
+ else:
131
+ raise AttributeError("Could not access latents of provided encoder_output")
132
+
133
+
134
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
135
+ def retrieve_timesteps(
136
+ scheduler,
137
+ num_inference_steps: Optional[int] = None,
138
+ device: Optional[Union[str, torch.device]] = None,
139
+ timesteps: Optional[List[int]] = None,
140
+ sigmas: Optional[List[float]] = None,
141
+ **kwargs,
142
+ ):
143
+ r"""
144
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
145
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
146
+
147
+ Args:
148
+ scheduler (`SchedulerMixin`):
149
+ The scheduler to get timesteps from.
150
+ num_inference_steps (`int`):
151
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
152
+ must be `None`.
153
+ device (`str` or `torch.device`, *optional*):
154
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
155
+ timesteps (`List[int]`, *optional*):
156
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
157
+ `num_inference_steps` and `sigmas` must be `None`.
158
+ sigmas (`List[float]`, *optional*):
159
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
160
+ `num_inference_steps` and `timesteps` must be `None`.
161
+
162
+ Returns:
163
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
164
+ second element is the number of inference steps.
165
+ """
166
+ if timesteps is not None and sigmas is not None:
167
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
168
+ if timesteps is not None:
169
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
170
+ if not accepts_timesteps:
171
+ raise ValueError(
172
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
173
+ f" timestep schedules. Please check whether you are using the correct scheduler."
174
+ )
175
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
176
+ timesteps = scheduler.timesteps
177
+ num_inference_steps = len(timesteps)
178
+ elif sigmas is not None:
179
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
180
+ if not accept_sigmas:
181
+ raise ValueError(
182
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
183
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
184
+ )
185
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
186
+ timesteps = scheduler.timesteps
187
+ num_inference_steps = len(timesteps)
188
+ else:
189
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
190
+ timesteps = scheduler.timesteps
191
+ return timesteps, num_inference_steps
192
+
193
+
194
+ class StableDiffusionXLPAGImg2ImgPipeline(
195
+ DiffusionPipeline,
196
+ StableDiffusionMixin,
197
+ TextualInversionLoaderMixin,
198
+ FromSingleFileMixin,
199
+ StableDiffusionXLLoraLoaderMixin,
200
+ IPAdapterMixin,
201
+ PAGMixin,
202
+ ):
203
+ r"""
204
+ Pipeline for text-to-image generation using Stable Diffusion XL.
205
+
206
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
207
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
208
+
209
+ The pipeline also inherits the following loading methods:
210
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
211
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
212
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
213
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
214
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
215
+
216
+ Args:
217
+ vae ([`AutoencoderKL`]):
218
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
219
+ text_encoder ([`CLIPTextModel`]):
220
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
221
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
222
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
223
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
224
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
225
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
226
+ specifically the
227
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
228
+ variant.
229
+ tokenizer (`CLIPTokenizer`):
230
+ Tokenizer of class
231
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
232
+ tokenizer_2 (`CLIPTokenizer`):
233
+ Second Tokenizer of class
234
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
235
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
236
+ scheduler ([`SchedulerMixin`]):
237
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
238
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
239
+ requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
240
+ Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
241
+ config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
242
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
243
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
244
+ `stabilityai/stable-diffusion-xl-base-1-0`.
245
+ add_watermarker (`bool`, *optional*):
246
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
247
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
248
+ watermarker will be used.
249
+ """
250
+
251
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
252
+ _optional_components = [
253
+ "tokenizer",
254
+ "tokenizer_2",
255
+ "text_encoder",
256
+ "text_encoder_2",
257
+ "image_encoder",
258
+ "feature_extractor",
259
+ ]
260
+ _callback_tensor_inputs = [
261
+ "latents",
262
+ "prompt_embeds",
263
+ "negative_prompt_embeds",
264
+ "add_text_embeds",
265
+ "add_time_ids",
266
+ "negative_pooled_prompt_embeds",
267
+ "add_neg_time_ids",
268
+ ]
269
+
270
+ def __init__(
271
+ self,
272
+ vae: AutoencoderKL,
273
+ text_encoder: CLIPTextModel,
274
+ text_encoder_2: CLIPTextModelWithProjection,
275
+ tokenizer: CLIPTokenizer,
276
+ tokenizer_2: CLIPTokenizer,
277
+ unet: UNet2DConditionModel,
278
+ scheduler: KarrasDiffusionSchedulers,
279
+ image_encoder: CLIPVisionModelWithProjection = None,
280
+ feature_extractor: CLIPImageProcessor = None,
281
+ requires_aesthetics_score: bool = False,
282
+ force_zeros_for_empty_prompt: bool = True,
283
+ add_watermarker: Optional[bool] = None,
284
+ pag_applied_layers: Union[str, List[str]] = "mid", # ["mid"], ["down.block_1", "up.block_0.attentions_0"]
285
+ ):
286
+ super().__init__()
287
+
288
+ self.register_modules(
289
+ vae=vae,
290
+ text_encoder=text_encoder,
291
+ text_encoder_2=text_encoder_2,
292
+ tokenizer=tokenizer,
293
+ tokenizer_2=tokenizer_2,
294
+ unet=unet,
295
+ image_encoder=image_encoder,
296
+ feature_extractor=feature_extractor,
297
+ scheduler=scheduler,
298
+ )
299
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
300
+ self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
301
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
302
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
303
+
304
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
305
+
306
+ if add_watermarker:
307
+ self.watermark = StableDiffusionXLWatermarker()
308
+ else:
309
+ self.watermark = None
310
+
311
+ self.set_pag_applied_layers(pag_applied_layers)
312
+
313
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
314
+ def encode_prompt(
315
+ self,
316
+ prompt: str,
317
+ prompt_2: Optional[str] = None,
318
+ device: Optional[torch.device] = None,
319
+ num_images_per_prompt: int = 1,
320
+ do_classifier_free_guidance: bool = True,
321
+ negative_prompt: Optional[str] = None,
322
+ negative_prompt_2: Optional[str] = None,
323
+ prompt_embeds: Optional[torch.Tensor] = None,
324
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
325
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
326
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
327
+ lora_scale: Optional[float] = None,
328
+ clip_skip: Optional[int] = None,
329
+ ):
330
+ r"""
331
+ Encodes the prompt into text encoder hidden states.
