diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1022 @@
1
+ # Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Union
17
+
18
+ import numpy as np
19
+ import PIL.Image
20
+ import torch
21
+ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
22
+
23
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
24
+ from ...loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
25
+ from ...models.autoencoders import AutoencoderKL
26
+ from ...models.transformers import FluxTransformer2DModel
27
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
28
+ from ...utils import (
29
+ USE_PEFT_BACKEND,
30
+ is_torch_xla_available,
31
+ logging,
32
+ replace_example_docstring,
33
+ scale_lora_layers,
34
+ unscale_lora_layers,
35
+ )
36
+ from ...utils.torch_utils import randn_tensor
37
+ from ..pipeline_utils import DiffusionPipeline
38
+ from .pipeline_output import FluxPipelineOutput
39
+
40
+
41
+ if is_torch_xla_available():
42
+ import torch_xla.core.xla_model as xm
43
+
44
+ XLA_AVAILABLE = True
45
+ else:
46
+ XLA_AVAILABLE = False
47
+
48
+
49
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
50
+
51
+ EXAMPLE_DOC_STRING = """
52
+ Examples:
53
+ ```py
54
+ >>> import torch
55
+ >>> from diffusers import FluxInpaintPipeline
56
+ >>> from diffusers.utils import load_image
57
+
58
+ >>> pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
59
+ >>> pipe.to("cuda")
60
+ >>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
61
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
62
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
63
+ >>> source = load_image(img_url)
64
+ >>> mask = load_image(mask_url)
65
+ >>> image = pipe(prompt=prompt, image=source, mask_image=mask).images[0]
66
+ >>> image.save("flux_inpainting.png")
67
+ ```
68
+ """
69
+
70
+
71
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
72
+ def calculate_shift(
73
+ image_seq_len,
74
+ base_seq_len: int = 256,
75
+ max_seq_len: int = 4096,
76
+ base_shift: float = 0.5,
77
+ max_shift: float = 1.16,
78
+ ):
79
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
80
+ b = base_shift - m * base_seq_len
81
+ mu = image_seq_len * m + b
82
+ return mu
83
+
84
+
85
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
86
+ def retrieve_latents(
87
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
88
+ ):
89
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
90
+ return encoder_output.latent_dist.sample(generator)
91
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
92
+ return encoder_output.latent_dist.mode()
93
+ elif hasattr(encoder_output, "latents"):
94
+ return encoder_output.latents
95
+ else:
96
+ raise AttributeError("Could not access latents of provided encoder_output")
97
+
98
+
99
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
100
+ def retrieve_timesteps(
101
+ scheduler,
102
+ num_inference_steps: Optional[int] = None,
103
+ device: Optional[Union[str, torch.device]] = None,
104
+ timesteps: Optional[List[int]] = None,
105
+ sigmas: Optional[List[float]] = None,
106
+ **kwargs,
107
+ ):
108
+ r"""
109
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
110
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
111
+
112
+ Args:
113
+ scheduler (`SchedulerMixin`):
114
+ The scheduler to get timesteps from.
115
+ num_inference_steps (`int`):
116
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
117
+ must be `None`.
118
+ device (`str` or `torch.device`, *optional*):
119
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
120
+ timesteps (`List[int]`, *optional*):
121
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
122
+ `num_inference_steps` and `sigmas` must be `None`.
123
+ sigmas (`List[float]`, *optional*):
124
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
125
+ `num_inference_steps` and `timesteps` must be `None`.
126
+
127
+ Returns:
128
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
129
+ second element is the number of inference steps.
130
+ """
131
+ if timesteps is not None and sigmas is not None:
132
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
133
+ if timesteps is not None:
134
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
135
+ if not accepts_timesteps:
136
+ raise ValueError(
137
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
138
+ f" timestep schedules. Please check whether you are using the correct scheduler."
139
+ )
140
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
141
+ timesteps = scheduler.timesteps
142
+ num_inference_steps = len(timesteps)
143
+ elif sigmas is not None:
144
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
145
+ if not accept_sigmas:
146
+ raise ValueError(
147
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
148
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
149
+ )
150
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
151
+ timesteps = scheduler.timesteps
152
+ num_inference_steps = len(timesteps)
153
+ else:
154
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
155
+ timesteps = scheduler.timesteps
156
+ return timesteps, num_inference_steps
157
+
158
+
159
+ class FluxInpaintPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
160
+ r"""
161
+ The Flux pipeline for image inpainting.
