diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,832 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Any, Dict, List, Optional, Tuple, Union
15
+
16
+ import torch
17
+ from torch import nn
18
+
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...loaders.single_file_model import FromOriginalModelMixin
21
+ from ...utils import logging
22
+ from ..attention_processor import (
23
+ ADDED_KV_ATTENTION_PROCESSORS,
24
+ CROSS_ATTENTION_PROCESSORS,
25
+ AttentionProcessor,
26
+ AttnAddedKVProcessor,
27
+ AttnProcessor,
28
+ )
29
+ from ..embeddings import TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
30
+ from ..modeling_utils import ModelMixin
31
+ from ..unets.unet_2d_blocks import (
32
+ CrossAttnDownBlock2D,
33
+ DownBlock2D,
34
+ UNetMidBlock2DCrossAttn,
35
+ get_down_block,
36
+ )
37
+ from ..unets.unet_2d_condition import UNet2DConditionModel
38
+ from .controlnet import ControlNetConditioningEmbedding, ControlNetOutput, zero_module
39
+
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+
44
+ class QuickGELU(nn.Module):
45
+ """
46
+ Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
47
+ """
48
+
49
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
50
+ return input * torch.sigmoid(1.702 * input)
51
+
52
+
53
+ class ResidualAttentionMlp(nn.Module):
54
+ def __init__(self, d_model: int):
55
+ super().__init__()
56
+ self.c_fc = nn.Linear(d_model, d_model * 4)
57
+ self.gelu = QuickGELU()
58
+ self.c_proj = nn.Linear(d_model * 4, d_model)
59
+
60
+ def forward(self, x: torch.Tensor):
61
+ x = self.c_fc(x)
62
+ x = self.gelu(x)
63
+ x = self.c_proj(x)
64
+ return x
65
+
66
+
67
+ class ResidualAttentionBlock(nn.Module):
68
+ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
69
+ super().__init__()
70
+ self.attn = nn.MultiheadAttention(d_model, n_head)
71
+ self.ln_1 = nn.LayerNorm(d_model)
72
+ self.mlp = ResidualAttentionMlp(d_model)
73
+ self.ln_2 = nn.LayerNorm(d_model)
74
+ self.attn_mask = attn_mask
75
+
76
+ def attention(self, x: torch.Tensor):
77
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
78
+ return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
79
+
80
+ def forward(self, x: torch.Tensor):
81
+ x = x + self.attention(self.ln_1(x))
82
+ x = x + self.mlp(self.ln_2(x))
83
+ return x
84
+
85
+
86
+ class ControlNetUnionModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
87
+ """
88
+ A ControlNetUnion model.
89
+
90
+ Args:
91
+ in_channels (`int`, defaults to 4):
92
+ The number of channels in the input sample.
93
+ flip_sin_to_cos (`bool`, defaults to `True`):
94
+ Whether to flip the sin to cos in the time embedding.
95
+ freq_shift (`int`, defaults to 0):
96
+ The frequency shift to apply to the time embedding.
97
+ down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
98
+ The tuple of downsample blocks to use.
99
+ only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
100
+ block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
101
+ The tuple of output channels for each block.
102
+ layers_per_block (`int`, defaults to 2):
103
+ The number of layers per block.
104
+ downsample_padding (`int`, defaults to 1):
105
+ The padding to use for the downsampling convolution.
106
+ mid_block_scale_factor (`float`, defaults to 1):
107
+ The scale factor to use for the mid block.
108
+ act_fn (`str`, defaults to "silu"):
109
+ The activation function to use.
110
+ norm_num_groups (`int`, *optional*, defaults to 32):
111
+ The number of groups to use for the normalization. If None, normalization and activation layers is skipped
112
+ in post-processing.
113
+ norm_eps (`float`, defaults to 1e-5):
114
+ The epsilon to use for the normalization.
115
+ cross_attention_dim (`int`, defaults to 1280):
116
+ The dimension of the cross attention features.
117
+ transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
118
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
119
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
120
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
121
+ encoder_hid_dim (`int`, *optional*, defaults to None):
122
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
123
+ dimension to `cross_attention_dim`.
