diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -31,6 +31,7 @@ from ...utils import (
31
31
  replace_example_docstring,
32
32
  )
33
33
  from ...utils.torch_utils import randn_tensor
34
+ from ...video_processor import VideoProcessor
34
35
  from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
35
36
 
36
37
 
@@ -43,10 +44,14 @@ EXAMPLE_DOC_STRING = """
43
44
  >>> from diffusers import I2VGenXLPipeline
44
45
  >>> from diffusers.utils import export_to_gif, load_image
45
46
 
46
- >>> pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
47
+ >>> pipeline = I2VGenXLPipeline.from_pretrained(
48
+ ... "ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16"
49
+ ... )
47
50
  >>> pipeline.enable_model_cpu_offload()
48
51
 
49
- >>> image_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"
52
+ >>> image_url = (
53
+ ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png"
54
+ ... )
50
55
  >>> image = load_image(image_url).convert("RGB")
51
56
 
52
57
  >>> prompt = "Papers were floating in the air on a table in the library"
@@ -59,43 +64,22 @@ EXAMPLE_DOC_STRING = """
59
64
  ... num_inference_steps=50,
60
65
  ... negative_prompt=negative_prompt,
61
66
  ... guidance_scale=9.0,
62
- ... generator=generator
67
+ ... generator=generator,
63
68
  ... ).frames[0]
64
69
  >>> video_path = export_to_gif(frames, "i2v.gif")
65
70
  ```
66
71
  """
67
72
 
68
73
 
69
- # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
70
- def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
71
- batch_size, channels, num_frames, height, width = video.shape
72
- outputs = []
73
- for batch_idx in range(batch_size):
74
- batch_vid = video[batch_idx].permute(1, 0, 2, 3)
75
- batch_output = processor.postprocess(batch_vid, output_type)
76
-
77
- outputs.append(batch_output)
78
-
79
- if output_type == "np":
80
- outputs = np.stack(outputs)
81
-
82
- elif output_type == "pt":
83
- outputs = torch.stack(outputs)
84
-
85
- elif not output_type == "pil":
86
- raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
87
-
88
- return outputs
89
-
90
-
91
74
  @dataclass
92
75
  class I2VGenXLPipelineOutput(BaseOutput):
93
76
  r"""
94
77
  Output class for image-to-video pipeline.
95
78
 
96
- Args:
79
+ Args:
97
80
  frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
98
- List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing denoised
81
+ List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
82
+ denoised
99
83
  PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
100
84
  `(batch_size, num_frames, channels, height, width)`
101
85
  """
@@ -151,7 +135,7 @@ class I2VGenXLPipeline(
151
135
  )
152
136
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
153
137
  # `do_resize=False` as we do custom resizing.
154
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=False)
138
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=False)
155
139
 
156
140
  @property
157
141
  def guidance_scale(self):
@@ -170,8 +154,8 @@ class I2VGenXLPipeline(
170
154
  device,
171
155
  num_videos_per_prompt,
172
156
  negative_prompt=None,
173
- prompt_embeds: Optional[torch.FloatTensor] = None,
174
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
157
+ prompt_embeds: Optional[torch.Tensor] = None,
158
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
175
159
  clip_skip: Optional[int] = None,
176
160
  ):
177
161
  r"""
@@ -190,10 +174,10 @@ class I2VGenXLPipeline(
190
174
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
191
175
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
192
176
  less than `1`).
193
- prompt_embeds (`torch.FloatTensor`, *optional*):
177
+ prompt_embeds (`torch.Tensor`, *optional*):
194
178
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
195
179
  provided, text embeddings will be generated from `prompt` input argument.
196
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
180
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
197
181
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
198
182
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
199
183
  argument.
