diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,461 @@
1
+ # Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Any, Dict, List, Optional, Tuple, Union
15
+
16
+ import torch
17
+ import torch.nn as nn
18
+ import torch.nn.functional as F
19
+
20
+ from ...configuration_utils import ConfigMixin, register_to_config
21
+ from ...loaders import FromOriginalModelMixin, PeftAdapterMixin, SD3Transformer2DLoadersMixin
22
+ from ...models.attention import FeedForward, JointTransformerBlock
23
+ from ...models.attention_processor import (
24
+ Attention,
25
+ AttentionProcessor,
26
+ FusedJointAttnProcessor2_0,
27
+ JointAttnProcessor2_0,
28
+ )
29
+ from ...models.modeling_utils import ModelMixin
30
+ from ...models.normalization import AdaLayerNormContinuous, AdaLayerNormZero
31
+ from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
32
+ from ...utils.torch_utils import maybe_allow_in_graph
33
+ from ..embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
34
+ from ..modeling_outputs import Transformer2DModelOutput
35
+
36
+
37
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
+
39
+
40
+ @maybe_allow_in_graph
41
+ class SD3SingleTransformerBlock(nn.Module):
42
+ r"""
43
+ A Single Transformer block as part of the MMDiT architecture, used in Stable Diffusion 3 ControlNet.
44
+
45
+ Reference: https://arxiv.org/abs/2403.03206
46
+
47
+ Parameters:
48
+ dim (`int`): The number of channels in the input and output.
49
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
50
+ attention_head_dim (`int`): The number of channels in each head.
51
+ """
52
+
53
+ def __init__(
54
+ self,
55
+ dim: int,
56
+ num_attention_heads: int,
57
+ attention_head_dim: int,
58
+ ):
59
+ super().__init__()
60
+
61
+ self.norm1 = AdaLayerNormZero(dim)
62
+
63
+ if hasattr(F, "scaled_dot_product_attention"):
64
+ processor = JointAttnProcessor2_0()
65
+ else:
66
+ raise ValueError(
67
+ "The current PyTorch version does not support the `scaled_dot_product_attention` function."
68
+ )
69
+
70
+ self.attn = Attention(
71
+ query_dim=dim,
72
+ dim_head=attention_head_dim,
73
+ heads=num_attention_heads,
74
+ out_dim=dim,
75
+ bias=True,
76
+ processor=processor,
77
+ eps=1e-6,
78
+ )
79
+
80
+ self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
81
+ self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
82
+
83
+ def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor):
84
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
85
+ # Attention.
86
+ attn_output = self.attn(
87
+ hidden_states=norm_hidden_states,
88
+ encoder_hidden_states=None,
89
+ )
90
+
91
+ # Process attention outputs for the `hidden_states`.
92
+ attn_output = gate_msa.unsqueeze(1) * attn_output
93
+ hidden_states = hidden_states + attn_output
94
+
95
+ norm_hidden_states = self.norm2(hidden_states)
96
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
97
+
98
+ ff_output = self.ff(norm_hidden_states)
99
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
100
+
101
+ hidden_states = hidden_states + ff_output
102
+
103
+ return hidden_states
104
+
105
+
106
+ class SD3Transformer2DModel(
107
+ ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, SD3Transformer2DLoadersMixin
108
+ ):
109
+ """
110
+ The Transformer model introduced in Stable Diffusion 3.
111
+
112
+ Reference: https://arxiv.org/abs/2403.03206
113
+
114
+ Parameters:
115
+ sample_size (`int`): The width of the latent images. This is fixed during training since
116
+ it is used to learn a number of position embeddings.
117
+ patch_size (`int`): Patch size to turn the input data into small patches.
118
+ in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
119
+ num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
120
+ attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
121
+ num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
122
+ cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
123
+ caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
124
+ pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
125
+ out_channels (`int`, defaults to 16): Number of output channels.
126
+
127
+ """
128
+
129
+ _supports_gradient_checkpointing = True
130
+
131
+ @register_to_config
132
+ def __init__(
133
+ self,
134
+ sample_size: int = 128,
135
+ patch_size: int = 2,
136
+ in_channels: int = 16,
137
+ num_layers: int = 18,
138
+ attention_head_dim: int = 64,
139
+ num_attention_heads: int = 18,
140
+ joint_attention_dim: int = 4096,
141
+ caption_projection_dim: int = 1152,
142
+ pooled_projection_dim: int = 2048,
143
+ out_channels: int = 16,
144
+ pos_embed_max_size: int = 96,
145
+ dual_attention_layers: Tuple[
146
+ int, ...
147
+ ] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
148
+ qk_norm: Optional[str] = None,
149
+ ):
150
+ super().__init__()
151
+ default_out_channels = in_channels
152
+ self.out_channels = out_channels if out_channels is not None else default_out_channels
153
+ self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
154
+
155
+ self.pos_embed = PatchEmbed(
156
+ height=self.config.sample_size,
157
+ width=self.config.sample_size,
158
+ patch_size=self.config.patch_size,
159
+ in_channels=self.config.in_channels,
160
+ embed_dim=self.inner_dim,
161
+ pos_embed_max_size=pos_embed_max_size, # hard-code for now.
162
+ )
163
+ self.time_text_embed = CombinedTimestepTextProjEmbeddings(
164
+ embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