124
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
125
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
126
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
127
+ attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
128
+ The dimension of the attention heads.
129
+ use_linear_projection (`bool`, defaults to `False`):
130
+ class_embed_type (`str`, *optional*, defaults to `None`):
131
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
132
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
133
+ addition_embed_type (`str`, *optional*, defaults to `None`):
134
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
135
+ "text". "text" will use the `TextTimeEmbedding` layer.
136
+ num_class_embeds (`int`, *optional*, defaults to 0):
137
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
138
+ class conditioning with `class_embed_type` equal to `None`.
139
+ upcast_attention (`bool`, defaults to `False`):
140
+ resnet_time_scale_shift (`str`, defaults to `"default"`):
141
+ Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
142
+ projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
143
+ The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
144
+ `class_embed_type="projection"`.
145
+ controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
146
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
147
+ conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(48, 96, 192, 384)`):
148
+ The tuple of output channel for each block in the `conditioning_embedding` layer.
149
+ global_pool_conditions (`bool`, defaults to `False`):
150
+ """
151
+
152
+ _supports_gradient_checkpointing = True
153
+
154
+ @register_to_config
155
+ def __init__(
156
+ self,
157
+ in_channels: int = 4,
158
+ conditioning_channels: int = 3,
159
+ flip_sin_to_cos: bool = True,
160
+ freq_shift: int = 0,
161
+ down_block_types: Tuple[str, ...] = (
162
+ "CrossAttnDownBlock2D",
163
+ "CrossAttnDownBlock2D",
164
+ "CrossAttnDownBlock2D",
165
+ "DownBlock2D",
166
+ ),
167
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
168
+ block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
169
+ layers_per_block: int = 2,
170
+ downsample_padding: int = 1,
171
+ mid_block_scale_factor: float = 1,
172
+ act_fn: str = "silu",
173
+ norm_num_groups: Optional[int] = 32,
174
+ norm_eps: float = 1e-5,
175
+ cross_attention_dim: int = 1280,
176
+ transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
177
+ encoder_hid_dim: Optional[int] = None,
178
+ encoder_hid_dim_type: Optional[str] = None,
179
+ attention_head_dim: Union[int, Tuple[int, ...]] = 8,
180
+ num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
181
+ use_linear_projection: bool = False,
182
+ class_embed_type: Optional[str] = None,
183
+ addition_embed_type: Optional[str] = None,
184
+ addition_time_embed_dim: Optional[int] = None,
185
+ num_class_embeds: Optional[int] = None,
186
+ upcast_attention: bool = False,
187
+ resnet_time_scale_shift: str = "default",
188
+ projection_class_embeddings_input_dim: Optional[int] = None,
189
+ controlnet_conditioning_channel_order: str = "rgb",
190
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (48, 96, 192, 384),
191
+ global_pool_conditions: bool = False,
192
+ addition_embed_type_num_heads: int = 64,
193
+ num_control_type: int = 6,
194
+ num_trans_channel: int = 320,
195
+ num_trans_head: int = 8,
196
+ num_trans_layer: int = 1,
197
+ num_proj_channel: int = 320,
198
+ ):
199
+ super().__init__()
200
+
201
+ # If `num_attention_heads` is not defined (which is the case for most models)
202
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
203
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
204
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
205
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
206
+ # which is why we correct for the naming here.
207
+ num_attention_heads = num_attention_heads or attention_head_dim
208
+
209
+ # Check inputs
210
+ if len(block_out_channels) != len(down_block_types):
211
+ raise ValueError(
212
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
213
+ )
214
+
215
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
216
+ raise ValueError(
217
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
218
+ )
219
+
220
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
221
+ raise ValueError(
222
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
223
+ )
224
+
225
+ if isinstance(transformer_layers_per_block, int):
226
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
227
+
228
+ # input
229
+ conv_in_kernel = 3
230
+ conv_in_padding = (conv_in_kernel - 1) // 2
231
+ self.conv_in = nn.Conv2d(
232
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
233
+ )
234
+
235
+ # time
236
+ time_embed_dim = block_out_channels[0] * 4
237
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
238
+ timestep_input_dim = block_out_channels[0]
239
+ self.time_embedding = TimestepEmbedding(
240
+ timestep_input_dim,
241
+ time_embed_dim,
242
+ act_fn=act_fn,
243
+ )
244
+
245
+ if encoder_hid_dim_type is not None:
246
+ raise ValueError(f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None.")