332
+
333
+ Args:
334
+ prompt (`str` or `List[str]`, *optional*):
335
+ prompt to be encoded
336
+ prompt_2 (`str` or `List[str]`, *optional*):
337
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
338
+ used in both text-encoders
339
+ device: (`torch.device`):
340
+ torch device
341
+ num_images_per_prompt (`int`):
342
+ number of images that should be generated per prompt
343
+ do_classifier_free_guidance (`bool`):
344
+ whether to use classifier free guidance or not
345
+ negative_prompt (`str` or `List[str]`, *optional*):
346
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
347
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
348
+ less than `1`).
349
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
350
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
351
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
352
+ prompt_embeds (`torch.Tensor`, *optional*):
353
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
354
+ provided, text embeddings will be generated from `prompt` input argument.
355
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
356
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
357
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
358
+ argument.
359
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
360
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
361
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
362
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
363
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
364
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
365
+ input argument.
366
+ lora_scale (`float`, *optional*):
367
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
368
+ clip_skip (`int`, *optional*):
369
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
370
+ the output of the pre-final layer will be used for computing the prompt embeddings.
371
+ """
372
+ device = device or self._execution_device
373
+
374
+ # set lora scale so that monkey patched LoRA
375
+ # function of text encoder can correctly access it
376
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
377
+ self._lora_scale = lora_scale
378
+
379
+ # dynamically adjust the LoRA scale
380
+ if self.text_encoder is not None:
381
+ if not USE_PEFT_BACKEND:
382
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
383
+ else:
384
+ scale_lora_layers(self.text_encoder, lora_scale)
385
+
386
+ if self.text_encoder_2 is not None:
387
+ if not USE_PEFT_BACKEND:
388
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
389
+ else:
390
+ scale_lora_layers(self.text_encoder_2, lora_scale)
391
+
392
+ prompt = [prompt] if isinstance(prompt, str) else prompt
393
+
394
+ if prompt is not None:
395
+ batch_size = len(prompt)
396
+ else:
397
+ batch_size = prompt_embeds.shape[0]
398
+
399
+ # Define tokenizers and text encoders
400
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
401
+ text_encoders = (
402
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
403
+ )
404
+
405
+ if prompt_embeds is None:
406
+ prompt_2 = prompt_2 or prompt
407
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
408
+
409
+ # textual inversion: process multi-vector tokens if necessary
410
+ prompt_embeds_list = []
411
+ prompts = [prompt, prompt_2]
412
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
413
+ if isinstance(self, TextualInversionLoaderMixin):
414
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
415
+
416
+ text_inputs = tokenizer(
417
+ prompt,
418
+ padding="max_length",
419
+ max_length=tokenizer.model_max_length,
420
+ truncation=True,
421
+ return_tensors="pt",
422
+ )
423
+
424
+ text_input_ids = text_inputs.input_ids
425
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
426
+
427
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
428
+ text_input_ids, untruncated_ids
429
+ ):
430
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
431
+ logger.warning(
432
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
433
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
434
+ )
435
+
436
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
437
+
438
+ # We are only ALWAYS interested in the pooled output of the final text encoder
439
+ pooled_prompt_embeds = prompt_embeds[0]
440
+ if clip_skip is None:
441
+ prompt_embeds = prompt_embeds.hidden_states[-2]
442
+ else:
443
+ # "2" because SDXL always indexes from the penultimate layer.
444
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
445
+
446
+ prompt_embeds_list.append(prompt_embeds)
447
+
448
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
449
+
450
+ # get unconditional embeddings for classifier free guidance
451
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
452
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
453
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
454
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
455
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
456
+ negative_prompt = negative_prompt or ""
457
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
458
+
459
+ # normalize str to list
460
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
461
+ negative_prompt_2 = (
462
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
463
+ )
464
+
465
+ uncond_tokens: List[str]
466
+ if prompt is not None and type(prompt) is not type(negative_prompt):
467
+ raise TypeError(
468
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
469
+ f" {type(prompt)}."
470
+ )
471
+ elif batch_size != len(negative_prompt):
472
+ raise ValueError(
473
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
474
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
475
+ " the batch size of `prompt`."