162
+
163
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
164
+
165
+ Args:
166
+ transformer ([`FluxTransformer2DModel`]):
167
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
168
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
169
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
170
+ vae ([`AutoencoderKL`]):
171
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
172
+ text_encoder ([`CLIPTextModel`]):
173
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
174
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
175
+ text_encoder_2 ([`T5EncoderModel`]):
176
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
177
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
178
+ tokenizer (`CLIPTokenizer`):
179
+ Tokenizer of class
180
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
181
+ tokenizer_2 (`T5TokenizerFast`):
182
+ Second Tokenizer of class
183
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
184
+ """
185
+
186
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
187
+ _optional_components = []
188
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
189
+
190
+ def __init__(
191
+ self,
192
+ scheduler: FlowMatchEulerDiscreteScheduler,
193
+ vae: AutoencoderKL,
194
+ text_encoder: CLIPTextModel,
195
+ tokenizer: CLIPTokenizer,
196
+ text_encoder_2: T5EncoderModel,
197
+ tokenizer_2: T5TokenizerFast,
198
+ transformer: FluxTransformer2DModel,
199
+ ):
200
+ super().__init__()
201
+
202
+ self.register_modules(
203
+ vae=vae,
204
+ text_encoder=text_encoder,
205
+ text_encoder_2=text_encoder_2,
206
+ tokenizer=tokenizer,
207
+ tokenizer_2=tokenizer_2,
208
+ transformer=transformer,
209
+ scheduler=scheduler,
210
+ )
211
+ self.vae_scale_factor = (
212
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
213
+ )
214
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
215
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
216
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
217
+ self.mask_processor = VaeImageProcessor(
218
+ vae_scale_factor=self.vae_scale_factor * 2,
219
+ vae_latent_channels=self.vae.config.latent_channels,
220
+ do_normalize=False,
221
+ do_binarize=True,
222
+ do_convert_grayscale=True,
223
+ )
224
+ self.tokenizer_max_length = (
225
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
226
+ )
227
+ self.default_sample_size = 128
228
+
229
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
230
+ def _get_t5_prompt_embeds(
231
+ self,
232
+ prompt: Union[str, List[str]] = None,
233
+ num_images_per_prompt: int = 1,
234
+ max_sequence_length: int = 512,
235
+ device: Optional[torch.device] = None,
236
+ dtype: Optional[torch.dtype] = None,
237
+ ):
238
+ device = device or self._execution_device
239
+ dtype = dtype or self.text_encoder.dtype
240
+
241
+ prompt = [prompt] if isinstance(prompt, str) else prompt
242
+ batch_size = len(prompt)
243
+
244
+ if isinstance(self, TextualInversionLoaderMixin):
245
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
246
+
247
+ text_inputs = self.tokenizer_2(
248
+ prompt,
249
+ padding="max_length",
250
+ max_length=max_sequence_length,
251
+ truncation=True,
252
+ return_length=False,
253
+ return_overflowing_tokens=False,
254
+ return_tensors="pt",
255
+ )
256
+ text_input_ids = text_inputs.input_ids
257
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
258
+
259
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
260
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
261
+ logger.warning(
262
+ "The following part of your input was truncated because `max_sequence_length` is set to "
263
+ f" {max_sequence_length} tokens: {removed_text}"
264
+ )
265
+
266
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
267
+
268
+ dtype = self.text_encoder_2.dtype
269
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
270
+
271
+ _, seq_len, _ = prompt_embeds.shape
272
+
273
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
274
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
275
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
276
+
277
+ return prompt_embeds
278
+
279
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
280
+ def _get_clip_prompt_embeds(
281
+ self,
282
+ prompt: Union[str, List[str]],
283
+ num_images_per_prompt: int = 1,
284
+ device: Optional[torch.device] = None,
285
+ ):
286
+ device = device or self._execution_device
287
+
288
+ prompt = [prompt] if isinstance(prompt, str) else prompt
289
+ batch_size = len(prompt)
290
+
291
+ if isinstance(self, TextualInversionLoaderMixin):
292
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
293
+
294
+ text_inputs = self.tokenizer(
295
+ prompt,
296
+ padding="max_length",
297
+ max_length=self.tokenizer_max_length,
298
+ truncation=True,
299
+ return_overflowing_tokens=False,
300
+ return_length=False,
301
+ return_tensors="pt",
302
+ )
303
+
304
+ text_input_ids = text_inputs.input_ids
305
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
306
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
307
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
308
+ logger.warning(
309
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
310
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
311
+ )
312
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
313
+
314
+ # Use pooled output of CLIPTextModel
315
+ prompt_embeds = prompt_embeds.pooler_output
316
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