@@ -337,8 +321,8 @@ class I2VGenXLPipeline(
337
321
  dtype = next(self.image_encoder.parameters()).dtype
338
322
 
339
323
  if not isinstance(image, torch.Tensor):
340
- image = self.image_processor.pil_to_numpy(image)
341
- image = self.image_processor.numpy_to_pt(image)
324
+ image = self.video_processor.pil_to_numpy(image)
325
+ image = self.video_processor.numpy_to_pt(image)
342
326
 
343
327
  # Normalize the image with CLIP training stats.
344
328
  image = self.feature_extractor(
@@ -450,7 +434,7 @@ class I2VGenXLPipeline(
450
434
  and not isinstance(image, list)
451
435
  ):
452
436
  raise ValueError(
453
- "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
437
+ "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
454
438
  f" {type(image)}"
455
439
  )
456
440
 
@@ -529,9 +513,9 @@ class I2VGenXLPipeline(
529
513
  num_videos_per_prompt: Optional[int] = 1,
530
514
  decode_chunk_size: Optional[int] = 1,
531
515
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
532
- latents: Optional[torch.FloatTensor] = None,
533
- prompt_embeds: Optional[torch.FloatTensor] = None,
534
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
516
+ latents: Optional[torch.Tensor] = None,
517
+ prompt_embeds: Optional[torch.Tensor] = None,
518
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
535
519
  output_type: Optional[str] = "pil",
536
520
  return_dict: bool = True,
537
521
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -543,7 +527,7 @@ class I2VGenXLPipeline(
543
527
  Args:
544
528
  prompt (`str` or `List[str]`, *optional*):
545
529
  The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
546
- image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
530
+ image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
547
531
  Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
548
532
  [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
549
533
  height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
@@ -551,7 +535,8 @@ class I2VGenXLPipeline(
551
535
  width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
552
536
  The width in pixels of the generated image.
553
537
  target_fps (`int`, *optional*):
554
- Frames per second. The rate at which the generated images shall be exported to a video after generation. This is also used as a "micro-condition" while generation.
538
+ Frames per second. The rate at which the generated images shall be exported to a video after
539
+ generation. This is also used as a "micro-condition" while generation.
555
540
  num_frames (`int`, *optional*):
556
541
  The number of video frames to generate.
557
542
  num_inference_steps (`int`, *optional*):
@@ -568,20 +553,20 @@ class I2VGenXLPipeline(
568
553
  num_videos_per_prompt (`int`, *optional*):
569
554
  The number of images to generate per prompt.
570
555
  decode_chunk_size (`int`, *optional*):
571
- The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
572
- between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
573
- for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
556
+ The number of frames to decode at a time. The higher the chunk size, the higher the temporal
557
+ consistency between frames, but also the higher the memory consumption. By default, the decoder will
558
+ decode all frames at once for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
574
559
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
575
560
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
576
561
  generation deterministic.
577
- latents (`torch.FloatTensor`, *optional*):
562
+ latents (`torch.Tensor`, *optional*):
578
563
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
579
564
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
580
565
  tensor is generated by sampling using the supplied random `generator`.
581
- prompt_embeds (`torch.FloatTensor`, *optional*):
566
+ prompt_embeds (`torch.Tensor`, *optional*):
582
567
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
583
568
  provided, text embeddings are generated from the `prompt` input argument.
584
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
569
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
585
570
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
586
571
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
587
572
  output_type (`str`, *optional*, defaults to `"pil"`):
@@ -651,7 +636,7 @@ class I2VGenXLPipeline(
651
636
 