476
+ )
477
+ else:
478
+ uncond_tokens = [negative_prompt, negative_prompt_2]
479
+
480
+ negative_prompt_embeds_list = []
481
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
482
+ if isinstance(self, TextualInversionLoaderMixin):
483
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
484
+
485
+ max_length = prompt_embeds.shape[1]
486
+ uncond_input = tokenizer(
487
+ negative_prompt,
488
+ padding="max_length",
489
+ max_length=max_length,
490
+ truncation=True,
491
+ return_tensors="pt",
492
+ )
493
+
494
+ negative_prompt_embeds = text_encoder(
495
+ uncond_input.input_ids.to(device),
496
+ output_hidden_states=True,
497
+ )
498
+ # We are only ALWAYS interested in the pooled output of the final text encoder
499
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
500
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
501
+
502
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
503
+
504
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
505
+
506
+ if self.text_encoder_2 is not None:
507
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
508
+ else:
509
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
510
+
511
+ bs_embed, seq_len, _ = prompt_embeds.shape
512
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
513
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
514
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
515
+
516
+ if do_classifier_free_guidance:
517
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
518
+ seq_len = negative_prompt_embeds.shape[1]
519
+
520
+ if self.text_encoder_2 is not None:
521
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
522
+ else:
523
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
524
+
525
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
526
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
527
+
528
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
529
+ bs_embed * num_images_per_prompt, -1
530
+ )
531
+ if do_classifier_free_guidance:
532
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
533
+ bs_embed * num_images_per_prompt, -1
534
+ )
535
+
536
+ if self.text_encoder is not None:
537
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
538
+ # Retrieve the original scale by scaling back the LoRA layers
539
+ unscale_lora_layers(self.text_encoder, lora_scale)
540
+
541
+ if self.text_encoder_2 is not None:
542
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
543
+ # Retrieve the original scale by scaling back the LoRA layers
544
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
545
+
546
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
547
+
548
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
549
+ def prepare_extra_step_kwargs(self, generator, eta):
550
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
551
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
552
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
553
+ # and should be between [0, 1]
554
+
555
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
556
+ extra_step_kwargs = {}
557
+ if accepts_eta:
558
+ extra_step_kwargs["eta"] = eta
559
+
560
+ # check if the scheduler accepts generator
561
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
562
+ if accepts_generator:
563
+ extra_step_kwargs["generator"] = generator
564
+ return extra_step_kwargs
565
+
566
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.check_inputs
567
+ def check_inputs(
568
+ self,
569
+ prompt,
570
+ prompt_2,
571
+ strength,
572
+ num_inference_steps,
573
+ callback_steps,
574
+ negative_prompt=None,
575
+ negative_prompt_2=None,
576
+ prompt_embeds=None,
577
+ negative_prompt_embeds=None,
578
+ ip_adapter_image=None,
579
+ ip_adapter_image_embeds=None,
580
+ callback_on_step_end_tensor_inputs=None,
581
+ ):
582
+ if strength < 0 or strength > 1:
583
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
584
+ if num_inference_steps is None:
585
+ raise ValueError("`num_inference_steps` cannot be None.")
586
+ elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
587
+ raise ValueError(
588
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
589
+ f" {type(num_inference_steps)}."
590
+ )
591
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
592
+ raise ValueError(
593
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
594
+ f" {type(callback_steps)}."
595
+ )
596
+
597
+ if callback_on_step_end_tensor_inputs is not None and not all(
598
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
599
+ ):
600
+ raise ValueError(
601
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
602
+ )
603
+
604
+ if prompt is not None and prompt_embeds is not None:
605
+ raise ValueError(
606
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
607
+ " only forward one of the two."
608
+ )
609
+ elif prompt_2 is not None and prompt_embeds is not None:
610
+ raise ValueError(
611
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
612
+ " only forward one of the two."
613
+ )
614
+ elif prompt is None and prompt_embeds is None:
615
+ raise ValueError(
616
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
617
+ )
618
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
619
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
620
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
621
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
622
+
623
+ if negative_prompt is not None and negative_prompt_embeds is not None:
624
+ raise ValueError(
625
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
626
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
627
+ )
628
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
629
+ raise ValueError(
630
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
631
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
632
+ )
633
+
634
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
635
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
636
+ raise ValueError(
637
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
638
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
639
+ f" {negative_prompt_embeds.shape}."
640
+ )
641
+
642
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
643
+ raise ValueError(
644
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
645
+ )
646
+
647
+ if ip_adapter_image_embeds is not None:
648
+ if not isinstance(ip_adapter_image_embeds, list):
649
+ raise ValueError(
650
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
651
+ )
652
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
653
+ raise ValueError(
654
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
655
+ )
656
+
657
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
658
+ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
659
+ # get the original timestep using init_timestep
660
+ if denoising_start is None:
661
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
662
+ t_start = max(num_inference_steps - init_timestep, 0)
663
+
664
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
665
+ if hasattr(self.scheduler, "set_begin_index"):
666
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
667
+
668
+ return timesteps, num_inference_steps - t_start
669
+
670
+ else:
671
+ # Strength is irrelevant if we directly request a timestep to start at;
672
+ # that is, strength is determined by the denoising_start instead.
