diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -100,8 +100,10 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
|
|
100
100
|
)
|
101
101
|
self.register_to_config(latent_dim_scale=latent_dim_scale)
|
102
102
|
|
103
|
-
def prepare_latents(
|
104
|
-
batch_size,
|
103
|
+
def prepare_latents(
|
104
|
+
self, batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, scheduler
|
105
|
+
):
|
106
|
+
_, channels, height, width = image_embeddings.shape
|
105
107
|
latents_shape = (
|
106
108
|
batch_size * num_images_per_prompt,
|
107
109
|
4,
|
@@ -127,10 +129,10 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
|
|
127
129
|
do_classifier_free_guidance,
|
128
130
|
prompt=None,
|
129
131
|
negative_prompt=None,
|
130
|
-
prompt_embeds: Optional[torch.
|
131
|
-
prompt_embeds_pooled: Optional[torch.
|
132
|
-
negative_prompt_embeds: Optional[torch.
|
133
|
-
negative_prompt_embeds_pooled: Optional[torch.
|
132
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
133
|
+
prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
134
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
135
|
+
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
134
136
|
):
|
135
137
|
if prompt_embeds is None:
|
136
138
|
# get prompt text embeddings
|
@@ -279,22 +281,32 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
|
|
279
281
|
def num_timesteps(self):
|
280
282
|
return self._num_timesteps
|
281
283
|
|
284
|
+
def get_timestep_ratio_conditioning(self, t, alphas_cumprod):
|
285
|
+
s = torch.tensor([0.008])
|
286
|
+
clamp_range = [0, 1]
|
287
|
+
min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2
|
288
|
+
var = alphas_cumprod[t]
|
289
|
+
var = var.clamp(*clamp_range)
|
290
|
+
s, min_var = s.to(var.device), min_var.to(var.device)
|
291
|
+
ratio = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
|
292
|
+
return ratio
|
293
|
+
|
282
294
|
@torch.no_grad()
|
283
295
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
284
296
|
def __call__(
|
285
297
|
self,
|
286
|
-
image_embeddings: Union[torch.
|
298
|
+
image_embeddings: Union[torch.Tensor, List[torch.Tensor]],
|
287
299
|
prompt: Union[str, List[str]] = None,
|
288
300
|
num_inference_steps: int = 10,
|
289
301
|
guidance_scale: float = 0.0,
|
290
302
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
291
|
-
prompt_embeds: Optional[torch.
|
292
|
-
prompt_embeds_pooled: Optional[torch.
|
293
|
-
negative_prompt_embeds: Optional[torch.
|
294
|
-
negative_prompt_embeds_pooled: Optional[torch.
|
303
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
304
|
+
prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
305
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
306
|
+
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
295
307
|
num_images_per_prompt: int = 1,
|
296
308
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
297
|
-
latents: Optional[torch.
|
309
|
+
latents: Optional[torch.Tensor] = None,
|
298
310
|
output_type: Optional[str] = "pil",
|
299
311
|
return_dict: bool = True,
|
300
312
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
@@ -304,7 +316,7 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
|
|
304
316
|
Function invoked when calling the pipeline for generation.
|
305
317
|
|
306
318
|
Args:
|
307
|
-
image_embedding (`torch.
|
319
|
+
image_embedding (`torch.Tensor` or `List[torch.Tensor]`):
|
308
320
|
Image Embeddings either extracted from an image or generated by a Prior Model.
|
309
321
|
prompt (`str` or `List[str]`):
|
310
322
|
The prompt or prompts to guide the image generation.
|
@@ -320,26 +332,26 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
|
|
320
332
|
negative_prompt (`str` or `List[str]`, *optional*):
|
321
333
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
322
334
|
if `decoder_guidance_scale` is less than `1`).
|
323
|
-
prompt_embeds (`torch.
|
335
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
324
336
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
325
337
|
provided, text embeddings will be generated from `prompt` input argument.
|
326
|
-
prompt_embeds_pooled (`torch.