652
637
  # 3.2.2 Image latents.
653
638
  resized_image = _center_crop_wide(image, (width, height))
654
- image = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype)
639
+ image = self.video_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype)
655
640
  image_latents = self.prepare_image_latents(
656
641
  image,
657
642
  device=device,
@@ -731,7 +716,7 @@ class I2VGenXLPipeline(
731
716
  video = latents
732
717
  else:
733
718
  video_tensor = self.decode_latents(latents, decode_chunk_size=decode_chunk_size)
734
- video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
719
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
735
720
 
736
721
  # 9. Offload all models
737
722
  self.maybe_free_model_hooks()
@@ -233,8 +233,8 @@ class KandinskyPipeline(DiffusionPipeline):
233
233
  def __call__(
234
234
  self,
235
235
  prompt: Union[str, List[str]],
236
- image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
237
- negative_image_embeds: Union[torch.FloatTensor, List[torch.FloatTensor]],
236
+ image_embeds: Union[torch.Tensor, List[torch.Tensor]],
237
+ negative_image_embeds: Union[torch.Tensor, List[torch.Tensor]],
238
238
  negative_prompt: Optional[Union[str, List[str]]] = None,
239
239
  height: int = 512,
240
240
  width: int = 512,
@@ -242,9 +242,9 @@ class KandinskyPipeline(DiffusionPipeline):
242
242
  guidance_scale: float = 4.0,
243
243
  num_images_per_prompt: int = 1,
244
244
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
245
- latents: Optional[torch.FloatTensor] = None,
245
+ latents: Optional[torch.Tensor] = None,
246
246
  output_type: Optional[str] = "pil",
247
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
247
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
248
248
  callback_steps: int = 1,
249
249
  return_dict: bool = True,
250
250
  ):
@@ -254,9 +254,9 @@ class KandinskyPipeline(DiffusionPipeline):
254
254
  Args:
255
255
  prompt (`str` or `List[str]`):
256
256
  The prompt or prompts to guide the image generation.
257
- image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
257
+ image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
258
258
  The clip image embeddings for text prompt, that will be used to condition the image generation.
259
- negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
259
+ negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
260
260
  The clip image embeddings for negative text prompt, will be used to condition the image generation.
261
261
  negative_prompt (`str` or `List[str]`, *optional*):
262
262
  The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
@@ -279,7 +279,7 @@ class KandinskyPipeline(DiffusionPipeline):
279
279
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
280
280
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
281
281
  to make generation deterministic.
282
- latents (`torch.FloatTensor`, *optional*):
282
+ latents (`torch.Tensor`, *optional*):
283
283
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
284
284
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
285
285
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -288,7 +288,7 @@ class KandinskyPipeline(DiffusionPipeline):
288
288
  (`np.array`) or `"pt"` (`torch.Tensor`).
289
289
  callback (`Callable`, *optional*):
290
290
  A function that calls every `callback_steps` steps during inference. The function is called with the
291
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
291
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
292
292
  callback_steps (`int`, *optional*, defaults to 1):
293
293
  The frequency at which the `callback` function is called. If not specified, the callback is called at
294
294
  every step.
@@ -129,7 +129,7 @@ class KandinskyCombinedPipeline(DiffusionPipeline):
129
129
  movq ([`VQModel`]):
130
130
  MoVQ Decoder to generate the image from the latents.
131
131
  prior_prior ([`PriorTransformer`]):
132
- The canonincal unCLIP prior to approximate the image embedding from the text embedding.
132
+ The canonical unCLIP prior to approximate the image embedding from the text embedding.
133
133
  prior_image_encoder ([`CLIPVisionModelWithProjection`]):
134
134
  Frozen image-encoder.
135
135
  prior_text_encoder ([`CLIPTextModelWithProjection`]):
@@ -143,6 +143,7 @@ class KandinskyCombinedPipeline(DiffusionPipeline):
143
143
 
144
144
  _load_connected_pipes = True
145
145
  model_cpu_offload_seq = "text_encoder->unet->movq->prior_prior->prior_image_encoder->prior_text_encoder"
146
+ _exclude_from_cpu_offload = ["prior_prior"]
146
147
 
147
148
  def __init__(
148
149
  self,
@@ -192,15 +193,15 @@ class KandinskyCombinedPipeline(DiffusionPipeline):
192
193
  def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
193
194
  self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
194
195
 
195
- def enable_sequential_cpu_offload(self, gpu_id=0):
196
+ def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
196
197
  r"""
197
198
  Offloads all models (`unet`, `text_encoder`, `vae`, and `safety checker` state dicts) to CPU using 🤗
198
199
  Accelerate, significantly reducing memory usage. Models are moved to a `torch.device('meta')` and loaded on a
199
200
  GPU only when their specific submodule's `forward` method is called. Offloading happens on a submodule basis.