165
+ )
166
+ self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
167
+
168
+ # `attention_head_dim` is doubled to account for the mixing.
169
+ # It needs to crafted when we get the actual checkpoints.
170
+ self.transformer_blocks = nn.ModuleList(
171
+ [
172
+ JointTransformerBlock(
173
+ dim=self.inner_dim,
174
+ num_attention_heads=self.config.num_attention_heads,
175
+ attention_head_dim=self.config.attention_head_dim,
176
+ context_pre_only=i == num_layers - 1,
177
+ qk_norm=qk_norm,
178
+ use_dual_attention=True if i in dual_attention_layers else False,
179
+ )
180
+ for i in range(self.config.num_layers)
181
+ ]
182
+ )
183
+
184
+ self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
185
+ self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
186
+
187
+ self.gradient_checkpointing = False
188
+
189
+ # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
190
+ def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
191
+ """
192
+ Sets the attention processor to use [feed forward
193
+ chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
194
+
195
+ Parameters:
196
+ chunk_size (`int`, *optional*):
197
+ The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
198
+ over each tensor of dim=`dim`.
199
+ dim (`int`, *optional*, defaults to `0`):
200
+ The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
201
+ or dim=1 (sequence length).
202
+ """
203
+ if dim not in [0, 1]:
204
+ raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
205
+
206
+ # By default chunk size is 1
207
+ chunk_size = chunk_size or 1
208
+
209
+ def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
210
+ if hasattr(module, "set_chunk_feed_forward"):
211
+ module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
212
+
213
+ for child in module.children():
214
+ fn_recursive_feed_forward(child, chunk_size, dim)
215
+
216
+ for module in self.children():
217
+ fn_recursive_feed_forward(module, chunk_size, dim)
218
+
219
+ # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
220
+ def disable_forward_chunking(self):
221
+ def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
222
+ if hasattr(module, "set_chunk_feed_forward"):
223
+ module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
224
+
225
+ for child in module.children():
226
+ fn_recursive_feed_forward(child, chunk_size, dim)
227
+
228
+ for module in self.children():
229
+ fn_recursive_feed_forward(module, None, 0)
230
+
231
+ @property
232
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
233
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
234
+ r"""
235
+ Returns:
236
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
237
+ indexed by its weight name.
238
+ """
239
+ # set recursively
240
+ processors = {}
241
+
242
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
243
+ if hasattr(module, "get_processor"):
244
+ processors[f"{name}.processor"] = module.get_processor()
245
+
246
+ for sub_name, child in module.named_children():
247
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
248
+
249
+ return processors
250
+
251
+ for name, module in self.named_children():
252
+ fn_recursive_add_processors(name, module, processors)
253
+
254
+ return processors
255
+
256
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
257
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
258
+ r"""
259
+ Sets the attention processor to use to compute attention.
260
+
261
+ Parameters:
262
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
263
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
264
+ for **all** `Attention` layers.
265
+
266
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
267
+ processor. This is strongly recommended when setting trainable attention processors.
268
+
269
+ """
270
+ count = len(self.attn_processors.keys())
271
+
272
+ if isinstance(processor, dict) and len(processor) != count:
273
+ raise ValueError(
274
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
275
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
276
+ )
277
+
278
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
279
+ if hasattr(module, "set_processor"):
280
+ if not isinstance(processor, dict):
281
+ module.set_processor(processor)
282
+ else:
283
+ module.set_processor(processor.pop(f"{name}.processor"))
284
+
285
+ for sub_name, child in module.named_children():
286
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
287
+
288
+ for name, module in self.named_children():
289
+ fn_recursive_attn_processor(name, module, processor)
290
+
291
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0
292
+ def fuse_qkv_projections(self):
293
+ """
294
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
295
+ are fused. For cross-attention modules, key and value projection matrices are fused.
296
+
297
+ <Tip warning={true}>
298
+
299
+ This API is 🧪 experimental.
300
+
301
+ </Tip>
302
+ """
303
+ self.original_attn_processors = None
304
+
305
+ for _, attn_processor in self.attn_processors.items():
306
+ if "Added" in str(attn_processor.__class__.__name__):
307
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
308
+
309
+ self.original_attn_processors = self.attn_processors
310
+
311
+ for module in self.modules():
312
+ if isinstance(module, Attention):
313
+ module.fuse_projections(fuse=True)
314
+
315
+ self.set_attn_processor(FusedJointAttnProcessor2_0())
316
+
317
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
318
