diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,998 @@
1
+ import inspect
2
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ from transformers import (
7
+ CLIPTextModel,
8
+ CLIPTokenizer,
9
+ T5EncoderModel,
10
+ T5TokenizerFast,
11
+ )
12
+
13
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
14
+ from ...loaders import FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
15
+ from ...models.autoencoders import AutoencoderKL
16
+ from ...models.controlnets.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
17
+ from ...models.transformers import FluxTransformer2DModel
18
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
19
+ from ...utils import (
20
+ USE_PEFT_BACKEND,
21
+ is_torch_xla_available,
22
+ logging,
23
+ replace_example_docstring,
24
+ scale_lora_layers,
25
+ unscale_lora_layers,
26
+ )
27
+ from ...utils.torch_utils import randn_tensor
28
+ from ..pipeline_utils import DiffusionPipeline
29
+ from .pipeline_output import FluxPipelineOutput
30
+
31
+
32
+ if is_torch_xla_available():
33
+ import torch_xla.core.xla_model as xm
34
+
35
+ XLA_AVAILABLE = True
36
+ else:
37
+ XLA_AVAILABLE = False
38
+
39
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
40
+
41
+ EXAMPLE_DOC_STRING = """
42
+ Examples:
43
+ ```py
44
+ >>> import torch
45
+ >>> from diffusers import FluxControlNetImg2ImgPipeline, FluxControlNetModel
46
+ >>> from diffusers.utils import load_image
47
+
48
+ >>> device = "cuda" if torch.cuda.is_available() else "cpu"
49
+
50
+ >>> controlnet = FluxControlNetModel.from_pretrained(
51
+ ... "InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16
52
+ ... )
53
+
54
+ >>> pipe = FluxControlNetImg2ImgPipeline.from_pretrained(
55
+ ... "black-forest-labs/FLUX.1-schnell", controlnet=controlnet, torch_dtype=torch.float16
56
+ ... )
57
+
58
+ >>> pipe.text_encoder.to(torch.float16)
59
+ >>> pipe.controlnet.to(torch.float16)
60
+ >>> pipe.to("cuda")
61
+
62
+ >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
63
+ >>> init_image = load_image(
64
+ ... "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
65
+ ... )
66
+
67
+ >>> prompt = "A girl in city, 25 years old, cool, futuristic"
68
+ >>> image = pipe(
69
+ ... prompt,
70
+ ... image=init_image,
71
+ ... control_image=control_image,
72
+ ... control_guidance_start=0.2,
73
+ ... control_guidance_end=0.8,
74
+ ... controlnet_conditioning_scale=1.0,
75
+ ... strength=0.7,
76
+ ... num_inference_steps=2,
77
+ ... guidance_scale=3.5,
78
+ ... ).images[0]
79
+ >>> image.save("flux_controlnet_img2img.png")
80
+ ```
81
+ """
82
+
83
+
84
+ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
85
+ def calculate_shift(
86
+ image_seq_len,
87
+ base_seq_len: int = 256,
88
+ max_seq_len: int = 4096,
89
+ base_shift: float = 0.5,
90
+ max_shift: float = 1.16,
91
+ ):
92
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
93
+ b = base_shift - m * base_seq_len
94
+ mu = image_seq_len * m + b
95
+ return mu
96
+
97
+
98
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
99
+ def retrieve_latents(
100
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
101
+ ):
102
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
103
+ return encoder_output.latent_dist.sample(generator)
104
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
105
+ return encoder_output.latent_dist.mode()
106
+ elif hasattr(encoder_output, "latents"):
107
+ return encoder_output.latents
108
+ else:
109
+ raise AttributeError("Could not access latents of provided encoder_output")
110
+
111
+
112
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
113
+ def retrieve_timesteps(
114
+ scheduler,
115
+ num_inference_steps: Optional[int] = None,
116
+ device: Optional[Union[str, torch.device]] = None,
117
+ timesteps: Optional[List[int]] = None,
118
+ sigmas: Optional[List[float]] = None,
119
+ **kwargs,
120
+ ):
121
+ r"""
122
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
123
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
124
+
125
+ Args:
126
+ scheduler (`SchedulerMixin`):
127
+ The scheduler to get timesteps from.