317
+
318
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
319
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
320
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
321
+
322
+ return prompt_embeds
323
+
324
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
325
+ def encode_prompt(
326
+ self,
327
+ prompt: Union[str, List[str]],
328
+ prompt_2: Union[str, List[str]],
329
+ device: Optional[torch.device] = None,
330
+ num_images_per_prompt: int = 1,
331
+ prompt_embeds: Optional[torch.FloatTensor] = None,
332
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
333
+ max_sequence_length: int = 512,
334
+ lora_scale: Optional[float] = None,
335
+ ):
336
+ r"""
337
+
338
+ Args:
339
+ prompt (`str` or `List[str]`, *optional*):
340
+ prompt to be encoded
341
+ prompt_2 (`str` or `List[str]`, *optional*):
342
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
343
+ used in all text-encoders
344
+ device: (`torch.device`):
345
+ torch device
346
+ num_images_per_prompt (`int`):
347
+ number of images that should be generated per prompt
348
+ prompt_embeds (`torch.FloatTensor`, *optional*):
349
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
350
+ provided, text embeddings will be generated from `prompt` input argument.
351
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
352
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
353
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
354
+ lora_scale (`float`, *optional*):
355
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
356
+ """
357
+ device = device or self._execution_device
358
+
359
+ # set lora scale so that monkey patched LoRA
360
+ # function of text encoder can correctly access it
361
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
362
+ self._lora_scale = lora_scale
363
+
364
+ # dynamically adjust the LoRA scale
365
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
366
+ scale_lora_layers(self.text_encoder, lora_scale)
367
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
368
+ scale_lora_layers(self.text_encoder_2, lora_scale)
369
+
370
+ prompt = [prompt] if isinstance(prompt, str) else prompt
371
+
372
+ if prompt_embeds is None:
373
+ prompt_2 = prompt_2 or prompt
374
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
375
+
376
+ # We only use the pooled prompt output from the CLIPTextModel
377
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
378
+ prompt=prompt,
379
+ device=device,
380
+ num_images_per_prompt=num_images_per_prompt,
381
+ )
382
+ prompt_embeds = self._get_t5_prompt_embeds(
383
+ prompt=prompt_2,
384
+ num_images_per_prompt=num_images_per_prompt,
385
+ max_sequence_length=max_sequence_length,
386
+ device=device,
387
+ )
388
+
389
+ if self.text_encoder is not None:
390
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
391
+ # Retrieve the original scale by scaling back the LoRA layers
392
+ unscale_lora_layers(self.text_encoder, lora_scale)
393
+
394
+ if self.text_encoder_2 is not None:
395
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
396
+ # Retrieve the original scale by scaling back the LoRA layers
397
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
398
+
399
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
400
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
401
+
402
+ return prompt_embeds, pooled_prompt_embeds, text_ids
403
+
404
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
405
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
406
+ if isinstance(generator, list):
407
+ image_latents = [
408
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
409
+ for i in range(image.shape[0])
410
+ ]
411
+ image_latents = torch.cat(image_latents, dim=0)
412
+ else:
413
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
414
+
415
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
416
+
417
+ return image_latents
418
+
419
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
420
+ def get_timesteps(self, num_inference_steps, strength, device):
421
+ # get the original timestep using init_timestep
422
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
423
+
424
+ t_start = int(max(num_inference_steps - init_timestep, 0))
425
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
426
+ if hasattr(self.scheduler, "set_begin_index"):
427
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
428
+
429
+ return timesteps, num_inference_steps - t_start
430
+
431
+ def check_inputs(
432
+ self,
433
+ prompt,
434
+ prompt_2,
435
+ image,
436
+ mask_image,
437
+ strength,
438
+ height,
439
+ width,
440
+ output_type,
441
+ prompt_embeds=None,
442
+ pooled_prompt_embeds=None,
443
+ callback_on_step_end_tensor_inputs=None,
444
+ padding_mask_crop=None,
445
+ max_sequence_length=None,
446
+ ):
447
+ if strength < 0 or strength > 1:
448
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
449
+
450
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
451
+ logger.warning(
452
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
453
+ )
454
+
455
+ if callback_on_step_end_tensor_inputs is not None and not all(
456
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
457
+ ):
458
+ raise ValueError(
459
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
460
+ )
461
+
462
+ if prompt is not None and prompt_embeds is not None:
463
+ raise ValueError(
464
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
465
+ " only forward one of the two."