247
+ else:
248
+ self.encoder_hid_proj = None
249
+
250
+ # class embedding
251
+ if class_embed_type is None and num_class_embeds is not None:
252
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
253
+ elif class_embed_type == "timestep":
254
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
255
+ elif class_embed_type == "identity":
256
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
257
+ elif class_embed_type == "projection":
258
+ if projection_class_embeddings_input_dim is None:
259
+ raise ValueError(
260
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
261
+ )
262
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
263
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
264
+ # 2. it projects from an arbitrary input dimension.
265
+ #
266
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
267
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
268
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
269
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
270
+ else:
271
+ self.class_embedding = None
272
+
273
+ if addition_embed_type == "text":
274
+ if encoder_hid_dim is not None:
275
+ text_time_embedding_from_dim = encoder_hid_dim
276
+ else:
277
+ text_time_embedding_from_dim = cross_attention_dim
278
+
279
+ self.add_embedding = TextTimeEmbedding(
280
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
281
+ )
282
+ elif addition_embed_type == "text_image":
283
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
284
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
285
+ # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
286
+ self.add_embedding = TextImageTimeEmbedding(
287
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
288
+ )
289
+ elif addition_embed_type == "text_time":
290
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
291
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
292
+
293
+ elif addition_embed_type is not None:
294
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
295
+
296
+ # control net conditioning embedding
297
+ self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
298
+ conditioning_embedding_channels=block_out_channels[0],
299
+ block_out_channels=conditioning_embedding_out_channels,
300
+ conditioning_channels=conditioning_channels,
301
+ )
302
+
303
+ task_scale_factor = num_trans_channel**0.5
304
+ self.task_embedding = nn.Parameter(task_scale_factor * torch.randn(num_control_type, num_trans_channel))
305
+ self.transformer_layes = nn.ModuleList(
306
+ [ResidualAttentionBlock(num_trans_channel, num_trans_head) for _ in range(num_trans_layer)]
307
+ )
308
+ self.spatial_ch_projs = zero_module(nn.Linear(num_trans_channel, num_proj_channel))
309
+ self.control_type_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
310
+ self.control_add_embedding = TimestepEmbedding(addition_time_embed_dim * num_control_type, time_embed_dim)
311
+
312
+ self.down_blocks = nn.ModuleList([])
313
+ self.controlnet_down_blocks = nn.ModuleList([])
314
+
315
+ if isinstance(only_cross_attention, bool):
316
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
317
+
318
+ if isinstance(attention_head_dim, int):
319
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
320
+
321
+ if isinstance(num_attention_heads, int):
322
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
323
+
324
+ # down
325
+ output_channel = block_out_channels[0]
326
+
327
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
328
+ controlnet_block = zero_module(controlnet_block)
329
+ self.controlnet_down_blocks.append(controlnet_block)
330
+
331
+ for i, down_block_type in enumerate(down_block_types):
332
+ input_channel = output_channel
333
+ output_channel = block_out_channels[i]
334
+ is_final_block = i == len(block_out_channels) - 1
335
+
336
+ down_block = get_down_block(
337
+ down_block_type,
338
+ num_layers=layers_per_block,
339
+ transformer_layers_per_block=transformer_layers_per_block[i],
340
+ in_channels=input_channel,
341
+ out_channels=output_channel,
342
+ temb_channels=time_embed_dim,
343
+ add_downsample=not is_final_block,
344
+ resnet_eps=norm_eps,
345
+ resnet_act_fn=act_fn,
346
+ resnet_groups=norm_num_groups,
347
+ cross_attention_dim=cross_attention_dim,
348
+ num_attention_heads=num_attention_heads[i],
349
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
350
+ downsample_padding=downsample_padding,
351
+ use_linear_projection=use_linear_projection,
352
+ only_cross_attention=only_cross_attention[i],
353
+ upcast_attention=upcast_attention,
354
+ resnet_time_scale_shift=resnet_time_scale_shift,
355
+ )
356