673
+ discrete_timestep_cutoff = int(
674
+ round(
675
+ self.scheduler.config.num_train_timesteps
676
+ - (denoising_start * self.scheduler.config.num_train_timesteps)
677
+ )
678
+ )
679
+
680
+ num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item()
681
+ if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
682
+ # if the scheduler is a 2nd order scheduler we might have to do +1
683
+ # because `num_inference_steps` might be even given that every timestep
684
+ # (except the highest one) is duplicated. If `num_inference_steps` is even it would
685
+ # mean that we cut the timesteps in the middle of the denoising step
686
+ # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
687
+ # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
688
+ num_inference_steps = num_inference_steps + 1
689
+
690
+ # because t_n+1 >= t_n, we slice the timesteps starting from the end
691
+ t_start = len(self.scheduler.timesteps) - num_inference_steps
692
+ timesteps = self.scheduler.timesteps[t_start:]
693
+ if hasattr(self.scheduler, "set_begin_index"):
694
+ self.scheduler.set_begin_index(t_start)
695
+ return timesteps, num_inference_steps
696
+
697
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
698
+ def prepare_latents(
699
+ self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
700
+ ):
701
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
702
+ raise ValueError(
703
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
704
+ )
705
+
706
+ latents_mean = latents_std = None
707
+ if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
708
+ latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
709
+ if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
710
+ latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
711
+
712
+ # Offload text encoder if `enable_model_cpu_offload` was enabled
713
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
714
+ self.text_encoder_2.to("cpu")
715
+ torch.cuda.empty_cache()
716
+
717
+ image = image.to(device=device, dtype=dtype)
718
+
719
+ batch_size = batch_size * num_images_per_prompt
720
+
721
+ if image.shape[1] == 4:
722
+ init_latents = image
723
+
724
+ else:
725
+ # make sure the VAE is in float32 mode, as it overflows in float16
726
+ if self.vae.config.force_upcast:
727
+ image = image.float()
728
+ self.vae.to(dtype=torch.float32)
729
+
730
+ if isinstance(generator, list) and len(generator) != batch_size:
731
+ raise ValueError(
732
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
733
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
734
+ )
735
+
736
+ elif isinstance(generator, list):
737
+ if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
738
+ image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
739
+ elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
740
+ raise ValueError(
741
+ f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
742
+ )
743
+
744
+ init_latents = [
745
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
746
+ for i in range(batch_size)
747
+ ]
748
+ init_latents = torch.cat(init_latents, dim=0)
749
+ else:
750
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
751
+
752
+ if self.vae.config.force_upcast:
753
+ self.vae.to(dtype)
754
+
755
+ init_latents = init_latents.to(dtype)
756
+ if latents_mean is not None and latents_std is not None:
757
+ latents_mean = latents_mean.to(device=device, dtype=dtype)
758
+ latents_std = latents_std.to(device=device, dtype=dtype)
759
+ init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
760
+ else:
761
+ init_latents = self.vae.config.scaling_factor * init_latents
762
+
763
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
764
+ # expand init_latents for batch_size
765
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
766
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
767
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
768
+ raise ValueError(
769
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
770
+ )
771
+ else:
772
+ init_latents = torch.cat([init_latents], dim=0)
773
+
774
+ if add_noise:
775
+ shape = init_latents.shape
776
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
777
+ # get latents
778
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
779
+
780
+ latents = init_latents
781
+
782
+ return latents
783
+
784
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
785
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
786
+ dtype = next(self.image_encoder.parameters()).dtype
787
+
788
+ if not isinstance(image, torch.Tensor):
789
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
790
+
791
+ image = image.to(device=device, dtype=dtype)
792
+ if output_hidden_states:
793
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
794
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
795
+ uncond_image_enc_hidden_states = self.image_encoder(
796
+ torch.zeros_like(image), output_hidden_states=True
797
+ ).hidden_states[-2]
798
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
799
+ num_images_per_prompt, dim=0
800
+ )
801
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
802
+ else:
803
+ image_embeds = self.image_encoder(image).image_embeds
804
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
805
+ uncond_image_embeds = torch.zeros_like(image_embeds)
806
+
807
+ return image_embeds, uncond_image_embeds
808
+
809
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
810
+ def prepare_ip_adapter_image_embeds(
811
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
812
+ ):
813
+ image_embeds = []
814
+ if do_classifier_free_guidance:
815
+ negative_image_embeds = []
816
+ if ip_adapter_image_embeds is None:
817
+ if not isinstance(ip_adapter_image, list):
818
+ ip_adapter_image = [ip_adapter_image]
819
+
820
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
821
+ raise ValueError(
822
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
823
+ )
824
+
825
+ for single_ip_adapter_image, image_proj_layer in zip(
826
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
827
+ ):
828
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
829
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
830
+ single_ip_adapter_image, device, 1, output_hidden_state
831
+ )
832
+
833
+ image_embeds.append(single_image_embeds[None, :])
834
+ if do_classifier_free_guidance:
835
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
836
+ else:
837
+ for single_image_embeds in ip_adapter_image_embeds:
838
+ if do_classifier_free_guidance:
839
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
840
+ negative_image_embeds.append(single_negative_image_embeds)
841
+ image_embeds.append(single_image_embeds)
842
+
843
+ ip_adapter_image_embeds = []
844
+ for i, single_image_embeds in enumerate(image_embeds):
845
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
846
+ if do_classifier_free_guidance:
847