466
+ )
467
+ elif prompt_2 is not None and prompt_embeds is not None:
468
+ raise ValueError(
469
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
470
+ " only forward one of the two."
471
+ )
472
+ elif prompt is None and prompt_embeds is None:
473
+ raise ValueError(
474
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
475
+ )
476
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
477
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
478
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
479
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
480
+
481
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
482
+ raise ValueError(
483
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
484
+ )
485
+
486
+ if padding_mask_crop is not None:
487
+ if not isinstance(image, PIL.Image.Image):
488
+ raise ValueError(
489
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
490
+ )
491
+ if not isinstance(mask_image, PIL.Image.Image):
492
+ raise ValueError(
493
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
494
+ f" {type(mask_image)}."
495
+ )
496
+ if output_type != "pil":
497
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
498
+
499
+ if max_sequence_length is not None and max_sequence_length > 512:
500
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
501
+
502
+ @staticmethod
503
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
504
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
505
+ latent_image_ids = torch.zeros(height, width, 3)
506
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
507
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
508
+
509
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
510
+
511
+ latent_image_ids = latent_image_ids.reshape(
512
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
513
+ )
514
+
515
+ return latent_image_ids.to(device=device, dtype=dtype)
516
+
517
+ @staticmethod
518
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
519
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
520
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
521
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
522
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
523
+
524
+ return latents
525
+
526
+ @staticmethod
527
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
528
+ def _unpack_latents(latents, height, width, vae_scale_factor):
529
+ batch_size, num_patches, channels = latents.shape
530
+
531
+ # VAE applies 8x compression on images but we must also account for packing which requires
532
+ # latent height and width to be divisible by 2.
533
+ height = 2 * (int(height) // (vae_scale_factor * 2))
534
+ width = 2 * (int(width) // (vae_scale_factor * 2))
535
+
536
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
537
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
538
+
539
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
540
+
541
+ return latents
542
+
543
+ def prepare_latents(
544
+ self,
545
+ image,
546
+ timestep,
547
+ batch_size,
548
+ num_channels_latents,
549
+ height,
550
+ width,
551
+ dtype,
552
+ device,
553
+ generator,
554
+ latents=None,
555
+ ):
556
+ if isinstance(generator, list) and len(generator) != batch_size:
557
+ raise ValueError(
558
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
559
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
560
+ )
561
+
562
+ # VAE applies 8x compression on images but we must also account for packing which requires
563
+ # latent height and width to be divisible by 2.
564
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
565
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
566
+ shape = (batch_size, num_channels_latents, height, width)
567
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
568
+
569
+ image = image.to(device=device, dtype=dtype)
570
+ image_latents = self._encode_vae_image(image=image, generator=generator)
571
+
572
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
573
+ # expand init_latents for batch_size
574
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
575
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
576
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
577
+ raise ValueError(
578
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
579
+ )
580
+ else:
581
+ image_latents = torch.cat([image_latents], dim=0)
582
+
583
+ if latents is None:
584
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
585
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
586
+ else:
587
+ noise = latents.to(device)
588
+ latents = noise
589
+
590
+ noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width)
591
+ image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
592
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
593
+ return latents, noise, image_latents, latent_image_ids
594
+
595
+ def prepare_mask_latents(
596
+ self,
597
+ mask,
598
+ masked_image,
599
+ batch_size,
600
+ num_channels_latents,
601
+ num_images_per_prompt,
602
+ height,
603
+ width,
604
+ dtype,
605
+ device,
606
+ generator,
607
+ ):
608
+ # VAE applies 8x compression on images but we must also account for packing which requires
609
+ # latent height and width to be divisible by 2.