+ def unfuse_qkv_projections(self):
319
+ """Disables the fused QKV projection if enabled.
320
+
321
+ <Tip warning={true}>
322
+
323
+ This API is 🧪 experimental.
324
+
325
+ </Tip>
326
+
327
+ """
328
+ if self.original_attn_processors is not None:
329
+ self.set_attn_processor(self.original_attn_processors)
330
+
331
+ def _set_gradient_checkpointing(self, module, value=False):
332
+ if hasattr(module, "gradient_checkpointing"):
333
+ module.gradient_checkpointing = value
334
+
335
+ def forward(
336
+ self,
337
+ hidden_states: torch.FloatTensor,
338
+ encoder_hidden_states: torch.FloatTensor = None,
339
+ pooled_projections: torch.FloatTensor = None,
340
+ timestep: torch.LongTensor = None,
341
+ block_controlnet_hidden_states: List = None,
342
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
343
+ return_dict: bool = True,
344
+ skip_layers: Optional[List[int]] = None,
345
+ ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
346
+ """
347
+ The [`SD3Transformer2DModel`] forward method.
348
+
349
+ Args:
350
+ hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
351
+ Input `hidden_states`.
352
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
353
+ Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
354
+ pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`):
355
+ Embeddings projected from the embeddings of input conditions.
356
+ timestep (`torch.LongTensor`):
357
+ Used to indicate denoising step.
358
+ block_controlnet_hidden_states (`list` of `torch.Tensor`):
359
+ A list of tensors that if specified are added to the residuals of transformer blocks.
360
+ joint_attention_kwargs (`dict`, *optional*):
361
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
362
+ `self.processor` in
363
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
364
+ return_dict (`bool`, *optional*, defaults to `True`):
365
+ Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
366
+ tuple.
367
+ skip_layers (`list` of `int`, *optional*):
368
+ A list of layer indices to skip during the forward pass.
369
+
370
+ Returns:
371
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
372
+ `tuple` where the first element is the sample tensor.
373
+ """
374
+ if joint_attention_kwargs is not None:
375
+ joint_attention_kwargs = joint_attention_kwargs.copy()
376
+ lora_scale = joint_attention_kwargs.pop("scale", 1.0)
377
+ else:
378
+ lora_scale = 1.0
379
+
380
+ if USE_PEFT_BACKEND:
381
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
382
+ scale_lora_layers(self, lora_scale)
383
+ else:
384
+ if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
385
+ logger.warning(
386
+ "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
387
+ )
388
+
389
+ height, width = hidden_states.shape[-2:]
390
+
391
+ hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
392
+ temb = self.time_text_embed(timestep, pooled_projections)
393
+ encoder_hidden_states = self.context_embedder(encoder_hidden_states)
394
+
395
+ if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
396
+ ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
397
+ ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep)
398
+
399
+ joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb)
400
+
401
+ for index_block, block in enumerate(self.transformer_blocks):
402
+ # Skip specified layers
403
+ is_skip = True if skip_layers is not None and index_block in skip_layers else False
404
+
405
+ if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip:
406
+
407
+ def create_custom_forward(module, return_dict=None):
408
+ def custom_forward(*inputs):
409
+ if return_dict is not None:
410
+ return module(*inputs, return_dict=return_dict)
411
+ else:
412
+ return module(*inputs)
413
+
414
+ return custom_forward
415
+
416
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
417
+ encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
418
+ create_custom_forward(block),
419
+ hidden_states,
420
+ encoder_hidden_states,
421
+ temb,
422
+ joint_attention_kwargs,
423
+ **ckpt_kwargs,
424
+ )
425
+ elif not is_skip:
426
+ encoder_hidden_states, hidden_states = block(
427
+ hidden_states=hidden_states,
428
+ encoder_hidden_states=encoder_hidden_states,
429
+ temb=temb,
430
+ joint_attention_kwargs=joint_attention_kwargs,
431
+ )
432
+
433
+ # controlnet residual
434
+ if block_controlnet_hidden_states is not None and block.context_pre_only is False:
435
+ interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states)
436
+ hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)]
437
+
438
+ hidden_states = self.norm_out(hidden_states, temb)
439
+ hidden_states = self.proj_out(hidden_states)
440
+
441
+ # unpatchify
442
+ patch_size = self.config.patch_size
443
+ height = height // patch_size
444
+ width = width // patch_size
445
+
446
+ hidden_states = hidden_states.reshape(
447
+ shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
448
+ )
449
+ hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
450
+ output = hidden_states.reshape(
451
+ shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
452
+ )
453
+
454
+ if USE_PEFT_BACKEND:
455
+ # remove `lora_scale` from each PEFT layer
456
+ unscale_lora_layers(self, lora_scale)
457
+
458
+ if not return_dict:
459
+ return (output,)
460
+
461
+ return Transformer2DModelOutput(sample=output)
@@ -31,11 +31,11 @@ class TransformerTemporalModelOutput(BaseOutput):
31
31
  The output of [`TransformerTemporalModel`].
32
32
 