|
338
|
+
prompt_embeds_pooled (`torch.Tensor`, *optional*):
|
327
339
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
328
340
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
329
|
-
negative_prompt_embeds (`torch.
|
341
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
330
342
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
331
343
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
332
344
|
argument.
|
333
|
-
negative_prompt_embeds_pooled (`torch.
|
345
|
+
negative_prompt_embeds_pooled (`torch.Tensor`, *optional*):
|
334
346
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
335
|
-
weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt`
|
336
|
-
argument.
|
347
|
+
weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt`
|
348
|
+
input argument.
|
337
349
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
338
350
|
The number of images to generate per prompt.
|
339
351
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
340
352
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
341
353
|
to make generation deterministic.
|
342
|
-
latents (`torch.
|
354
|
+
latents (`torch.Tensor`, *optional*):
|
343
355
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
344
356
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
345
357
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -383,7 +395,19 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
|
|
383
395
|
)
|
384
396
|
if isinstance(image_embeddings, list):
|
385
397
|
image_embeddings = torch.cat(image_embeddings, dim=0)
|
386
|
-
|
398
|
+
|
399
|
+
if prompt is not None and isinstance(prompt, str):
|
400
|
+
batch_size = 1
|
401
|
+
elif prompt is not None and isinstance(prompt, list):
|
402
|
+
batch_size = len(prompt)
|
403
|
+
else:
|
404
|
+
batch_size = prompt_embeds.shape[0]
|
405
|
+
|
406
|
+
# Compute the effective number of images per prompt
|
407
|
+
# We must account for the fact that the image embeddings from the prior can be generated with num_images_per_prompt > 1
|
408
|
+
# This results in a case where a single prompt is associated with multiple image embeddings
|
409
|
+
# Divide the number of image embeddings by the batch size to determine if this is the case.
|
410
|
+
num_images_per_prompt = num_images_per_prompt * (image_embeddings.shape[0] // batch_size)
|
387
411
|
|
388
412
|
# 2. Encode caption
|
389
413
|
if prompt_embeds is None and negative_prompt_embeds is None:
|
@@ -417,13 +441,33 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
|
|
417
441
|
|
418
442
|
# 5. Prepare latents
|
419
443
|
latents = self.prepare_latents(
|
420
|
-
image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler
|
444
|
+
batch_size, image_embeddings, num_images_per_prompt, dtype, device, generator, latents, self.scheduler
|
421
445
|
)
|
422
446
|
|
447
|
+
if isinstance(self.scheduler, DDPMWuerstchenScheduler):
|
448
|
+
timesteps = timesteps[:-1]
|
449
|
+
else:
|
450
|
+
if hasattr(self.scheduler.config, "clip_sample") and self.scheduler.config.clip_sample:
|
451
|
+
self.scheduler.config.clip_sample = False # disample sample clipping
|
452
|
+
logger.warning(" set `clip_sample` to be False")
|
453
|
+
|
423
454
|
# 6. Run denoising loop
|
424
|
-
self.