128
+ num_inference_steps (`int`):
129
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
130
+ must be `None`.
131
+ device (`str` or `torch.device`, *optional*):
132
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
133
+ timesteps (`List[int]`, *optional*):
134
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
135
+ `num_inference_steps` and `sigmas` must be `None`.
136
+ sigmas (`List[float]`, *optional*):
137
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
138
+ `num_inference_steps` and `timesteps` must be `None`.
139
+
140
+ Returns:
141
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
142
+ second element is the number of inference steps.
143
+ """
144
+ if timesteps is not None and sigmas is not None:
145
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
146
+ if timesteps is not None:
147
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
148
+ if not accepts_timesteps:
149
+ raise ValueError(
150
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
151
+ f" timestep schedules. Please check whether you are using the correct scheduler."
152
+ )
153
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
154
+ timesteps = scheduler.timesteps
155
+ num_inference_steps = len(timesteps)
156
+ elif sigmas is not None:
157
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
158
+ if not accept_sigmas:
159
+ raise ValueError(
160
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
161
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
162
+ )
163
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
164
+ timesteps = scheduler.timesteps
165
+ num_inference_steps = len(timesteps)
166
+ else:
167
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
168
+ timesteps = scheduler.timesteps
169
+ return timesteps, num_inference_steps
170
+
171
+
172
+ class FluxControlNetImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
173
+ r"""
174
+ The Flux controlnet pipeline for image-to-image generation.
175
+
176
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
177
+
178
+ Args:
179
+ transformer ([`FluxTransformer2DModel`]):
180
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
181
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
182
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
183
+ vae ([`AutoencoderKL`]):
184
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
185
+ text_encoder ([`CLIPTextModel`]):
186
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
187
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
188
+ text_encoder_2 ([`T5EncoderModel`]):
189
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
190
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
191
+ tokenizer (`CLIPTokenizer`):
192
+ Tokenizer of class
193
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
194
+ tokenizer_2 (`T5TokenizerFast`):
195
+ Second Tokenizer of class
196
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
197
+ """
198
+
199
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
200
+ _optional_components = []
201
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
202
+
203
+ def __init__(
204
+ self,
205
+ scheduler: FlowMatchEulerDiscreteScheduler,
206
+ vae: AutoencoderKL,
207
+ text_encoder: CLIPTextModel,
208
+ tokenizer: CLIPTokenizer,
209
+ text_encoder_2: T5EncoderModel,
210
+ tokenizer_2: T5TokenizerFast,
211
+ transformer: FluxTransformer2DModel,
212
+ controlnet: Union[
213
+ FluxControlNetModel, List[FluxControlNetModel], Tuple[FluxControlNetModel], FluxMultiControlNetModel
214
+ ],
215
+ ):
216
+ super().__init__()
217
+ if isinstance(controlnet, (list, tuple)):
218
+ controlnet = FluxMultiControlNetModel(controlnet)
219
+
220
+ self.register_modules(
221
+ vae=vae,
222
+ text_encoder=text_encoder,
223
+ text_encoder_2=text_encoder_2,
224
+ tokenizer=tokenizer,
225
+ tokenizer_2=tokenizer_2,
226
+ transformer=transformer,
227
+ scheduler=scheduler,
228
+ controlnet=controlnet,
229
+ )
230
+ self.vae_scale_factor = (
231
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
232
+ )
233
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
234
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
235
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
236
+ self.tokenizer_max_length = (
237
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
238
+ )
239
+ self.default_sample_size = 128