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
848
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
849
+
850
+ single_image_embeds = single_image_embeds.to(device=device)
851
+ ip_adapter_image_embeds.append(single_image_embeds)
852
+
853
+ return ip_adapter_image_embeds
854
+
855
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
856
+ def _get_add_time_ids(
857
+ self,
858
+ original_size,
859
+ crops_coords_top_left,
860
+ target_size,
861
+ aesthetic_score,
862
+ negative_aesthetic_score,
863
+ negative_original_size,
864
+ negative_crops_coords_top_left,
865
+ negative_target_size,
866
+ dtype,
867
+ text_encoder_projection_dim=None,
868
+ ):
869
+ if self.config.requires_aesthetics_score:
870
+ add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
871
+ add_neg_time_ids = list(
872
+ negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
873
+ )
874
+ else:
875
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
876
+ add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
877
+
878
+ passed_add_embed_dim = (
879
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
880
+ )
881
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
882
+
883
+ if (
884
+ expected_add_embed_dim > passed_add_embed_dim
885
+ and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
886
+ ):
887
+ raise ValueError(
888
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
889
+ )
890
+ elif (
891
+ expected_add_embed_dim < passed_add_embed_dim
892
+ and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
893
+ ):
894
+ raise ValueError(
895
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
896
+ )
897
+ elif expected_add_embed_dim != passed_add_embed_dim:
898
+ raise ValueError(
899
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
900
+ )
901
+
902
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
903
+ add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
904
+
905
+ return add_time_ids, add_neg_time_ids
906
+
907
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
908
+ def upcast_vae(self):
909
+ dtype = self.vae.dtype
910
+ self.vae.to(dtype=torch.float32)
911
+ use_torch_2_0_or_xformers = isinstance(
912
+ self.vae.decoder.mid_block.attentions[0].processor,
913
+ (
914
+ AttnProcessor2_0,
915
+ XFormersAttnProcessor,
916
+ ),
917
+ )
918
+ # if xformers or torch_2_0 is used attention block does not need
919
+ # to be in float32 which can save lots of memory
920
+ if use_torch_2_0_or_xformers:
921
+ self.vae.post_quant_conv.to(dtype)
922
+ self.vae.decoder.conv_in.to(dtype)
923
+ self.vae.decoder.mid_block.to(dtype)
924
+
925
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
926
+ def get_guidance_scale_embedding(
927
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
928
+ ) -> torch.Tensor:
929
+ """
930
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
931
+
932
+ Args:
933
+ w (`torch.Tensor`):
934
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
935
+ embedding_dim (`int`, *optional*, defaults to 512):
936
+ Dimension of the embeddings to generate.
937
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
938
+ Data type of the generated embeddings.
939
+
940
+ Returns:
941
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
942
+ """
943
+ assert len(w.shape) == 1
944
+ w = w * 1000.0
945
+
946
+ half_dim = embedding_dim // 2
947
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
948
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
949
+ emb = w.to(dtype)[:, None] * emb[None, :]
950
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
951
+ if embedding_dim % 2 == 1: # zero pad
952
+ emb = torch.nn.functional.pad(emb, (0, 1))
953
+ assert emb.shape == (w.shape[0], embedding_dim)
954
+ return emb
955
+
956
+ @property
957
+ def guidance_scale(self):
958
+ return self._guidance_scale
959
+
960
+ @property
961
+ def guidance_rescale(self):
962
+ return self._guidance_rescale
963
+
964
+ @property
965
+ def clip_skip(self):
966
+ return self._clip_skip
967
+
968
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
969
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
970
+ # corresponds to doing no classifier free guidance.
971
+ @property
972
+ def do_classifier_free_guidance(self):
973
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
974
+
975
+ @property
976
+ def cross_attention_kwargs(self):
977
+ return self._cross_attention_kwargs
978
+
979
+ @property
980
+ def denoising_end(self):
981
+ return self._denoising_end
982
+
983
+ @property
984
+ def denoising_start(self):
985
+ return self._denoising_start
986
+
987
+ @property
988
+ def num_timesteps(self):
989
+ return self._num_timesteps
990
+
991
+ @property
992
+ def interrupt(self):
993
+ return self._interrupt
994
+
995
+ @torch.no_grad()
996
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
997
+ def __call__(
998
+ self,
999
+ prompt: Union[str, List[str]] = None,
1000
+ prompt_2: Optional[Union[str, List[str]]] = None,
1001
+ image: PipelineImageInput = None,
1002
+ strength: float = 0.3,
1003
+ num_inference_steps: int = 50,
1004
+ timesteps: List[int] = None,
1005
+ sigmas: List[float] = None,
1006
+ denoising_start: Optional[float] = None,
1007
+ denoising_end: Optional[float] = None,
1008
+ guidance_scale: float = 5.0,
1009
+ negative_prompt: Optional[Union[str, List[str]]] = None,
1010
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
1011
+ num_images_per_prompt: Optional[int] = 1,
1012
+ eta: float = 0.0,
1013
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1014
+ latents: Optional[torch.Tensor] = None,
1015
+ prompt_embeds: Optional[torch.Tensor] = None,
1016
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
1017
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
1018
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1019
+ ip_adapter_image: Optional[PipelineImageInput] = None,
1020
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
1021
+ output_type: Optional[str] = "pil",
1022
+ return_dict: bool = True,
1023
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1024
+ guidance_rescale: float = 0.0,
1025
+ original_size: Tuple[int, int] = None,
1026
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
1027
+ target_size: Tuple[int, int] = None,
1028
+ negative_original_size: Optional[Tuple[int, int]] = None,
1029
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
1030
+ negative_target_size: Optional[Tuple[int, int]] = None,
1031
+ aesthetic_score: float = 6.0,
1032
+ negative_aesthetic_score: float = 2.5,
1033
+ clip_skip: Optional[int] = None,
1034
+ callback_on_step_end: Optional[
1035
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
1036
+ ] = None,
1037
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
1038
+ pag_scale: float = 3.0,
1039
+ pag_adaptive_scale: float = 0.0,
1040
+ ):
1041
+ r"""
1042
+ Function invoked when calling the pipeline for generation.