|
425
|
-
|
426
|
-
|
455
|
+
if hasattr(self.scheduler, "betas"):
|
456
|
+
alphas = 1.0 - self.scheduler.betas
|
457
|
+
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
458
|
+
else:
|
459
|
+
alphas_cumprod = []
|
460
|
+
|
461
|
+
self._num_timesteps = len(timesteps)
|
462
|
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
463
|
+
if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
|
464
|
+
if len(alphas_cumprod) > 0:
|
465
|
+
timestep_ratio = self.get_timestep_ratio_conditioning(t.long().cpu(), alphas_cumprod)
|
466
|
+
timestep_ratio = timestep_ratio.expand(latents.size(0)).to(dtype).to(device)
|
467
|
+
else:
|
468
|
+
timestep_ratio = t.float().div(self.scheduler.timesteps[-1]).expand(latents.size(0)).to(dtype)
|
469
|
+
else:
|
470
|
+
timestep_ratio = t.expand(latents.size(0)).to(dtype)
|
427
471
|
|
428
472
|
# 7. Denoise latents
|
429
473
|
predicted_latents = self.decoder(
|
@@ -440,6 +484,8 @@ class StableCascadeDecoderPipeline(DiffusionPipeline):
|
|
440
484
|
predicted_latents = torch.lerp(predicted_latents_uncond, predicted_latents_text, self.guidance_scale)
|
441
485
|
|
442
486
|
# 9. Renoise latents to next timestep
|
487
|
+
if not isinstance(self.scheduler, DDPMWuerstchenScheduler):
|
488
|
+
timestep_ratio = t
|
443
489
|
latents = self.scheduler.step(
|
444
490
|
model_output=predicted_latents,
|
445
491
|
timestep=timestep_ratio,
|
@@ -31,7 +31,10 @@ TEXT2IMAGE_EXAMPLE_DOC_STRING = """
|
|
31
31
|
```py
|
32
32
|
>>> import torch
|
33
33
|
>>> from diffusers import StableCascadeCombinedPipeline
|
34
|
-
|
34
|
+
|
35
|
+
>>> pipe = StableCascadeCombinedPipeline.from_pretrained(
|
36
|
+
... "stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16
|
37
|
+
... )
|
35
38
|
>>> pipe.enable_model_cpu_offload()
|
36
39
|
>>> prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
37
40
|
>>> images = pipe(prompt=prompt)
|
@@ -68,6 +71,7 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
|
|
68
71
|
"""
|
69
72
|
|
70
73
|
_load_connected_pipes = True
|
74
|
+
_optional_components = ["prior_feature_extractor", "prior_image_encoder"]
|
71
75
|
|
72
76
|
def __init__(
|
73
77
|
self,
|
@@ -117,25 +121,25 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
|
|
117
121
|
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
|
118
122
|
self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
|
119
123
|
|
120
|
-
def enable_model_cpu_offload(self, gpu_id=
|
124
|
+
def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
|
121
125
|
r"""
|
122
126
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
123
127
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
124
128
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
125
129
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
126
130
|
"""
|
127
|
-
self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id)
|
128
|
-
self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id)
|
131
|
+
self.prior_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
|
132
|
+
self.decoder_pipe.enable_model_cpu_offload(gpu_id=gpu_id, device=device)
|
129
133
|
|
130
|
-
def enable_sequential_cpu_offload(self, gpu_id=
|
134
|
+
def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
|
131
135
|
r"""
|
132
136
|
Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗
|
133
137
|
Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a
|
134
138
|
GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis.
|
135
139
|
Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower.
|
136
140
|
"""
|
137
|
-
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
|
138
|
-
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
|
141
|
+
self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
|
142
|
+
self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
|
139
143
|
|
140
144
|
def progress_bar(self, iterable=None, total=None):
|
141
145
|
self.prior_pipe.progress_bar(iterable=iterable, total=total)
|
@@ -158,13 +162,13 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
|
|
158
162
|
num_inference_steps: int = 12,
|
159
163
|
decoder_guidance_scale: float = 0.0,
|
160
164
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
161
|
-
prompt_embeds: Optional[torch.
|
162
|
-
prompt_embeds_pooled: Optional[torch.
|
163
|
-
negative_prompt_embeds: Optional[torch.
|
164
|
-
negative_prompt_embeds_pooled: Optional[torch.
|
165
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
166
|
+
prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
167
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
168
|
+
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
165
169
|
num_images_per_prompt: int = 1,
|
166
170
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
167
|
-
latents: Optional[torch.
|
171
|
+
latents: Optional[torch.Tensor] = None,
|
168
172
|
output_type: Optional[str] = "pil",
|
169
173
|
return_dict: bool = True,
|
170
174
|
prior_callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
@@ -183,17 +187,17 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
|
|
183
187
|
negative_prompt (`str` or `List[str]`, *optional*):
|
184
188
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
185
189
|
if `guidance_scale` is less than `1`).
|
186
|
-
prompt_embeds (`torch.