+ self.down_blocks.append(down_block)
357
+
358
+ for _ in range(layers_per_block):
359
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
360
+ controlnet_block = zero_module(controlnet_block)
361
+ self.controlnet_down_blocks.append(controlnet_block)
362
+
363
+ if not is_final_block:
364
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
365
+ controlnet_block = zero_module(controlnet_block)
366
+ self.controlnet_down_blocks.append(controlnet_block)
367
+
368
+ # mid
369
+ mid_block_channel = block_out_channels[-1]
370
+
371
+ controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
372
+ controlnet_block = zero_module(controlnet_block)
373
+ self.controlnet_mid_block = controlnet_block
374
+
375
+ self.mid_block = UNetMidBlock2DCrossAttn(
376
+ transformer_layers_per_block=transformer_layers_per_block[-1],
377
+ in_channels=mid_block_channel,
378
+ temb_channels=time_embed_dim,
379
+ resnet_eps=norm_eps,
380
+ resnet_act_fn=act_fn,
381
+ output_scale_factor=mid_block_scale_factor,
382
+ resnet_time_scale_shift=resnet_time_scale_shift,
383
+ cross_attention_dim=cross_attention_dim,
384
+ num_attention_heads=num_attention_heads[-1],
385
+ resnet_groups=norm_num_groups,
386
+ use_linear_projection=use_linear_projection,
387
+ upcast_attention=upcast_attention,
388
+ )
389
+
390
+ @classmethod
391
+ def from_unet(
392
+ cls,
393
+ unet: UNet2DConditionModel,
394
+ controlnet_conditioning_channel_order: str = "rgb",
395
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
396
+ load_weights_from_unet: bool = True,
397
+ ):
398
+ r"""
399
+ Instantiate a [`ControlNetUnionModel`] from [`UNet2DConditionModel`].
400
+
401
+ Parameters:
402
+ unet (`UNet2DConditionModel`):
403
+ The UNet model weights to copy to the [`ControlNetUnionModel`]. All configuration options are also
404
+ copied where applicable.
405
+ """
406
+ transformer_layers_per_block = (
407
+ unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
408
+ )
409
+ encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
410
+ encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
411
+ addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
412
+ addition_time_embed_dim = (
413
+ unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
414
+ )
415
+
416
+ controlnet = cls(
417
+ encoder_hid_dim=encoder_hid_dim,
418
+ encoder_hid_dim_type=encoder_hid_dim_type,
419
+ addition_embed_type=addition_embed_type,
420
+ addition_time_embed_dim=addition_time_embed_dim,
421
+ transformer_layers_per_block=transformer_layers_per_block,
422
+ in_channels=unet.config.in_channels,
423
+ flip_sin_to_cos=unet.config.flip_sin_to_cos,
424
+ freq_shift=unet.config.freq_shift,
425
+ down_block_types=unet.config.down_block_types,
426
+ only_cross_attention=unet.config.only_cross_attention,
427
+ block_out_channels=unet.config.block_out_channels,
428
+ layers_per_block=unet.config.layers_per_block,
429
+ downsample_padding=unet.config.downsample_padding,
430
+ mid_block_scale_factor=unet.config.mid_block_scale_factor,
431
+ act_fn=unet.config.act_fn,
432
+ norm_num_groups=unet.config.norm_num_groups,
433
+ norm_eps=unet.config.norm_eps,
434
+ cross_attention_dim=unet.config.cross_attention_dim,
435
+ attention_head_dim=unet.config.attention_head_dim,
436
+ num_attention_heads=unet.config.num_attention_heads,
437
+ use_linear_projection=unet.config.use_linear_projection,
438
+ class_embed_type=unet.config.class_embed_type,
439
+ num_class_embeds=unet.config.num_class_embeds,
440
+ upcast_attention=unet.config.upcast_attention,
441
+ resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
442
+ projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
443
+ controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
444
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
445
+ )
446
+
447
+ if load_weights_from_unet:
448
+ controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
449
+ controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
450
+ controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
451
+
452
+ if controlnet.class_embedding:
453
+ controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
454
+
455
+ controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict(), strict=False)
456
+ controlnet.mid_block.load_state_dict(unet.mid_block.state_dict(), strict=False)
457
+
458
+ return controlnet
459
+
460
+ @property
461
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
462
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
463
+ r"""
464
+ Returns:
465
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
466
+ indexed by its weight name.