610
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
611
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
612
+ # resize the mask to latents shape as we concatenate the mask to the latents
613
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
614
+ # and half precision
615
+ mask = torch.nn.functional.interpolate(mask, size=(height, width))
616
+ mask = mask.to(device=device, dtype=dtype)
617
+
618
+ batch_size = batch_size * num_images_per_prompt
619
+
620
+ masked_image = masked_image.to(device=device, dtype=dtype)
621
+
622
+ if masked_image.shape[1] == 16:
623
+ masked_image_latents = masked_image
624
+ else:
625
+ masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
626
+
627
+ masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
628
+
629
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
630
+ if mask.shape[0] < batch_size:
631
+ if not batch_size % mask.shape[0] == 0:
632
+ raise ValueError(
633
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
634
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
635
+ " of masks that you pass is divisible by the total requested batch size."
636
+ )
637
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
638
+ if masked_image_latents.shape[0] < batch_size:
639
+ if not batch_size % masked_image_latents.shape[0] == 0:
640
+ raise ValueError(
641
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
642
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
643
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
644
+ )
645
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
646
+
647
+ # aligning device to prevent device errors when concating it with the latent model input
648
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
649
+ masked_image_latents = self._pack_latents(
650
+ masked_image_latents,
651
+ batch_size,
652
+ num_channels_latents,
653
+ height,
654
+ width,
655
+ )
656
+ mask = self._pack_latents(
657
+ mask.repeat(1, num_channels_latents, 1, 1),
658
+ batch_size,
659
+ num_channels_latents,
660
+ height,
661
+ width,
662
+ )
663
+
664
+ return mask, masked_image_latents
665
+
666
+ @property
667
+ def guidance_scale(self):
668
+ return self._guidance_scale
669
+
670
+ @property
671
+ def joint_attention_kwargs(self):
672
+ return self._joint_attention_kwargs
673
+
674
+ @property
675
+ def num_timesteps(self):
676
+ return self._num_timesteps
677
+
678
+ @property
679
+ def interrupt(self):
680
+ return self._interrupt
681
+
682
+ @torch.no_grad()
683
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
684
+ def __call__(
685
+ self,
686
+ prompt: Union[str, List[str]] = None,
687
+ prompt_2: Optional[Union[str, List[str]]] = None,
688
+ image: PipelineImageInput = None,
689
+ mask_image: PipelineImageInput = None,
690
+ masked_image_latents: PipelineImageInput = None,
691
+ height: Optional[int] = None,
692
+ width: Optional[int] = None,
693
+ padding_mask_crop: Optional[int] = None,
694
+ strength: float = 0.6,
695
+ num_inference_steps: int = 28,
696
+ sigmas: Optional[List[float]] = None,
697
+ guidance_scale: float = 7.0,
698
+ num_images_per_prompt: Optional[int] = 1,
699
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
700
+ latents: Optional[torch.FloatTensor] = None,
701
+ prompt_embeds: Optional[torch.FloatTensor] = None,
702
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
703
+ output_type: Optional[str] = "pil",
704
+ return_dict: bool = True,
705
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
706
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
707
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
708
+ max_sequence_length: int = 512,
709
+ ):
710
+ r"""
711
+ Function invoked when calling the pipeline for generation.
712
+
713
+ Args:
714
+ prompt (`str` or `List[str]`, *optional*):
715
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
716
+ instead.
717
+ prompt_2 (`str` or `List[str]`, *optional*):
718
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
719
+ will be used instead
720
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
721
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
722
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
723
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
724
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
725
+ latents as `image`, but if passing latents directly it is not encoded again.
726
+ mask_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
727
+ `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask
728
+ are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
729
+ single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one
730
+ color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B,
731
+ H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W,
732
+ 1)`, or `(H, W)`.
733
+ mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
734
+ `Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
735
+ latents tensor will ge generated by `mask_image`.
736
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
737
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
738
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
739
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
740
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
741
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
742
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
743
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
744
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
745
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
746
+ the image is large and contain information irrelevant for inpainting, such as background.
747
+ strength (`float`, *optional*, defaults to 1.0):
748
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
749
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
750
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
751
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
752
+ essentially ignores `image`.