200
201
  Memory savings are higher than using `enable_model_cpu_offload`, but performance is lower.
201
202
  """
202
- self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
203
- self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
203
+ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
204
+ self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
204
205
 
205
206
  def progress_bar(self, iterable=None, total=None):
206
207
  self.prior_pipe.progress_bar(iterable=iterable, total=total)
@@ -225,9 +226,9 @@ class KandinskyCombinedPipeline(DiffusionPipeline):
225
226
  prior_guidance_scale: float = 4.0,
226
227
  prior_num_inference_steps: int = 25,
227
228
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
228
- latents: Optional[torch.FloatTensor] = None,
229
+ latents: Optional[torch.Tensor] = None,
229
230
  output_type: Optional[str] = "pil",
230
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
231
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
231
232
  callback_steps: int = 1,
232
233
  return_dict: bool = True,
233
234
  ):
@@ -267,7 +268,7 @@ class KandinskyCombinedPipeline(DiffusionPipeline):
267
268
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
268
269
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
269
270
  to make generation deterministic.
270
- latents (`torch.FloatTensor`, *optional*):
271
+ latents (`torch.Tensor`, *optional*):
271
272
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
272
273
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
273
274
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -276,7 +277,7 @@ class KandinskyCombinedPipeline(DiffusionPipeline):
276
277
  (`np.array`) or `"pt"` (`torch.Tensor`).
277
278
  callback (`Callable`, *optional*):
278
279
  A function that calls every `callback_steps` steps during inference. The function is called with the
279
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
280
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
280
281
  callback_steps (`int`, *optional*, defaults to 1):
281
282
  The frequency at which the `callback` function is called. If not specified, the callback is called at
282
283
  every step.
@@ -346,7 +347,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
346
347
  movq ([`VQModel`]):
347
348
  MoVQ Decoder to generate the image from the latents.
348
349
  prior_prior ([`PriorTransformer`]):
349
- The canonincal unCLIP prior to approximate the image embedding from the text embedding.
350
+ The canonical unCLIP prior to approximate the image embedding from the text embedding.
350
351
  prior_image_encoder ([`CLIPVisionModelWithProjection`]):
351
352
  Frozen image-encoder.
352
353
  prior_text_encoder ([`CLIPTextModelWithProjection`]):
@@ -360,6 +361,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
360
361
 
361
362
  _load_connected_pipes = True
362
363
  model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->prior_prior->" "text_encoder->unet->movq"
364
+ _exclude_from_cpu_offload = ["prior_prior"]
363
365
 
364
366
  def __init__(
365
367
  self,
@@ -409,7 +411,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
409
411
  def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
410
412
  self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
411
413
 
412
- def enable_sequential_cpu_offload(self, gpu_id=0):
414
+ def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
413
415
  r"""
414
416
  Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
415
417
  text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
@@ -417,8 +419,8 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
417
419
  Note that offloading happens on a submodule basis. Memory savings are higher than with
418
420
  `enable_model_cpu_offload`, but performance is lower.
419
421
  """
420
- self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
421
- self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
422
+ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
423
+ self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
422
424
 
423
425
  def progress_bar(self, iterable=None, total=None):
424
426
  self.prior_pipe.progress_bar(iterable=iterable, total=total)
@@ -434,7 +436,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
434
436
  def __call__(
435
437
  self,
436
438
  prompt: Union[str, List[str]],
437
- image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
439
+ image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
438
440
  negative_prompt: Optional[Union[str, List[str]]] = None,
439
441
  num_inference_steps: int = 100,
440
442
  guidance_scale: float = 4.0,
@@ -445,9 +447,9 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
445
447
  prior_guidance_scale: float = 4.0,
446
448
  prior_num_inference_steps: int = 25,
447
449
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
448
- latents: Optional[torch.FloatTensor] = None,
450
+ latents: Optional[torch.Tensor] = None,
449
451
  output_type: Optional[str] = "pil",
450
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
452
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
451
453
  callback_steps: int = 1,
452
454
  return_dict: bool = True,
453
455
  ):
@@ -457,7 +459,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
457
459
  Args:
458
460
  prompt (`str` or `List[str]`):
459
461
  The prompt or prompts to guide the image generation.