1043
+
1044
+ Args:
1045
+ prompt (`str` or `List[str]`, *optional*):
1046
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
1047
+ instead.
1048
+ prompt_2 (`str` or `List[str]`, *optional*):
1049
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
1050
+ used in both text-encoders
1051
+ image (`torch.Tensor` or `PIL.Image.Image` or `np.ndarray` or `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[np.ndarray]`):
1052
+ The image(s) to modify with the pipeline.
1053
+ strength (`float`, *optional*, defaults to 0.3):
1054
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
1055
+ will be used as a starting point, adding more noise to it the larger the `strength`. The number of
1056
+ denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
1057
+ be maximum and the denoising process will run for the full number of iterations specified in
1058
+ `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. Note that in the case of
1059
+ `denoising_start` being declared as an integer, the value of `strength` will be ignored.
1060
+ num_inference_steps (`int`, *optional*, defaults to 50):
1061
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1062
+ expense of slower inference.
1063
+ timesteps (`List[int]`, *optional*):
1064
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
1065
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
1066
+ passed will be used. Must be in descending order.
1067
+ sigmas (`List[float]`, *optional*):
1068
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
1069
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
1070
+ will be used.
1071
+ denoising_start (`float`, *optional*):
1072
+ When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
1073
+ bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
1074
+ it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
1075
+ strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
1076
+ is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image
1077
+ Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
1078
+ denoising_end (`float`, *optional*):
1079
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
1080
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
1081
+ still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
1082
+ denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
1083
+ final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
1084
+ forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image
1085
+ Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality).
1086
+ guidance_scale (`float`, *optional*, defaults to 7.5):
1087
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
1088
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
1089
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1090
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
1091
+ usually at the expense of lower image quality.
1092
+ negative_prompt (`str` or `List[str]`, *optional*):
1093
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
1094
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
1095
+ less than `1`).
1096
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
1097
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
1098
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
1099
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1100
+ The number of images to generate per prompt.
1101
+ eta (`float`, *optional*, defaults to 0.0):
1102
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
1103
+ [`schedulers.DDIMScheduler`], will be ignored for others.
1104
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
1105
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1106
+ to make generation deterministic.
1107
+ latents (`torch.Tensor`, *optional*):
1108
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1109
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1110
+ tensor will ge generated by sampling using the supplied random `generator`.
1111
+ prompt_embeds (`torch.Tensor`, *optional*):
1112
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1113
+ provided, text embeddings will be generated from `prompt` input argument.
1114
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1115
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1116
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
1117
+ argument.
1118
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1119
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
1120
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
1121
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1122
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1123
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1124
+ input argument.
1125
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1126
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1127
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1128
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1129
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1130
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1131
+ output_type (`str`, *optional*, defaults to `"pil"`):
1132
+ The output format of the generate image. Choose between
1133
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
1134
+ return_dict (`bool`, *optional*, defaults to `True`):
1135
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
1136
+ plain tuple.
1137
+ cross_attention_kwargs (`dict`, *optional*):
1138
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1139
+ `self.processor` in
1140
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1141
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
1142
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
1143
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
1144
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
1145
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
1146
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1147
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1148
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1149
+ explained in section 2.2 of
1150
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1151
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1152
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1153
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1154
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1155
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1156
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1157
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1158
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1159
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1160
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1161
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
1162
+ micro-conditioning as explained in section 2.2 of
1163
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1164
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1165
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1166
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
1167
+ micro-conditioning as explained in section 2.2 of
1168
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1169
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1170
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1171
+ To negatively condition the generation process based on a target image resolution. It should be as same
1172
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
1173
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1174
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1175
+ aesthetic_score (`float`, *optional*, defaults to 6.0):
1176
+ Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
1177
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1178
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1179
+ negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
1180
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1181
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
1182
+ simulate an aesthetic score of the generated image by influencing the negative text condition.
1183
+ clip_skip (`int`, *optional*):
1184
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1185
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1186
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1187
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1188
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1189
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1190
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1191
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1192
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1193
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1194
+ `._callback_tensor_inputs` attribute of your pipeline class.
1195
+ pag_scale (`float`, *optional*, defaults to 3.0):
1196
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
1197
+ guidance will not be used.
1198
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
1199
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
1200
+ used.
1201
+
1202
+
1203
+ Examples:
1204
+
1205
+ Returns:
1206
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
1207
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
1208
+ `tuple. When returning a tuple, the first element is a list with the generated images.