467
+ """
468
+ # set recursively
469
+ processors = {}
470
+
471
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
472
+ if hasattr(module, "get_processor"):
473
+ processors[f"{name}.processor"] = module.get_processor()
474
+
475
+ for sub_name, child in module.named_children():
476
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
477
+
478
+ return processors
479
+
480
+ for name, module in self.named_children():
481
+ fn_recursive_add_processors(name, module, processors)
482
+
483
+ return processors
484
+
485
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
486
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
487
+ r"""
488
+ Sets the attention processor to use to compute attention.
489
+
490
+ Parameters:
491
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
492
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
493
+ for **all** `Attention` layers.
494
+
495
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
496
+ processor. This is strongly recommended when setting trainable attention processors.
497
+
498
+ """
499
+ count = len(self.attn_processors.keys())
500
+
501
+ if isinstance(processor, dict) and len(processor) != count:
502
+ raise ValueError(
503
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
504
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
505
+ )
506
+
507
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
508
+ if hasattr(module, "set_processor"):
509
+ if not isinstance(processor, dict):
510
+ module.set_processor(processor)
511
+ else:
512
+ module.set_processor(processor.pop(f"{name}.processor"))
513
+
514
+ for sub_name, child in module.named_children():
515
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
516
+
517
+ for name, module in self.named_children():
518
+ fn_recursive_attn_processor(name, module, processor)
519
+
520
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
521
+ def set_default_attn_processor(self):
522
+ """
523
+ Disables custom attention processors and sets the default attention implementation.
524
+ """
525
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
526
+ processor = AttnAddedKVProcessor()
527
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
528
+ processor = AttnProcessor()
529
+ else:
530
+ raise ValueError(
531
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
532
+ )
533
+
534
+ self.set_attn_processor(processor)
535
+
536
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
537
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
538
+ r"""
539
+ Enable sliced attention computation.
540
+
541
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
542
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
543
+
544
+ Args:
545
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
546
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
547
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
548
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
549
+ must be a multiple of `slice_size`.
550
+ """
551
+ sliceable_head_dims = []
552
+
553
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
554
+ if hasattr(module, "set_attention_slice"):
555
+ sliceable_head_dims.append(module.sliceable_head_dim)
556
+
557
+ for child in module.children():
558
+ fn_recursive_retrieve_sliceable_dims(child)
559
+
560
+ # retrieve number of attention layers
561
+ for module in self.children():
562
+ fn_recursive_retrieve_sliceable_dims(module)
563
+
564
+ num_sliceable_layers = len(sliceable_head_dims)
565
+
566
+ if slice_size == "auto":
567
+ # half the attention head size is usually a good trade-off between
568
+ # speed and memory
569
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
570
+ elif slice_size == "max":
571
+ # make smallest slice possible
572
+ slice_size = num_sliceable_layers * [1]
573
+
574
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
575
+
576
+ if len(slice_size) != len(sliceable_head_dims):
577
+ raise ValueError(
578
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
579
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
580
+ )
581
+
582
+ for i in range(len(slice_size)):
583
+ size = slice_size[i]
584
+ dim = sliceable_head_dims[i]
585
+ if size is not None and size > dim:
586
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
587
+
588
+ # Recursively walk through all the children.