|
190
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
187
191
|
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt
|
188
192
|
weighting. If not provided, text embeddings will be generated from `prompt` input argument.
|
189
|
-
prompt_embeds_pooled (`torch.
|
193
|
+
prompt_embeds_pooled (`torch.Tensor`, *optional*):
|
190
194
|
Pre-generated text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.* prompt
|
191
195
|
weighting. If not provided, text embeddings will be generated from `prompt` input argument.
|
192
|
-
negative_prompt_embeds (`torch.
|
196
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
193
197
|
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.*
|
194
198
|
prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt`
|
195
199
|
input argument.
|
196
|
-
negative_prompt_embeds_pooled (`torch.
|
200
|
+
negative_prompt_embeds_pooled (`torch.Tensor`, *optional*):
|
197
201
|
Pre-generated negative text embeddings for the prior. Can be used to easily tweak text inputs, *e.g.*
|
198
202
|
prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt`
|
199
203
|
input argument.
|
@@ -226,7 +230,7 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
|
|
226
230
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
227
231
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
228
232
|
to make generation deterministic.
|
229
|
-
latents (`torch.
|
233
|
+
latents (`torch.Tensor`, *optional*):
|
230
234
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
231
235
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
232
236
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -242,7 +246,7 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
|
|
242
246
|
prior_callback_on_step_end_tensor_inputs (`List`, *optional*):
|
243
247
|
The list of tensor inputs for the `prior_callback_on_step_end` function. The tensors specified in the
|
244
248
|
list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in
|
245
|
-
the `._callback_tensor_inputs` attribute of your
|
249
|
+
the `._callback_tensor_inputs` attribute of your pipeline class.
|
246
250
|
callback_on_step_end (`Callable`, *optional*):
|
247
251
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
248
252
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
@@ -251,7 +255,7 @@ class StableCascadeCombinedPipeline(DiffusionPipeline):
|
|
251
255
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
252
256
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
253
257
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
254
|
-
`._callback_tensor_inputs` attribute of your
|
258
|
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
255
259
|
|
256
260
|
Examples:
|
257
261
|
|
@@ -54,19 +54,19 @@ class StableCascadePriorPipelineOutput(BaseOutput):
|
|
54
54
|
Output class for WuerstchenPriorPipeline.
|
55
55
|
|
56
56
|
Args:
|
57
|
-
image_embeddings (`torch.
|
57
|
+
image_embeddings (`torch.Tensor` or `np.ndarray`)
|
58
58
|
Prior image embeddings for text prompt
|
59
|
-
prompt_embeds (`torch.
|
59
|
+
prompt_embeds (`torch.Tensor`):
|
60
60
|
Text embeddings for the prompt.
|
61
|
-
negative_prompt_embeds (`torch.
|
61
|
+
negative_prompt_embeds (`torch.Tensor`):
|
62
62
|
Text embeddings for the negative prompt.
|
63
63
|
"""
|
64
64
|
|
65
|
-
image_embeddings: Union[torch.
|
66
|
-
prompt_embeds: Union[torch.
|
67
|
-
prompt_embeds_pooled: Union[torch.
|
68
|
-
negative_prompt_embeds: Union[torch.
|
69
|
-
negative_prompt_embeds_pooled: Union[torch.
|
65
|
+
image_embeddings: Union[torch.Tensor, np.ndarray]
|
66
|
+
prompt_embeds: Union[torch.Tensor, np.ndarray]
|
67
|
+
prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]
|
68
|
+
negative_prompt_embeds: Union[torch.Tensor, np.ndarray]
|
69
|
+
negative_prompt_embeds_pooled: Union[torch.Tensor, np.ndarray]
|
70
70
|
|
71
71
|
|
72
72
|
class StableCascadePriorPipeline(DiffusionPipeline):
|
@@ -80,7 +80,8 @@ class StableCascadePriorPipeline(DiffusionPipeline):
|
|
80
80
|
prior ([`StableCascadeUNet`]):
|
81
81
|
The Stable Cascade prior to approximate the image embedding from the text and/or image embedding.