1209
+ """
1210
+
1211
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1212
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1213
+
1214
+ # 1. Check inputs. Raise error if not correct
1215
+ self.check_inputs(
1216
+ prompt,
1217
+ prompt_2,
1218
+ strength,
1219
+ num_inference_steps,
1220
+ None,
1221
+ negative_prompt,
1222
+ negative_prompt_2,
1223
+ prompt_embeds,
1224
+ negative_prompt_embeds,
1225
+ ip_adapter_image,
1226
+ ip_adapter_image_embeds,
1227
+ callback_on_step_end_tensor_inputs,
1228
+ )
1229
+
1230
+ self._guidance_scale = guidance_scale
1231
+ self._guidance_rescale = guidance_rescale
1232
+ self._clip_skip = clip_skip
1233
+ self._cross_attention_kwargs = cross_attention_kwargs
1234
+ self._denoising_end = denoising_end
1235
+ self._denoising_start = denoising_start
1236
+ self._interrupt = False
1237
+ self._pag_scale = pag_scale
1238
+ self._pag_adaptive_scale = pag_adaptive_scale
1239
+
1240
+ # 2. Define call parameters
1241
+ if prompt is not None and isinstance(prompt, str):
1242
+ batch_size = 1
1243
+ elif prompt is not None and isinstance(prompt, list):
1244
+ batch_size = len(prompt)
1245
+ else:
1246
+ batch_size = prompt_embeds.shape[0]
1247
+
1248
+ device = self._execution_device
1249
+
1250
+ # 3. Encode input prompt
1251
+ text_encoder_lora_scale = (
1252
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1253
+ )
1254
+ (
1255
+ prompt_embeds,
1256
+ negative_prompt_embeds,
1257
+ pooled_prompt_embeds,
1258
+ negative_pooled_prompt_embeds,
1259
+ ) = self.encode_prompt(
1260
+ prompt=prompt,
1261
+ prompt_2=prompt_2,
1262
+ device=device,
1263
+ num_images_per_prompt=num_images_per_prompt,
1264
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1265
+ negative_prompt=negative_prompt,
1266
+ negative_prompt_2=negative_prompt_2,
1267
+ prompt_embeds=prompt_embeds,
1268
+ negative_prompt_embeds=negative_prompt_embeds,
1269
+ pooled_prompt_embeds=pooled_prompt_embeds,
1270
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1271
+ lora_scale=text_encoder_lora_scale,
1272
+ clip_skip=self.clip_skip,
1273
+ )
1274
+
1275
+ # 4. Preprocess image
1276
+ image = self.image_processor.preprocess(image)
1277
+
1278
+ # 5. Prepare timesteps
1279
+ def denoising_value_valid(dnv):
1280
+ return isinstance(dnv, float) and 0 < dnv < 1
1281
+
1282
+ timesteps, num_inference_steps = retrieve_timesteps(
1283
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1284
+ )
1285
+ timesteps, num_inference_steps = self.get_timesteps(
1286
+ num_inference_steps,
1287
+ strength,
1288
+ device,
1289
+ denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
1290
+ )
1291
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1292
+
1293
+ add_noise = True if self.denoising_start is None else False
1294
+
1295
+ # 6. Prepare latent variables
1296
+ if latents is None:
1297
+ latents = self.prepare_latents(
1298
+ image,
1299
+ latent_timestep,
1300
+ batch_size,
1301
+ num_images_per_prompt,
1302
+ prompt_embeds.dtype,
1303
+ device,
1304
+ generator,
1305
+ add_noise,
1306
+ )
1307
+ # 7. Prepare extra step kwargs.
1308
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1309
+
1310
+ height, width = latents.shape[-2:]
1311
+ height = height * self.vae_scale_factor
1312
+ width = width * self.vae_scale_factor
1313
+
1314
+ original_size = original_size or (height, width)
1315
+ target_size = target_size or (height, width)
1316
+
1317
+ # 8. Prepare added time ids & embeddings
1318
+ if negative_original_size is None:
1319
+ negative_original_size = original_size
1320
+ if negative_target_size is None:
1321
+ negative_target_size = target_size
1322
+
1323
+ add_text_embeds = pooled_prompt_embeds
1324
+ if self.text_encoder_2 is None:
1325
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1326
+ else:
1327
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1328
+
1329
+ add_time_ids, add_neg_time_ids = self._get_add_time_ids(
1330
+ original_size,
1331
+ crops_coords_top_left,
1332
+ target_size,
1333
+ aesthetic_score,
1334
+ negative_aesthetic_score,
1335
+ negative_original_size,
1336
+ negative_crops_coords_top_left,
1337
+ negative_target_size,
1338
+ dtype=prompt_embeds.dtype,
1339
+ text_encoder_projection_dim=text_encoder_projection_dim,
1340
+ )
1341
+ add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1342
+ add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1343
+
1344
+ if self.do_perturbed_attention_guidance:
1345
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
1346
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
1347
+ )
1348
+ add_text_embeds = self._prepare_perturbed_attention_guidance(
1349
+ add_text_embeds, negative_pooled_prompt_embeds, self.do_classifier_free_guidance
1350
+ )
1351
+ add_time_ids = self._prepare_perturbed_attention_guidance(
1352
+ add_time_ids, add_neg_time_ids, self.do_classifier_free_guidance
1353
+ )
1354
+ elif self.do_classifier_free_guidance:
1355
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1356
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1357
+ add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
1358
+
1359
+ prompt_embeds = prompt_embeds.to(device)
1360
+ add_text_embeds = add_text_embeds.to(device)
1361
+ add_time_ids = add_time_ids.to(device)
1362
+
1363
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1364
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
1365
+ ip_adapter_image,
1366
+ ip_adapter_image_embeds,
1367
+ device,
1368
+ batch_size * num_images_per_prompt,
1369
+ self.do_classifier_free_guidance,
1370
+ )
1371
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
1372
+ negative_image_embeds = None
1373
+ if self.do_classifier_free_guidance:
1374
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
1375
+
1376
+ if self.do_perturbed_attention_guidance:
1377
+ image_embeds = self._prepare_perturbed_attention_guidance(
1378
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
1379
+ )
1380
+ elif self.do_classifier_free_guidance:
1381
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
1382
+ image_embeds = image_embeds.to(device)
1383
+ ip_adapter_image_embeds[i] = image_embeds
1384
+
1385
+ # 9. Denoising loop
1386
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1387
+
1388
+ # 9.1 Apply denoising_end
1389
+ if (
1390
+ self.denoising_end is not None
1391
+ and self.denoising_start is not None
1392
+ and denoising_value_valid(self.denoising_end)
1393
+ and denoising_value_valid(self.denoising_start)
1394
+ and self.denoising_start >= self.denoising_end
1395
+ ):
1396
+ raise ValueError(
1397
+ f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
1398
+ + f" {self.denoising_end} when using type float."