589
+ # Any children which exposes the set_attention_slice method
590
+ # gets the message
591
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
592
+ if hasattr(module, "set_attention_slice"):
593
+ module.set_attention_slice(slice_size.pop())
594
+
595
+ for child in module.children():
596
+ fn_recursive_set_attention_slice(child, slice_size)
597
+
598
+ reversed_slice_size = list(reversed(slice_size))
599
+ for module in self.children():
600
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
601
+
602
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
603
+ if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
604
+ module.gradient_checkpointing = value
605
+
606
+ def forward(
607
+ self,
608
+ sample: torch.Tensor,
609
+ timestep: Union[torch.Tensor, float, int],
610
+ encoder_hidden_states: torch.Tensor,
611
+ controlnet_cond: List[torch.Tensor],
612
+ control_type: torch.Tensor,
613
+ control_type_idx: List[int],
614
+ conditioning_scale: float = 1.0,
615
+ class_labels: Optional[torch.Tensor] = None,
616
+ timestep_cond: Optional[torch.Tensor] = None,
617
+ attention_mask: Optional[torch.Tensor] = None,
618
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
619
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
620
+ guess_mode: bool = False,
621
+ return_dict: bool = True,
622
+ ) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
623
+ """
624
+ The [`ControlNetUnionModel`] forward method.
625
+
626
+ Args:
627
+ sample (`torch.Tensor`):
628
+ The noisy input tensor.
629
+ timestep (`Union[torch.Tensor, float, int]`):
630
+ The number of timesteps to denoise an input.
631
+ encoder_hidden_states (`torch.Tensor`):
632
+ The encoder hidden states.
633
+ controlnet_cond (`List[torch.Tensor]`):
634
+ The conditional input tensors.
635
+ control_type (`torch.Tensor`):
636
+ A tensor of shape `(batch, num_control_type)` with values `0` or `1` depending on whether the control
637
+ type is used.
638
+ control_type_idx (`List[int]`):
639
+ The indices of `control_type`.
640
+ conditioning_scale (`float`, defaults to `1.0`):
641
+ The scale factor for ControlNet outputs.
642
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
643
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
644
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
645
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
646
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
647
+ embeddings.
648
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
649
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
650
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
651
+ negative values to the attention scores corresponding to "discard" tokens.
652
+ added_cond_kwargs (`dict`):
653
+ Additional conditions for the Stable Diffusion XL UNet.
654
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
655
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
656
+ guess_mode (`bool`, defaults to `False`):
657
+ In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
658
+ you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
659
+ return_dict (`bool`, defaults to `True`):
660
+ Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
661
+
662
+ Returns:
663
+ [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
664
+ If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
665
+ returned where the first element is the sample tensor.
666
+ """
667
+ # check channel order
668
+ channel_order = self.config.controlnet_conditioning_channel_order
669
+
670
+ if channel_order != "rgb":
671
+ raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
672
+
673
+ # prepare attention_mask
674
+ if attention_mask is not None:
675
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
676
+ attention_mask = attention_mask.unsqueeze(1)
677
+
678
+ # 1. time
679
+ timesteps = timestep
680
+ if not torch.is_tensor(timesteps):
681
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
682
+ # This would be a good case for the `match` statement (Python 3.10+)
683
+ is_mps = sample.device.type == "mps"
684
+ if isinstance(timestep, float):
685
+ dtype = torch.float32 if is_mps else torch.float64
686
+ else:
687
+ dtype = torch.int32 if is_mps else torch.int64
688
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
689
+ elif len(timesteps.shape) == 0:
690
+ timesteps = timesteps[None].to(sample.device)
691
+
692
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
693
+ timesteps = timesteps.expand(sample.shape[0])
694
+
695
+ t_emb = self.time_proj(timesteps)
696
+
697
+ # timesteps does not contain any weights and will always return f32 tensors
698
+ # but time_embedding might actually be running in fp16. so we need to cast here.
699
+ # there might be better ways to encapsulate this.