753
+ num_inference_steps (`int`, *optional*, defaults to 50):
754
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
755
+ expense of slower inference.
756
+ sigmas (`List[float]`, *optional*):
757
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
758
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
759
+ will be used.
760
+ guidance_scale (`float`, *optional*, defaults to 7.0):
761
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
762
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
763
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
764
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
765
+ usually at the expense of lower image quality.
766
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
767
+ The number of images to generate per prompt.
768
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
769
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
770
+ to make generation deterministic.
771
+ latents (`torch.FloatTensor`, *optional*):
772
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
773
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
774
+ tensor will ge generated by sampling using the supplied random `generator`.
775
+ prompt_embeds (`torch.FloatTensor`, *optional*):
776
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
777
+ provided, text embeddings will be generated from `prompt` input argument.
778
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
779
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
780
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
781
+ output_type (`str`, *optional*, defaults to `"pil"`):
782
+ The output format of the generate image. Choose between
783
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
784
+ return_dict (`bool`, *optional*, defaults to `True`):
785
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
786
+ joint_attention_kwargs (`dict`, *optional*):
787
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
788
+ `self.processor` in
789
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
790
+ callback_on_step_end (`Callable`, *optional*):
791
+ A function that calls at the end of each denoising steps during the inference. The function is called
792
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
793
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
794
+ `callback_on_step_end_tensor_inputs`.
795
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
796
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
797
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
798
+ `._callback_tensor_inputs` attribute of your pipeline class.
799
+ max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
800
+
801
+ Examples:
802
+
803
+ Returns:
804
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
805
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
806
+ images.
807
+ """
808
+
809
+ height = height or self.default_sample_size * self.vae_scale_factor
810
+ width = width or self.default_sample_size * self.vae_scale_factor
811
+
812
+ # 1. Check inputs. Raise error if not correct
813
+ self.check_inputs(
814
+ prompt,
815
+ prompt_2,
816
+ image,
817
+ mask_image,
818
+ strength,
819
+ height,
820
+ width,
821
+ output_type=output_type,
822
+ prompt_embeds=prompt_embeds,
823
+ pooled_prompt_embeds=pooled_prompt_embeds,
824
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
825
+ padding_mask_crop=padding_mask_crop,
826
+ max_sequence_length=max_sequence_length,
827
+ )
828
+
829
+ self._guidance_scale = guidance_scale
830
+ self._joint_attention_kwargs = joint_attention_kwargs
831
+ self._interrupt = False
832
+
833
+ # 2. Preprocess mask and image
834
+ if padding_mask_crop is not None:
835
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
836
+ resize_mode = "fill"
837
+ else:
838
+ crops_coords = None
839
+ resize_mode = "default"
840
+
841
+ original_image = image
842
+ init_image = self.image_processor.preprocess(
843
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
844
+ )
845
+ init_image = init_image.to(dtype=torch.float32)
846
+
847
+ # 3. Define call parameters
848
+ if prompt is not None and isinstance(prompt, str):
849
+ batch_size = 1
850
+ elif prompt is not None and isinstance(prompt, list):
851
+ batch_size = len(prompt)
852
+ else:
853
+ batch_size = prompt_embeds.shape[0]
854
+
855
+ device = self._execution_device
856
+
857
+ lora_scale = (
858
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
859
+ )
860
+ (
861
+ prompt_embeds,
862
+ pooled_prompt_embeds,
863
+ text_ids,
864
+ ) = self.encode_prompt(
865
+ prompt=prompt,
866
+ prompt_2=prompt_2,
867
+ prompt_embeds=prompt_embeds,
868
+ pooled_prompt_embeds=pooled_prompt_embeds,
869
+ device=device,
870
+ num_images_per_prompt=num_images_per_prompt,