33
33
  Args:
34
- sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`):
34
+ sample (`torch.Tensor` of shape `(batch_size x num_frames, num_channels, height, width)`):
35
35
  The hidden states output conditioned on `encoder_hidden_states` input.
36
36
  """
37
37
 
38
- sample: torch.FloatTensor
38
+ sample: torch.Tensor
39
39
 
40
40
 
41
41
  class TransformerTemporalModel(ModelMixin, ConfigMixin):
@@ -120,7 +120,7 @@ class TransformerTemporalModel(ModelMixin, ConfigMixin):
120
120
 
121
121
  def forward(
122
122
  self,
123
- hidden_states: torch.FloatTensor,
123
+ hidden_states: torch.Tensor,
124
124
  encoder_hidden_states: Optional[torch.LongTensor] = None,
125
125
  timestep: Optional[torch.LongTensor] = None,
126
126
  class_labels: torch.LongTensor = None,
@@ -132,7 +132,7 @@ class TransformerTemporalModel(ModelMixin, ConfigMixin):
132
132
  The [`TransformerTemporal`] forward method.
133
133
 
134
134
  Args:
135
- hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
135
+ hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
136
136
  Input hidden_states.
137
137
  encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
138
138
  Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
@@ -149,13 +149,14 @@ class TransformerTemporalModel(ModelMixin, ConfigMixin):
149
149
  `self.processor` in
150
150
  [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
151
151
  return_dict (`bool`, *optional*, defaults to `True`):
152
- Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
153
- tuple.
152
+ Whether or not to return a [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`]
153
+ instead of a plain tuple.
154
154
 
155
155
  Returns:
156
- [`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
157
- If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
158
- returned, otherwise a `tuple` where the first element is the sample tensor.
156
+ [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
157
+ If `return_dict` is True, an
158
+ [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] is returned, otherwise a
159
+ `tuple` where the first element is the sample tensor.
159
160
  """
160
161
  # 1. Input
161
162
  batch_frames, channel, height, width = hidden_states.shape
@@ -283,7 +284,7 @@ class TransformerSpatioTemporalModel(nn.Module):
283
284
  ):
284
285
  """
285
286
  Args:
286
- hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
287
+ hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`):
287
288
  Input hidden_states.
288
289
  num_frames (`int`):
289
290
  The number of frames to be processed per batch. This is used to reshape the hidden states.
@@ -294,13 +295,14 @@ class TransformerSpatioTemporalModel(nn.Module):
294
295
  A tensor indicating whether the input contains only images. 1 indicates that the input contains only
295
296
  images, 0 indicates that the input contains video frames.
296
297
  return_dict (`bool`, *optional*, defaults to `True`):
297
- Whether or not to return a [`~models.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain
298
- tuple.
298
+ Whether or not to return a [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`]
299
+ instead of a plain tuple.
299
300
 