460
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
462
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
461
463
  `Image`, or tensor representing an image batch, that will be used as the starting point for the
462
464
  process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
463
465
  again.
@@ -497,7 +499,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
497
499
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
498
500
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
499
501
  to make generation deterministic.
500
- latents (`torch.FloatTensor`, *optional*):
502
+ latents (`torch.Tensor`, *optional*):
501
503
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
502
504
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
503
505
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -506,7 +508,7 @@ class KandinskyImg2ImgCombinedPipeline(DiffusionPipeline):
506
508
  (`np.array`) or `"pt"` (`torch.Tensor`).
507
509
  callback (`Callable`, *optional*):
508
510
  A function that calls every `callback_steps` steps during inference. The function is called with the
509
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
511
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
510
512
  callback_steps (`int`, *optional*, defaults to 1):
511
513
  The frequency at which the `callback` function is called. If not specified, the callback is called at
512
514
  every step.
@@ -586,7 +588,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
586
588
  movq ([`VQModel`]):
587
589
  MoVQ Decoder to generate the image from the latents.
588
590
  prior_prior ([`PriorTransformer`]):
589
- The canonincal unCLIP prior to approximate the image embedding from the text embedding.
591
+ The canonical unCLIP prior to approximate the image embedding from the text embedding.
590
592
  prior_image_encoder ([`CLIPVisionModelWithProjection`]):
591
593
  Frozen image-encoder.
592
594
  prior_text_encoder ([`CLIPTextModelWithProjection`]):
@@ -600,6 +602,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
600
602
 
601
603
  _load_connected_pipes = True
602
604
  model_cpu_offload_seq = "prior_text_encoder->prior_image_encoder->prior_prior->text_encoder->unet->movq"
605
+ _exclude_from_cpu_offload = ["prior_prior"]
603
606
 
604
607
  def __init__(
605
608
  self,
@@ -649,7 +652,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
649
652
  def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
650
653
  self.decoder_pipe.enable_xformers_memory_efficient_attention(attention_op)
651
654
 
652
- def enable_sequential_cpu_offload(self, gpu_id=0):
655
+ def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
653
656
  r"""
654
657
  Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
655
658
  text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
@@ -657,8 +660,8 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
657
660
  Note that offloading happens on a submodule basis. Memory savings are higher than with
658
661
  `enable_model_cpu_offload`, but performance is lower.
659
662
  """
660
- self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
661
- self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id)
663
+ self.prior_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
664
+ self.decoder_pipe.enable_sequential_cpu_offload(gpu_id=gpu_id, device=device)
662
665
 
663
666
  def progress_bar(self, iterable=None, total=None):
664
667
  self.prior_pipe.progress_bar(iterable=iterable, total=total)
@@ -674,8 +677,8 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
674
677
  def __call__(
675
678
  self,
676
679
  prompt: Union[str, List[str]],
677
- image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
678
- mask_image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
680
+ image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
681
+ mask_image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
679
682
  negative_prompt: Optional[Union[str, List[str]]] = None,
680
683
  num_inference_steps: int = 100,
681
684
  guidance_scale: float = 4.0,
@@ -685,9 +688,9 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
685
688
  prior_guidance_scale: float = 4.0,
686
689
  prior_num_inference_steps: int = 25,
687
690
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
688
- latents: Optional[torch.FloatTensor] = None,
691
+ latents: Optional[torch.Tensor] = None,
689
692
  output_type: Optional[str] = "pil",
690
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
693
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
691
694
  callback_steps: int = 1,
692
695
  return_dict: bool = True,
693
696
  ):
@@ -697,7 +700,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
697
700
  Args:
698
701
  prompt (`str` or `List[str]`):
699
702
  The prompt or prompts to guide the image generation.