1399
+ )
1400
+ elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
1401
+ discrete_timestep_cutoff = int(
1402
+ round(
1403
+ self.scheduler.config.num_train_timesteps
1404
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1405
+ )
1406
+ )
1407
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1408
+ timesteps = timesteps[:num_inference_steps]
1409
+
1410
+ # 9.2 Optionally get Guidance Scale Embedding
1411
+ timestep_cond = None
1412
+ if self.unet.config.time_cond_proj_dim is not None:
1413
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1414
+ timestep_cond = self.get_guidance_scale_embedding(
1415
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1416
+ ).to(device=device, dtype=latents.dtype)
1417
+
1418
+ if self.do_perturbed_attention_guidance:
1419
+ original_attn_proc = self.unet.attn_processors
1420
+ self._set_pag_attn_processor(
1421
+ pag_applied_layers=self.pag_applied_layers,
1422
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1423
+ )
1424
+
1425
+ self._num_timesteps = len(timesteps)
1426
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1427
+ for i, t in enumerate(timesteps):
1428
+ if self.interrupt:
1429
+ continue
1430
+
1431
+ # expand the latents if we are doing classifier free guidance
1432
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
1433
+
1434
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1435
+
1436
+ # predict the noise residual
1437
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1438
+ if ip_adapter_image_embeds is not None:
1439
+ added_cond_kwargs["image_embeds"] = ip_adapter_image_embeds
1440
+ noise_pred = self.unet(
1441
+ latent_model_input,
1442
+ t,
1443
+ encoder_hidden_states=prompt_embeds,
1444
+ timestep_cond=timestep_cond,
1445
+ cross_attention_kwargs=self.cross_attention_kwargs,
1446
+ added_cond_kwargs=added_cond_kwargs,
1447
+ return_dict=False,
1448
+ )[0]
1449
+
1450
+ # perform guidance
1451
+ if self.do_perturbed_attention_guidance:
1452
+ noise_pred, noise_pred_text = self._apply_perturbed_attention_guidance(
1453
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t, True
1454
+ )
1455
+ elif self.do_classifier_free_guidance:
1456
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1457
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1458
+
1459
+ if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1460
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1461
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1462
+
1463
+ # compute the previous noisy sample x_t -> x_t-1
1464
+ latents_dtype = latents.dtype
1465
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1466
+ if latents.dtype != latents_dtype:
1467
+ if torch.backends.mps.is_available():
1468
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1469
+ latents = latents.to(latents_dtype)
1470
+
1471
+ if callback_on_step_end is not None:
1472
+ callback_kwargs = {}
1473
+ for k in callback_on_step_end_tensor_inputs:
1474
+ callback_kwargs[k] = locals()[k]
1475
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1476
+
1477
+ latents = callback_outputs.pop("latents", latents)
1478
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1479
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1480
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1481
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1482
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1483
+ )
1484
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1485
+ add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
1486
+
1487
+ # call the callback, if provided
1488
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1489
+ progress_bar.update()
1490
+
1491
+ if XLA_AVAILABLE:
1492
+ xm.mark_step()
1493
+
1494
+ if not output_type == "latent":
1495
+ # make sure the VAE is in float32 mode, as it overflows in float16
1496
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1497
+
1498
+ if needs_upcasting:
1499
+ self.upcast_vae()
1500
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1501
+ elif latents.dtype != self.vae.dtype:
1502
+ if torch.backends.mps.is_available():
1503
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1504
+ self.vae = self.vae.to(latents.dtype)
1505
+
1506
+ # unscale/denormalize the latents
1507
+ # denormalize with the mean and std if available and not None
1508
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
1509
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
1510
+ if has_latents_mean and has_latents_std:
1511
+ latents_mean = (
1512
+ torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1513
+ )
1514
+ latents_std = (
1515
+ torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1516
+ )
1517
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
1518
+ else:
1519
+ latents = latents / self.vae.config.scaling_factor
1520
+
1521
+ image = self.vae.decode(latents, return_dict=False)[0]
1522
+
1523
+ # cast back to fp16 if needed
1524
+ if needs_upcasting:
1525
+ self.vae.to(dtype=torch.float16)
1526
+ else:
1527
+ image = latents
1528
+
1529
+ # apply watermark if available
1530
+ if self.watermark is not None:
1531
+ image = self.watermark.apply_watermark(image)
1532
+
1533
+ image = self.image_processor.postprocess(image, output_type=output_type)
1534
+
1535
+ # Offload all models
1536
+ self.maybe_free_model_hooks()
1537
+
1538
+ if self.do_perturbed_attention_guidance:
1539
+ self.unet.set_attn_processor(original_attn_proc)
1540
+
1541
+ if not return_dict:
1542
+ return (image,)
1543
+
1544
+ return StableDiffusionXLPipelineOutput(images=image)