300
301
  Returns:
301
- [`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
302
- If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
303
- returned, otherwise a `tuple` where the first element is the sample tensor.
302
+ [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
303
+ If `return_dict` is True, an
304
+ [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] is returned, otherwise a
305
+ `tuple` where the first element is the sample tensor.
304
306
  """
305
307
  # 1. Input
306
308
  batch_frames, _, height, width = hidden_states.shape
@@ -311,10 +313,10 @@ class TransformerSpatioTemporalModel(nn.Module):
311
313
  time_context_first_timestep = time_context[None, :].reshape(
312
314
  batch_size, num_frames, -1, time_context.shape[-1]
313
315
  )[:, 0]
314
- time_context = time_context_first_timestep[None, :].broadcast_to(
315
- height * width, batch_size, 1, time_context.shape[-1]
316
+ time_context = time_context_first_timestep[:, None].broadcast_to(
317
+ batch_size, height * width, time_context.shape[-2], time_context.shape[-1]
316
318
  )
317
- time_context = time_context.reshape(height * width * batch_size, 1, time_context.shape[-1])
319
+ time_context = time_context.reshape(batch_size * height * width, -1, time_context.shape[-1])
318
320
 
319
321
  residual = hidden_states
320
322
 
@@ -338,7 +340,7 @@ class TransformerSpatioTemporalModel(nn.Module):
338
340
 
339
341
  # 2. Blocks
340
342
  for block, temporal_block in zip(self.transformer_blocks, self.temporal_transformer_blocks):
341
- if self.training and self.gradient_checkpointing:
343
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
342
344
  hidden_states = torch.utils.checkpoint.checkpoint(
343
345
  block,
344
346
  hidden_states,
@@ -31,11 +31,11 @@ class UNet1DOutput(BaseOutput):
31
31
  The output of [`UNet1DModel`].
32
32
 
33
33
  Args:
34
- sample (`torch.FloatTensor` of shape `(batch_size, num_channels, sample_size)`):
34
+ sample (`torch.Tensor` of shape `(batch_size, num_channels, sample_size)`):
35
35
  The hidden states output from the last layer of the model.
36
36
  """
37
37
 
38
- sample: torch.FloatTensor
38
+ sample: torch.Tensor
39
39
 
40
40
 
41
41
  class UNet1DModel(ModelMixin, ConfigMixin):
@@ -194,7 +194,7 @@ class UNet1DModel(ModelMixin, ConfigMixin):
194
194
 
195
195
  def forward(
196
196
  self,
197
- sample: torch.FloatTensor,
197
+ sample: torch.Tensor,
198
198
  timestep: Union[torch.Tensor, float, int],
199
199
  return_dict: bool = True,
200
200
  ) -> Union[UNet1DOutput, Tuple]:
@@ -202,15 +202,15 @@ class UNet1DModel(ModelMixin, ConfigMixin):
202
202
  The [`UNet1DModel`] forward method.
203
203
 
204
204
  Args:
205
- sample (`torch.FloatTensor`):
205
+ sample (`torch.Tensor`):
206
206
  The noisy input tensor with the following shape `(batch_size, num_channels, sample_size)`.
207
- timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
207
+ timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
208
208
  return_dict (`bool`, *optional*, defaults to `True`):
209
- Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple.
209
+ Whether or not to return a [`~models.unets.unet_1d.UNet1DOutput`] instead of a plain tuple.
210
210
 
211
211
  Returns:
212
- [`~models.unet_1d.UNet1DOutput`] or `tuple`:
213
- If `return_dict` is True, an [`~models.unet_1d.UNet1DOutput`] is returned, otherwise a `tuple` is
212
+ [`~models.unets.unet_1d.UNet1DOutput`] or `tuple`:
213
+ If `return_dict` is True, an [`~models.unets.unet_1d.UNet1DOutput`] is returned, otherwise a `tuple` is
214
214
  returned where the first element is the sample tensor.
215
215
  """
216
216