700
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
703
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
701
704
  `Image`, or tensor representing an image batch, that will be used as the starting point for the
702
705
  process. Can also accept image latents as `image`, if passing latents directly, it will not be encoded
703
706
  again.
@@ -736,7 +739,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
736
739
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
737
740
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
738
741
  to make generation deterministic.
739
- latents (`torch.FloatTensor`, *optional*):
742
+ latents (`torch.Tensor`, *optional*):
740
743
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
741
744
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
742
745
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -745,7 +748,7 @@ class KandinskyInpaintCombinedPipeline(DiffusionPipeline):
745
748
  (`np.array`) or `"pt"` (`torch.Tensor`).
746
749
  callback (`Callable`, *optional*):
747
750
  A function that calls every `callback_steps` steps during inference. The function is called with the
748
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
751
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
749
752
  callback_steps (`int`, *optional*, defaults to 1):
750
753
  The frequency at which the `callback` function is called. If not specified, the callback is called at
751
754
  every step.
@@ -266,10 +266,10 @@ class KandinskyImg2ImgPipeline(DiffusionPipeline):
266
266
  # add_noise method to overwrite the one in schedule because it use a different beta schedule for adding noise vs sampling
267
267
  def add_noise(
268
268
  self,
269
- original_samples: torch.FloatTensor,
270
- noise: torch.FloatTensor,
269
+ original_samples: torch.Tensor,
270
+ noise: torch.Tensor,
271
271
  timesteps: torch.IntTensor,
272
- ) -> torch.FloatTensor:
272
+ ) -> torch.Tensor:
273
273
  betas = torch.linspace(0.0001, 0.02, 1000, dtype=torch.float32)
274
274
  alphas = 1.0 - betas
275
275
  alphas_cumprod = torch.cumprod(alphas, dim=0)
@@ -295,9 +295,9 @@ class KandinskyImg2ImgPipeline(DiffusionPipeline):
295
295
  def __call__(
296
296
  self,
297
297
  prompt: Union[str, List[str]],
298
- image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
299
- image_embeds: torch.FloatTensor,
300
- negative_image_embeds: torch.FloatTensor,
298
+ image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]],
299
+ image_embeds: torch.Tensor,
300
+ negative_image_embeds: torch.Tensor,
301
301
  negative_prompt: Optional[Union[str, List[str]]] = None,
302
302
  height: int = 512,
303
303
  width: int = 512,
@@ -307,7 +307,7 @@ class KandinskyImg2ImgPipeline(DiffusionPipeline):
307
307
  num_images_per_prompt: int = 1,
308
308
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
309
309
  output_type: Optional[str] = "pil",
310
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
310
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
311
311
  callback_steps: int = 1,
312
312
  return_dict: bool = True,
313
313
  ):
@@ -317,12 +317,12 @@ class KandinskyImg2ImgPipeline(DiffusionPipeline):
317
317
  Args:
318
318
  prompt (`str` or `List[str]`):
319
319
  The prompt or prompts to guide the image generation.
320
- image (`torch.FloatTensor`, `PIL.Image.Image`):
320
+ image (`torch.Tensor`, `PIL.Image.Image`):
321
321
  `Image`, or tensor representing an image batch, that will be used as the starting point for the
322
322
  process.
323
- image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
323
+ image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
324
324
  The clip image embeddings for text prompt, that will be used to condition the image generation.
325
- negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
325
+ negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
326
326
  The clip image embeddings for negative text prompt, will be used to condition the image generation.
327
327
  negative_prompt (`str` or `List[str]`, *optional*):
328
328
  The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
@@ -356,7 +356,7 @@ class KandinskyImg2ImgPipeline(DiffusionPipeline):
356
356
  (`np.array`) or `"pt"` (`torch.Tensor`).