700
+ t_emb = t_emb.to(dtype=sample.dtype)
701
+
702
+ emb = self.time_embedding(t_emb, timestep_cond)
703
+ aug_emb = None
704
+
705
+ if self.class_embedding is not None:
706
+ if class_labels is None:
707
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
708
+
709
+ if self.config.class_embed_type == "timestep":
710
+ class_labels = self.time_proj(class_labels)
711
+
712
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
713
+ emb = emb + class_emb
714
+
715
+ if self.config.addition_embed_type is not None:
716
+ if self.config.addition_embed_type == "text":
717
+ aug_emb = self.add_embedding(encoder_hidden_states)
718
+
719
+ elif self.config.addition_embed_type == "text_time":
720
+ if "text_embeds" not in added_cond_kwargs:
721
+ raise ValueError(
722
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
723
+ )
724
+ text_embeds = added_cond_kwargs.get("text_embeds")
725
+ if "time_ids" not in added_cond_kwargs:
726
+ raise ValueError(
727
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
728
+ )
729
+ time_ids = added_cond_kwargs.get("time_ids")
730
+ time_embeds = self.add_time_proj(time_ids.flatten())
731
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
732
+
733
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
734
+ add_embeds = add_embeds.to(emb.dtype)
735
+ aug_emb = self.add_embedding(add_embeds)
736
+
737
+ control_embeds = self.control_type_proj(control_type.flatten())
738
+ control_embeds = control_embeds.reshape((t_emb.shape[0], -1))
739
+ control_embeds = control_embeds.to(emb.dtype)
740
+ control_emb = self.control_add_embedding(control_embeds)
741
+ emb = emb + control_emb
742
+ emb = emb + aug_emb if aug_emb is not None else emb
743
+
744
+ # 2. pre-process
745
+ sample = self.conv_in(sample)
746
+
747
+ inputs = []
748
+ condition_list = []
749
+
750
+ for cond, control_idx in zip(controlnet_cond, control_type_idx):
751
+ condition = self.controlnet_cond_embedding(cond)
752
+ feat_seq = torch.mean(condition, dim=(2, 3))
753
+ feat_seq = feat_seq + self.task_embedding[control_idx]
754
+ inputs.append(feat_seq.unsqueeze(1))
755
+ condition_list.append(condition)
756
+
757
+ condition = sample
758
+ feat_seq = torch.mean(condition, dim=(2, 3))
759
+ inputs.append(feat_seq.unsqueeze(1))
760
+ condition_list.append(condition)
761
+
762
+ x = torch.cat(inputs, dim=1)
763
+ for layer in self.transformer_layes:
764
+ x = layer(x)
765
+
766
+ controlnet_cond_fuser = sample * 0.0
767
+ for idx, condition in enumerate(condition_list[:-1]):
768
+ alpha = self.spatial_ch_projs(x[:, idx])
769
+ alpha = alpha.unsqueeze(-1).unsqueeze(-1)
770
+ controlnet_cond_fuser += condition + alpha
771
+
772
+ sample = sample + controlnet_cond_fuser
773
+
774
+ # 3. down
775
+ down_block_res_samples = (sample,)
776
+ for downsample_block in self.down_blocks:
777
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
778
+ sample, res_samples = downsample_block(
779
+ hidden_states=sample,
780
+ temb=emb,
781
+ encoder_hidden_states=encoder_hidden_states,
782
+ attention_mask=attention_mask,
783
+ cross_attention_kwargs=cross_attention_kwargs,
784
+ )
785
+ else:
786
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
787
+
788
+ down_block_res_samples += res_samples
789
+
790
+ # 4. mid
791
+ if self.mid_block is not None:
792
+ sample = self.mid_block(
793
+ sample,
794
+ emb,
795
+ encoder_hidden_states=encoder_hidden_states,
796
+ attention_mask=attention_mask,
797
+ cross_attention_kwargs=cross_attention_kwargs,
798
+ )
799
+
800
+ # 5. Control net blocks
801
+ controlnet_down_block_res_samples = ()
802
+
803
+ for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
804
+ down_block_res_sample = controlnet_block(down_block_res_sample)
805
+ controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
806
+
807
+ down_block_res_samples = controlnet_down_block_res_samples
808
+
809
+ mid_block_res_sample = self.controlnet_mid_block(sample)
810
+
811
+ # 6. scaling
812
+ if guess_mode and not self.config.global_pool_conditions:
813
+ scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
814
+ scales = scales * conditioning_scale
815
+ down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
816
+ mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
817
+ else:
818
+ down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
819
+ mid_block_res_sample = mid_block_res_sample * conditioning_scale
820
+
821
+ if self.config.global_pool_conditions:
822
+ down_block_res_samples = [
823
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
824
+ ]
825
+ mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
826
+
827
+ if not return_dict:
828
+ return (down_block_res_samples, mid_block_res_sample)
829
+
830
+ return ControlNetOutput(
831
+ down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
832
+ )