|
82
82
|
text_encoder ([`CLIPTextModelWithProjection`]):
|
83
|
-
Frozen text-encoder
|
83
|
+
Frozen text-encoder
|
84
|
+
([laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)).
|
84
85
|
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
85
86
|
Model that extracts features from generated images to be used as inputs for the `image_encoder`.
|
86
87
|
image_encoder ([`CLIPVisionModelWithProjection`]):
|
@@ -149,10 +150,10 @@ class StableCascadePriorPipeline(DiffusionPipeline):
|
|
149
150
|
do_classifier_free_guidance,
|
150
151
|
prompt=None,
|
151
152
|
negative_prompt=None,
|
152
|
-
prompt_embeds: Optional[torch.
|
153
|
-
prompt_embeds_pooled: Optional[torch.
|
154
|
-
negative_prompt_embeds: Optional[torch.
|
155
|
-
negative_prompt_embeds_pooled: Optional[torch.
|
153
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
154
|
+
prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
155
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
156
|
+
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
156
157
|
):
|
157
158
|
if prompt_embeds is None:
|
158
159
|
# get prompt text embeddings
|
@@ -352,7 +353,7 @@ class StableCascadePriorPipeline(DiffusionPipeline):
|
|
352
353
|
return self._num_timesteps
|
353
354
|
|
354
355
|
def get_timestep_ratio_conditioning(self, t, alphas_cumprod):
|
355
|
-
s = torch.tensor([0.
|
356
|
+
s = torch.tensor([0.008])
|
356
357
|
clamp_range = [0, 1]
|
357
358
|
min_var = torch.cos(s / (1 + s) * torch.pi * 0.5) ** 2
|
358
359
|
var = alphas_cumprod[t]
|
@@ -373,14 +374,14 @@ class StableCascadePriorPipeline(DiffusionPipeline):
|
|
373
374
|
timesteps: List[float] = None,
|
374
375
|
guidance_scale: float = 4.0,
|
375
376
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
376
|
-
prompt_embeds: Optional[torch.
|
377
|
-
prompt_embeds_pooled: Optional[torch.
|
378
|
-
negative_prompt_embeds: Optional[torch.
|
379
|
-
negative_prompt_embeds_pooled: Optional[torch.
|
380
|
-
image_embeds: Optional[torch.
|
377
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
378
|
+
prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
379
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
380
|
+
negative_prompt_embeds_pooled: Optional[torch.Tensor] = None,
|
381
|
+
image_embeds: Optional[torch.Tensor] = None,
|
381
382
|
num_images_per_prompt: Optional[int] = 1,
|
382
383
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
383
|
-
latents: Optional[torch.
|
384
|
+
latents: Optional[torch.Tensor] = None,
|
384
385
|
output_type: Optional[str] = "pt",
|
385
386
|
return_dict: bool = True,
|
386
387
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
@@ -408,29 +409,29 @@ class StableCascadePriorPipeline(DiffusionPipeline):
|
|
408
409
|
negative_prompt (`str` or `List[str]`, *optional*):
|
409
410
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
410
411
|
if `decoder_guidance_scale` is less than `1`).
|
411
|
-
prompt_embeds (`torch.
|
412
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
412
413
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
413
414
|
provided, text embeddings will be generated from `prompt` input argument.
|
414
|
-
prompt_embeds_pooled (`torch.
|
415
|
+
prompt_embeds_pooled (`torch.Tensor`, *optional*):
|
415
416
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
416
417
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
417
|
-
negative_prompt_embeds (`torch.
|
418
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
418
419
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
419
420
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
420
421
|
argument.
|
421
|
-
negative_prompt_embeds_pooled (`torch.
|
422
|
+
negative_prompt_embeds_pooled (`torch.Tensor`, *optional*):
|
422
423
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
423
|
-
weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt`
|
424
|
-
argument.
|
425
|
-
image_embeds (`torch.
|
426
|
-
Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting.