240
+
241
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
242
+ def _get_t5_prompt_embeds(
243
+ self,
244
+ prompt: Union[str, List[str]] = None,
245
+ num_images_per_prompt: int = 1,
246
+ max_sequence_length: int = 512,
247
+ device: Optional[torch.device] = None,
248
+ dtype: Optional[torch.dtype] = None,
249
+ ):
250
+ device = device or self._execution_device
251
+ dtype = dtype or self.text_encoder.dtype
252
+
253
+ prompt = [prompt] if isinstance(prompt, str) else prompt
254
+ batch_size = len(prompt)
255
+
256
+ if isinstance(self, TextualInversionLoaderMixin):
257
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
258
+
259
+ text_inputs = self.tokenizer_2(
260
+ prompt,
261
+ padding="max_length",
262
+ max_length=max_sequence_length,
263
+ truncation=True,
264
+ return_length=False,
265
+ return_overflowing_tokens=False,
266
+ return_tensors="pt",
267
+ )
268
+ text_input_ids = text_inputs.input_ids
269
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
270
+
271
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
272
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
273
+ logger.warning(
274
+ "The following part of your input was truncated because `max_sequence_length` is set to "
275
+ f" {max_sequence_length} tokens: {removed_text}"
276
+ )
277
+
278
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
279
+
280
+ dtype = self.text_encoder_2.dtype
281
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
282
+
283
+ _, seq_len, _ = prompt_embeds.shape
284
+
285
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
286
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
287
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
288
+
289
+ return prompt_embeds
290
+
291
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
292
+ def _get_clip_prompt_embeds(
293
+ self,
294
+ prompt: Union[str, List[str]],
295
+ num_images_per_prompt: int = 1,
296
+ device: Optional[torch.device] = None,
297
+ ):
298
+ device = device or self._execution_device
299
+
300
+ prompt = [prompt] if isinstance(prompt, str) else prompt
301
+ batch_size = len(prompt)
302
+
303
+ if isinstance(self, TextualInversionLoaderMixin):
304
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
305
+
306
+ text_inputs = self.tokenizer(
307
+ prompt,
308
+ padding="max_length",
309
+ max_length=self.tokenizer_max_length,
310
+ truncation=True,
311
+ return_overflowing_tokens=False,
312
+ return_length=False,
313
+ return_tensors="pt",
314
+ )
315
+
316
+ text_input_ids = text_inputs.input_ids
317
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
318
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
319
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
320
+ logger.warning(
321
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
322
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
323
+ )
324
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
325
+
326
+ # Use pooled output of CLIPTextModel
327
+ prompt_embeds = prompt_embeds.pooler_output
328
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
329
+
330
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
331
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
332
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
333
+
334
+ return prompt_embeds
335
+
336
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
337
+ def encode_prompt(
338
+ self,
339
+ prompt: Union[str, List[str]],
340
+ prompt_2: Union[str, List[str]],
341
+ device: Optional[torch.device] = None,
342
+ num_images_per_prompt: int = 1,
343
+ prompt_embeds: Optional[torch.FloatTensor] = None,
344
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
345
+ max_sequence_length: int = 512,
346
+ lora_scale: Optional[float] = None,
347
+ ):
348
+ r"""
349
+
350
+ Args:
351
+ prompt (`str` or `List[str]`, *optional*):
352
+ prompt to be encoded
353
+ prompt_2 (`str` or `List[str]`, *optional*):
354
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
355
+ used in all text-encoders
356
+ device: (`torch.device`):
357
+ torch device
358
+ num_images_per_prompt (`int`):
359
+ number of images that should be generated per prompt
360
+ prompt_embeds (`torch.FloatTensor`, *optional*):
361
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
362
+ provided, text embeddings will be generated from `prompt` input argument.