357
357
  callback (`Callable`, *optional*):
358
358
  A function that calls every `callback_steps` steps during inference. The function is called with the
359
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
359
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
360
360
  callback_steps (`int`, *optional*, defaults to 1):
361
361
  The frequency at which the `callback` function is called. If not specified, the callback is called at
362
362
  every step.
@@ -398,10 +398,10 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
398
398
  def __call__(
399
399
  self,
400
400
  prompt: Union[str, List[str]],
401
- image: Union[torch.FloatTensor, PIL.Image.Image],
402
- mask_image: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
403
- image_embeds: torch.FloatTensor,
404
- negative_image_embeds: torch.FloatTensor,
401
+ image: Union[torch.Tensor, PIL.Image.Image],
402
+ mask_image: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
403
+ image_embeds: torch.Tensor,
404
+ negative_image_embeds: torch.Tensor,
405
405
  negative_prompt: Optional[Union[str, List[str]]] = None,
406
406
  height: int = 512,
407
407
  width: int = 512,
@@ -409,9 +409,9 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
409
409
  guidance_scale: float = 4.0,
410
410
  num_images_per_prompt: int = 1,
411
411
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
412
- latents: Optional[torch.FloatTensor] = None,
412
+ latents: Optional[torch.Tensor] = None,
413
413
  output_type: Optional[str] = "pil",
414
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
414
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
415
415
  callback_steps: int = 1,
416
416
  return_dict: bool = True,
417
417
  ):
@@ -421,10 +421,10 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
421
421
  Args:
422
422
  prompt (`str` or `List[str]`):
423
423
  The prompt or prompts to guide the image generation.
424
- image (`torch.FloatTensor`, `PIL.Image.Image` or `np.ndarray`):
424
+ image (`torch.Tensor`, `PIL.Image.Image` or `np.ndarray`):
425
425
  `Image`, or tensor representing an image batch, that will be used as the starting point for the
426
426
  process.
427
- mask_image (`PIL.Image.Image`,`torch.FloatTensor` or `np.ndarray`):
427
+ mask_image (`PIL.Image.Image`,`torch.Tensor` or `np.ndarray`):
428
428
  `Image`, or a tensor representing an image batch, to mask `image`. White pixels in the mask will be
429
429
  repainted, while black pixels will be preserved. You can pass a pytorch tensor as mask only if the
430
430
  image you passed is a pytorch tensor, and it should contain one color channel (L) instead of 3, so the
@@ -432,9 +432,9 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
432
432
  image or numpy array, mask should also be a either PIL image or numpy array. If it is a PIL image, it
433
433
  will be converted to a single channel (luminance) before use. If it is a nummpy array, the expected
434
434
  shape is `(H, W)`.
435
- image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
435
+ image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
436
436
  The clip image embeddings for text prompt, that will be used to condition the image generation.
437
- negative_image_embeds (`torch.FloatTensor` or `List[torch.FloatTensor]`):
437
+ negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`):
438
438
  The clip image embeddings for negative text prompt, will be used to condition the image generation.
439
439
  negative_prompt (`str` or `List[str]`, *optional*):
440
440
  The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
@@ -457,7 +457,7 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
457
457
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
458
458
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
459
459
  to make generation deterministic.
460
- latents (`torch.FloatTensor`, *optional*):
460
+ latents (`torch.Tensor`, *optional*):
461
461
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
462
462
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
463
463
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -466,7 +466,7 @@ class KandinskyInpaintPipeline(DiffusionPipeline):
466
466
  (`np.array`) or `"pt"` (`torch.Tensor`).
467
467
  callback (`Callable`, *optional*):
468
468
  A function that calls every `callback_steps` steps during inference. The function is called with the
469
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
469
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
470
470
  callback_steps (`int`, *optional*, defaults to 1):
471
471
  The frequency at which the `callback` function is called. If not specified, the callback is called at
472
472
  every step.