|
427
|
-
|
424
|
+
weighting. If not provided, negative_prompt_embeds_pooled will be generated from `negative_prompt`
|
425
|
+
input argument.
|
426
|
+
image_embeds (`torch.Tensor`, *optional*):
|
427
|
+
Pre-generated image embeddings. Can be used to easily tweak image inputs, *e.g.* prompt weighting. If
|
428
|
+
not provided, image embeddings will be generated from `image` input argument if existing.
|
428
429
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
429
430
|
The number of images to generate per prompt.
|
430
431
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
431
432
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
432
433
|
to make generation deterministic.
|
433
|
-
latents (`torch.
|
434
|
+
latents (`torch.Tensor`, *optional*):
|
434
435
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
435
436
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
436
437
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -452,9 +453,9 @@ class StableCascadePriorPipeline(DiffusionPipeline):
|
|
452
453
|
Examples:
|
453
454
|
|
454
455
|
Returns:
|
455
|
-
[`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if
|
456
|
-
|
457
|
-
|
456
|
+
[`StableCascadePriorPipelineOutput`] or `tuple` [`StableCascadePriorPipelineOutput`] if `return_dict` is
|
457
|
+
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated image
|
458
|
+
embeddings.
|
458
459
|
"""
|
459
460
|
|
460
461
|
# 0. Define commonly used variables
|
@@ -556,7 +557,7 @@ class StableCascadePriorPipeline(DiffusionPipeline):
|
|
556
557
|
if isinstance(self.scheduler, DDPMWuerstchenScheduler):
|
557
558
|
timesteps = timesteps[:-1]
|
558
559
|
else:
|
559
|
-
if self.scheduler.config.clip_sample:
|
560
|
+
if hasattr(self.scheduler.config, "clip_sample") and self.scheduler.config.clip_sample:
|
560
561
|
self.scheduler.config.clip_sample = False # disample sample clipping
|
561
562
|
logger.warning(" set `clip_sample` to be False")
|
562
563
|
# 6. Run denoising loop
|
@@ -113,7 +113,6 @@ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
|
113
113
|
from .pipeline_stable_diffusion import (
|
114
114
|
StableDiffusionPipeline,
|
115
115
|
StableDiffusionPipelineOutput,
|
116
|
-
StableDiffusionSafetyChecker,
|
117
116
|
)
|
118
117
|
from .pipeline_stable_diffusion_img2img import StableDiffusionImg2ImgPipeline
|
119
118
|
from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline
|
@@ -12,7 +12,7 @@
|
|
12
12
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
13
|
# See the License for the specific language governing permissions and
|
14
14
|
# limitations under the License.
|
15
|
-
"""
|
15
|
+
"""Conversion script for the Stable Diffusion checkpoints."""
|
16
16
|
|
17
17
|
import re
|
18
18
|
from contextlib import nullcontext
|
@@ -557,7 +557,7 @@ def convert_ldm_unet_checkpoint(
|
|
557
557
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
558
558
|
)
|
559
559
|
|
560
|
-
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
560
|
+
output_block_list = {k: sorted(v) for k, v in sorted(output_block_list.items())}
|
561
561
|
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
562
562
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
563
563
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
@@ -1153,6 +1153,8 @@ def download_from_original_stable_diffusion_ckpt(
|
|
1153
1153
|
controlnet: Optional[bool] = None,
|
1154
1154
|
adapter: Optional[bool] = None,
|
1155
1155
|
load_safety_checker: bool = True,
|
1156
|
+
safety_checker: Optional[StableDiffusionSafetyChecker] = None,
|
1157
|
+
feature_extractor: Optional[AutoFeatureExtractor] = None,
|
1156
1158
|
pipeline_class: DiffusionPipeline = None,
|
1157
1159
|
local_files_only=False,
|
1158
1160
|
vae_path=None,
|
@@ -1205,6 +1207,12 @@ def download_from_original_stable_diffusion_ckpt(
|
|
1205
1207
|
If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.
|
1206
1208
|
load_safety_checker (`bool`, *optional*, defaults to `True`):
|
1207
1209
|
Whether to load the safety checker or not. Defaults to `True`.