363
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
364
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
365
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
366
+ lora_scale (`float`, *optional*):
367
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
368
+ """
369
+ device = device or self._execution_device
370
+
371
+ # set lora scale so that monkey patched LoRA
372
+ # function of text encoder can correctly access it
373
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
374
+ self._lora_scale = lora_scale
375
+
376
+ # dynamically adjust the LoRA scale
377
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
378
+ scale_lora_layers(self.text_encoder, lora_scale)
379
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
380
+ scale_lora_layers(self.text_encoder_2, lora_scale)
381
+
382
+ prompt = [prompt] if isinstance(prompt, str) else prompt
383
+
384
+ if prompt_embeds is None:
385
+ prompt_2 = prompt_2 or prompt
386
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
387
+
388
+ # We only use the pooled prompt output from the CLIPTextModel
389
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
390
+ prompt=prompt,
391
+ device=device,
392
+ num_images_per_prompt=num_images_per_prompt,
393
+ )
394
+ prompt_embeds = self._get_t5_prompt_embeds(
395
+ prompt=prompt_2,
396
+ num_images_per_prompt=num_images_per_prompt,
397
+ max_sequence_length=max_sequence_length,
398
+ device=device,
399
+ )
400
+
401
+ if self.text_encoder is not None:
402
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
403
+ # Retrieve the original scale by scaling back the LoRA layers
404
+ unscale_lora_layers(self.text_encoder, lora_scale)
405
+
406
+ if self.text_encoder_2 is not None:
407
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
408
+ # Retrieve the original scale by scaling back the LoRA layers
409
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
410
+
411
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
412
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
413
+
414
+ return prompt_embeds, pooled_prompt_embeds, text_ids
415
+
416
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_inpaint.StableDiffusion3InpaintPipeline._encode_vae_image
417
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
418
+ if isinstance(generator, list):
419
+ image_latents = [
420
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
421
+ for i in range(image.shape[0])
422
+ ]
423
+ image_latents = torch.cat(image_latents, dim=0)
424
+ else:
425
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
426
+
427
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
428
+
429
+ return image_latents
430
+
431
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
432
+ def get_timesteps(self, num_inference_steps, strength, device):
433
+ # get the original timestep using init_timestep
434
+ init_timestep = min(num_inference_steps * strength, num_inference_steps)
435
+
436
+ t_start = int(max(num_inference_steps - init_timestep, 0))
437
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
438
+ if hasattr(self.scheduler, "set_begin_index"):
439
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
440
+
441
+ return timesteps, num_inference_steps - t_start
442
+
443
+ def check_inputs(
444
+ self,
445
+ prompt,
446
+ prompt_2,
447
+ strength,
448
+ height,
449
+ width,
450
+ callback_on_step_end_tensor_inputs,
451
+ prompt_embeds=None,
452
+ pooled_prompt_embeds=None,
453
+ max_sequence_length=None,
454
+ ):
455
+ if strength < 0 or strength > 1:
456
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
457
+
458
+ if height % self.vae_scale_factor * 2 != 0 or width % self.vae_scale_factor * 2 != 0:
459
+ logger.warning(
460
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
461
+ )
462
+
463
+ if callback_on_step_end_tensor_inputs is not None and not all(
464
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
465
+ ):
466
+ raise ValueError(
467
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
468
+ )
469
+
470
+ if prompt is not None and prompt_embeds is not None:
471
+ raise ValueError(
472
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
473
+ " only forward one of the two."
474
+ )
475
+ elif prompt_2 is not None and prompt_embeds is not None:
476
+ raise ValueError(
477
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
478
+ " only forward one of the two."
479
+ )
480
+ elif prompt is None and prompt_embeds is None:
481
+ raise ValueError(
482
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
483
+ )
484
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
485
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
486
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
487
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
488
+
489
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
490
+ raise ValueError(
491
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
492
+ )
493
+
494
+ if max_sequence_length is not None and max_sequence_length > 512:
495
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
496
+
497
+ @staticmethod
498
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
499
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
500
+ latent_image_ids = torch.zeros(height, width, 3)
501
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
502
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
503
+
504
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
505
+
506
+ latent_image_ids = latent_image_ids.reshape(
507
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
508
+ )
509
+
510
+ return latent_image_ids.to(device=device, dtype=dtype)
511
+
512
+ @staticmethod
513
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
514
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
515
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
516
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
517
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
518
+
519
+ return latents
520
+
521
+ @staticmethod
522
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
523
+ def _unpack_latents(latents, height, width, vae_scale_factor):
524
+ batch_size, num_patches, channels = latents.shape
525
+
526
+ # VAE applies 8x compression on images but we must also account for packing which requires
527
+ # latent height and width to be divisible by 2.