871
+ max_sequence_length=max_sequence_length,
872
+ lora_scale=lora_scale,
873
+ )
874
+
875
+ # 4.Prepare timesteps
876
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
877
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
878
+ mu = calculate_shift(
879
+ image_seq_len,
880
+ self.scheduler.config.base_image_seq_len,
881
+ self.scheduler.config.max_image_seq_len,
882
+ self.scheduler.config.base_shift,
883
+ self.scheduler.config.max_shift,
884
+ )
885
+ timesteps, num_inference_steps = retrieve_timesteps(
886
+ self.scheduler,
887
+ num_inference_steps,
888
+ device,
889
+ sigmas=sigmas,
890
+ mu=mu,
891
+ )
892
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
893
+
894
+ if num_inference_steps < 1:
895
+ raise ValueError(
896
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
897
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
898
+ )
899
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
900
+
901
+ # 5. Prepare latent variables
902
+ num_channels_latents = self.transformer.config.in_channels // 4
903
+ num_channels_transformer = self.transformer.config.in_channels
904
+
905
+ latents, noise, image_latents, latent_image_ids = self.prepare_latents(
906
+ init_image,
907
+ latent_timestep,
908
+ batch_size * num_images_per_prompt,
909
+ num_channels_latents,
910
+ height,
911
+ width,
912
+ prompt_embeds.dtype,
913
+ device,
914
+ generator,
915
+ latents,
916
+ )
917
+
918
+ mask_condition = self.mask_processor.preprocess(
919
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
920
+ )
921
+
922
+ if masked_image_latents is None:
923
+ masked_image = init_image * (mask_condition < 0.5)
924
+ else:
925
+ masked_image = masked_image_latents
926
+
927
+ mask, masked_image_latents = self.prepare_mask_latents(
928
+ mask_condition,
929
+ masked_image,
930
+ batch_size,
931
+ num_channels_latents,
932
+ num_images_per_prompt,
933
+ height,
934
+ width,
935
+ prompt_embeds.dtype,
936
+ device,
937
+ generator,
938
+ )
939
+
940
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
941
+ self._num_timesteps = len(timesteps)
942
+
943
+ # handle guidance
944
+ if self.transformer.config.guidance_embeds:
945
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
946
+ guidance = guidance.expand(latents.shape[0])
947
+ else:
948
+ guidance = None
949
+
950
+ # 6. Denoising loop
951
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
952
+ for i, t in enumerate(timesteps):
953
+ if self.interrupt:
954
+ continue
955
+
956
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
957
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
958
+ noise_pred = self.transformer(
959
+ hidden_states=latents,
960
+ timestep=timestep / 1000,
961
+ guidance=guidance,
962
+ pooled_projections=pooled_prompt_embeds,
963
+ encoder_hidden_states=prompt_embeds,
964
+ txt_ids=text_ids,
965
+ img_ids=latent_image_ids,
966
+ joint_attention_kwargs=self.joint_attention_kwargs,
967
+ return_dict=False,
968
+ )[0]
969
+
970
+ # compute the previous noisy sample x_t -> x_t-1
971
+ latents_dtype = latents.dtype
972
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
973
+
974
+ # for 64 channel transformer only.
975
+ init_latents_proper = image_latents
976
+ init_mask = mask
977
+
978
+ if i < len(timesteps) - 1:
979
+ noise_timestep = timesteps[i + 1]
980
+ init_latents_proper = self.scheduler.scale_noise(
981
+ init_latents_proper, torch.tensor([noise_timestep]), noise
982
+ )
983
+
984
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
985
+
986
+ if latents.dtype != latents_dtype:
987
+ if torch.backends.mps.is_available():
988
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
989
+ latents = latents.to(latents_dtype)
990
+
991
+ if callback_on_step_end is not None:
992
+ callback_kwargs = {}
993
+ for k in callback_on_step_end_tensor_inputs:
994
+ callback_kwargs[k] = locals()[k]
995
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
996
+
997
+ latents = callback_outputs.pop("latents", latents)
998
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
999
+
1000
+ # call the callback, if provided
1001
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1002
+ progress_bar.update()
1003
+
1004
+ if XLA_AVAILABLE:
1005
+ xm.mark_step()
1006
+
1007
+ if output_type == "latent":
1008
+ image = latents
1009
+
1010
+ else:
1011
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1012
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1013
+ image = self.vae.decode(latents, return_dict=False)[0]
1014
+ image = self.image_processor.postprocess(image, output_type=output_type)
1015
+
1016
+ # Offload all models
1017
+ self.maybe_free_model_hooks()
1018
+
1019
+ if not return_dict:
1020
+ return (image,)
1021
+
1022
+ return FluxPipelineOutput(images=image)