|
1210
|
+
safety_checker (`StableDiffusionSafetyChecker`, *optional*, defaults to `None`):
|
1211
|
+
Safety checker to use. If this parameter is `None`, the function will load a new instance of
|
1212
|
+
[StableDiffusionSafetyChecker] by itself, if needed.
|
1213
|
+
feature_extractor (`AutoFeatureExtractor`, *optional*, defaults to `None`):
|
1214
|
+
Feature extractor to use. If this parameter is `None`, the function will load a new instance of
|
1215
|
+
[AutoFeatureExtractor] by itself, if needed.
|
1208
1216
|
pipeline_class (`str`, *optional*, defaults to `None`):
|
1209
1217
|
The pipeline class to use. Pass `None` to determine automatically.
|
1210
1218
|
local_files_only (`bool`, *optional*, defaults to `False`):
|
@@ -1362,6 +1370,8 @@ def download_from_original_stable_diffusion_ckpt(
|
|
1362
1370
|
|
1363
1371
|
if "unet_config" in original_config["model"]["params"]:
|
1364
1372
|
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
|
1373
|
+
elif "network_config" in original_config["model"]["params"]:
|
1374
|
+
original_config["model"]["params"]["network_config"]["params"]["in_channels"] = num_in_channels
|
1365
1375
|
|
1366
1376
|
if (
|
1367
1377
|
"parameterization" in original_config["model"]["params"]
|
@@ -1530,8 +1540,8 @@ def download_from_original_stable_diffusion_ckpt(
|
|
1530
1540
|
unet=unet,
|
1531
1541
|
scheduler=scheduler,
|
1532
1542
|
controlnet=controlnet,
|
1533
|
-
safety_checker=
|
1534
|
-
feature_extractor=
|
1543
|
+
safety_checker=safety_checker,
|
1544
|
+
feature_extractor=feature_extractor,
|
1535
1545
|
)
|
1536
1546
|
if hasattr(pipe, "requires_safety_checker"):
|
1537
1547
|
pipe.requires_safety_checker = False
|
@@ -1551,8 +1561,8 @@ def download_from_original_stable_diffusion_ckpt(
|
|
1551
1561
|
unet=unet,
|
1552
1562
|
scheduler=scheduler,
|
1553
1563
|
low_res_scheduler=low_res_scheduler,
|
1554
|
-
safety_checker=
|
1555
|
-
feature_extractor=
|
1564
|
+
safety_checker=safety_checker,
|
1565
|
+
feature_extractor=feature_extractor,
|
1556
1566
|
)
|
1557
1567
|
|
1558
1568
|
else:
|
@@ -1562,8 +1572,8 @@ def download_from_original_stable_diffusion_ckpt(
|
|
1562
1572
|
tokenizer=tokenizer,
|
1563
1573
|
unet=unet,
|
1564
1574
|
scheduler=scheduler,
|
1565
|
-
safety_checker=
|
1566
|
-
feature_extractor=
|
1575
|
+
safety_checker=safety_checker,
|
1576
|
+
feature_extractor=feature_extractor,
|
1567
1577
|
)
|
1568
1578
|
if hasattr(pipe, "requires_safety_checker"):
|
1569
1579
|
pipe.requires_safety_checker = False
|
@@ -1684,9 +1694,6 @@ def download_from_original_stable_diffusion_ckpt(
|
|
1684
1694
|
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
1685
1695
|
"CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
|
1686
1696
|
)
|
1687
|
-
else:
|
1688
|
-
safety_checker = None
|
1689
|
-
feature_extractor = None
|
1690
1697
|
|
1691
1698
|
if controlnet:
|
1692
1699
|
pipe = pipeline_class(
|
@@ -1838,6 +1845,8 @@ def download_controlnet_from_original_ckpt(
|
|
1838
1845
|
while "state_dict" in checkpoint:
|
1839
1846
|
checkpoint = checkpoint["state_dict"]
|
1840
1847
|
|
1848
|
+
with open(original_config_file, "r") as f:
|
1849
|
+
original_config_file = f.read()
|
1841
1850
|
original_config = yaml.safe_load(original_config_file)
|
1842
1851
|
|
1843
1852
|
if num_in_channels is not None:
|
@@ -55,7 +55,7 @@ EXAMPLE_DOC_STRING = """
|
|
55
55
|
>>> from diffusers import FlaxStableDiffusionPipeline
|
56
56
|
|
57
57
|
>>> pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
|
58
|
-
... "runwayml/stable-diffusion-v1-5",
|
58
|
+
... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jax.numpy.bfloat16
|
59
59
|
... )
|
60
60
|
|
61
61
|
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
@@ -288,7 +288,7 @@ class OnnxStableDiffusionPipeline(DiffusionPipeline):
|
|
288
288
|
prompt (`str` or `List[str]`, *optional*):
|
289
289
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
290
290
|
instead.