528
+ height = 2 * (int(height) // (vae_scale_factor * 2))
529
+ width = 2 * (int(width) // (vae_scale_factor * 2))
530
+
531
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
532
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
533
+
534
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
535
+
536
+ return latents
537
+
538
+ # Copied from diffusers.pipelines.flux.pipeline_flux_img2img.FluxImg2ImgPipeline.prepare_latents
539
+ def prepare_latents(
540
+ self,
541
+ image,
542
+ timestep,
543
+ batch_size,
544
+ num_channels_latents,
545
+ height,
546
+ width,
547
+ dtype,
548
+ device,
549
+ generator,
550
+ latents=None,
551
+ ):
552
+ if isinstance(generator, list) and len(generator) != batch_size:
553
+ raise ValueError(
554
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
555
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
556
+ )
557
+
558
+ # VAE applies 8x compression on images but we must also account for packing which requires
559
+ # latent height and width to be divisible by 2.
560
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
561
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
562
+ shape = (batch_size, num_channels_latents, height, width)
563
+ latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
564
+
565
+ if latents is not None:
566
+ return latents.to(device=device, dtype=dtype), latent_image_ids
567
+
568
+ image = image.to(device=device, dtype=dtype)
569
+ image_latents = self._encode_vae_image(image=image, generator=generator)
570
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
571
+ # expand init_latents for batch_size
572
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
573
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
574
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
575
+ raise ValueError(
576
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
577
+ )
578
+ else:
579
+ image_latents = torch.cat([image_latents], dim=0)
580
+
581
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
582
+ latents = self.scheduler.scale_noise(image_latents, timestep, noise)
583
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
584
+ return latents, latent_image_ids
585
+
586
+ # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
587
+ def prepare_image(
588
+ self,
589
+ image,
590
+ width,
591
+ height,
592
+ batch_size,
593
+ num_images_per_prompt,
594
+ device,
595
+ dtype,
596
+ do_classifier_free_guidance=False,
597
+ guess_mode=False,
598
+ ):
599
+ if isinstance(image, torch.Tensor):
600
+ pass
601
+ else:
602
+ image = self.image_processor.preprocess(image, height=height, width=width)
603
+
604
+ image_batch_size = image.shape[0]
605
+
606
+ if image_batch_size == 1:
607
+ repeat_by = batch_size
608
+ else:
609
+ # image batch size is the same as prompt batch size
610
+ repeat_by = num_images_per_prompt
611
+
612
+ image = image.repeat_interleave(repeat_by, dim=0)
613
+
614
+ image = image.to(device=device, dtype=dtype)
615
+
616
+ if do_classifier_free_guidance and not guess_mode:
617
+ image = torch.cat([image] * 2)
618
+
619
+ return image
620
+
621
+ @property
622
+ def guidance_scale(self):
623
+ return self._guidance_scale
624
+
625
+ @property
626
+ def joint_attention_kwargs(self):
627
+ return self._joint_attention_kwargs
628
+
629
+ @property
630
+ def num_timesteps(self):
631
+ return self._num_timesteps
632
+
633
+ @property
634
+ def interrupt(self):
635
+ return self._interrupt
636
+
637
+ @torch.no_grad()
638
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
639
+ def __call__(
640
+ self,
641
+ prompt: Union[str, List[str]] = None,
642
+ prompt_2: Optional[Union[str, List[str]]] = None,
643
+ image: PipelineImageInput = None,
644
+ control_image: PipelineImageInput = None,
645
+ height: Optional[int] = None,
646
+ width: Optional[int] = None,
647
+ strength: float = 0.6,
648
+ num_inference_steps: int = 28,
649
+ sigmas: Optional[List[float]] = None,
650
+ guidance_scale: float = 7.0,
651
+ control_guidance_start: Union[float, List[float]] = 0.0,
652
+ control_guidance_end: Union[float, List[float]] = 1.0,
653
+ control_mode: Optional[Union[int, List[int]]] = None,
654
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
655
+ num_images_per_prompt: Optional[int] = 1,
656
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
657
+ latents: Optional[torch.FloatTensor] = None,
658
+ prompt_embeds: Optional[torch.FloatTensor] = None,
659
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
660
+ output_type: Optional[str] = "pil",
661
+ return_dict: bool = True,
662
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
663
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
664
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
665
+ max_sequence_length: int = 512,
666
+ ):
667
+ """
668
+ Function invoked when calling the pipeline for generation.