|
291
|
-
image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.
|
291
|
+
image (`PIL.Image.Image` or List[`PIL.Image.Image`] or `torch.Tensor`):
|
292
292
|
`Image`, or tensor representing an image batch which will be upscaled. *
|
293
293
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
294
294
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
@@ -329,7 +329,7 @@ class OnnxStableDiffusionPipeline(DiffusionPipeline):
|
|
329
329
|
plain tuple.
|
330
330
|
callback (`Callable`, *optional*):
|
331
331
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
332
|
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.
|
332
|
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
333
333
|
callback_steps (`int`, *optional*, defaults to 1):
|
334
334
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
335
335
|
called at every step.
|
@@ -197,7 +197,7 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
|
|
197
197
|
)
|
198
198
|
|
199
199
|
# verify batch size of prompt and image are same if image is a list or tensor or numpy array
|
200
|
-
if isinstance(image, list
|
200
|
+
if isinstance(image, (list, np.ndarray)):
|
201
201
|
if prompt is not None and isinstance(prompt, str):
|
202
202
|
batch_size = 1
|
203
203
|
elif prompt is not None and isinstance(prompt, list):
|
@@ -395,7 +395,7 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
|
|
395
395
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
396
396
|
generator (`np.random.RandomState`, *optional*):
|
397
397
|
A np.random.RandomState to make generation deterministic.
|
398
|
-
latents (`torch.
|
398
|
+
latents (`torch.Tensor`, *optional*):
|
399
399
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
400
400
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
401
401
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -469,7 +469,7 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
|
|
469
469
|
|
470
470
|
latents = self.prepare_latents(
|
471
471
|
batch_size * num_images_per_prompt,
|
472
|
-
self.num_latent_channels,
|
472
|
+
self.config.num_latent_channels,
|
473
473
|
height,
|
474
474
|
width,
|
475
475
|
latents_dtype,
|
@@ -498,12 +498,12 @@ class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline):
|
|
498
498
|
|
499
499
|
# 7. Check that sizes of image and latents match
|
500
500
|
num_channels_image = image.shape[1]
|
501
|
-
if self.num_latent_channels + num_channels_image != self.num_unet_input_channels:
|
501
|
+
if self.config.num_latent_channels + num_channels_image != self.config.num_unet_input_channels:
|
502
502
|
raise ValueError(
|
503
503
|
"Incorrect configuration settings! The config of `pipeline.unet` expects"
|
504
|
-
f" {self.num_unet_input_channels} but received `num_channels_latents`: {self.num_latent_channels} +"
|
504
|
+
f" {self.config.num_unet_input_channels} but received `num_channels_latents`: {self.config.num_latent_channels} +"
|
505
505
|
f" `num_channels_image`: {num_channels_image} "
|
506
|
-
f" = {self.num_latent_channels + num_channels_image}. Please verify the config of"
|
506
|
+
f" = {self.config.num_latent_channels + num_channels_image}. Please verify the config of"
|
507
507
|
" `pipeline.unet` or your `image` input."
|
508
508
|
)
|
509
509
|
|