669
+
670
+ Args:
671
+ prompt (`str` or `List[str]`, *optional*):
672
+ The prompt or prompts to guide the image generation.
673
+ prompt_2 (`str` or `List[str]`, *optional*):
674
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`.
675
+ image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
676
+ The image(s) to modify with the pipeline.
677
+ control_image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
678
+ The ControlNet input condition. Image to control the generation.
679
+ height (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor):
680
+ The height in pixels of the generated image.
681
+ width (`int`, *optional*, defaults to self.default_sample_size * self.vae_scale_factor):
682
+ The width in pixels of the generated image.
683
+ strength (`float`, *optional*, defaults to 0.6):
684
+ Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
685
+ num_inference_steps (`int`, *optional*, defaults to 28):
686
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
687
+ expense of slower inference.
688
+ sigmas (`List[float]`, *optional*):
689
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
690
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
691
+ will be used.
692
+ guidance_scale (`float`, *optional*, defaults to 7.0):
693
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
694
+ control_mode (`int` or `List[int]`, *optional*):
695
+ The mode for the ControlNet. If multiple ControlNets are used, this should be a list.
696
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
697
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
698
+ to the residual in the original transformer.
699
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
700
+ The number of images to generate per prompt.
701
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
702
+ One or more [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to
703
+ make generation deterministic.
704
+ latents (`torch.FloatTensor`, *optional*):
705
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
706
+ generation. Can be used to tweak the same generation with different prompts.
707
+ prompt_embeds (`torch.FloatTensor`, *optional*):
708
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
709
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
710
+ Pre-generated pooled text embeddings.
711
+ output_type (`str`, *optional*, defaults to `"pil"`):
712
+ The output format of the generate image. Choose between `PIL.Image` or `np.array`.
713
+ return_dict (`bool`, *optional*, defaults to `True`):
714
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
715
+ joint_attention_kwargs (`dict`, *optional*):
716
+ Additional keyword arguments to be passed to the joint attention mechanism.
717
+ callback_on_step_end (`Callable`, *optional*):
718
+ A function that calls at the end of each denoising step during the inference.
719
+ callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
720
+ The list of tensor inputs for the `callback_on_step_end` function.
721
+ max_sequence_length (`int`, *optional*, defaults to 512):
722
+ The maximum length of the sequence to be generated.
723
+
724
+ Examples:
725
+
726
+ Returns:
727
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
728
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
729
+ images.
730
+ """
731
+ height = height or self.default_sample_size * self.vae_scale_factor
732
+ width = width or self.default_sample_size * self.vae_scale_factor
733
+
734
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
735
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
736
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
737
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
738
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
739
+ mult = len(self.controlnet.nets) if isinstance(self.controlnet, FluxMultiControlNetModel) else 1
740
+ control_guidance_start, control_guidance_end = (
741
+ mult * [control_guidance_start],
742
+ mult * [control_guidance_end],
743
+ )
744
+
745
+ self.check_inputs(
746
+ prompt,
747
+ prompt_2,
748
+ strength,
749
+ height,
750
+ width,
751
+ callback_on_step_end_tensor_inputs,
752
+ prompt_embeds=prompt_embeds,
753
+ pooled_prompt_embeds=pooled_prompt_embeds,
754
+ max_sequence_length=max_sequence_length,
755
+ )
756
+
757
+ self._guidance_scale = guidance_scale
758
+ self._joint_attention_kwargs = joint_attention_kwargs
759
+ self._interrupt = False
760
+
761
+ if prompt is not None and isinstance(prompt, str):
762
+ batch_size = 1
763
+ elif prompt is not None and isinstance(prompt, list):
764
+ batch_size = len(prompt)
765
+ else:
766
+ batch_size = prompt_embeds.shape[0]
767
+
768
+ device = self._execution_device
769
+ dtype = self.transformer.dtype
770
+
771
+ lora_scale = (
772
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
773
+ )
774
+ (
775
+ prompt_embeds,
776
+ pooled_prompt_embeds,
777
+ text_ids,
778
+ ) = self.encode_prompt(
779
+ prompt=prompt,
780
+ prompt_2=prompt_2,
781
+ prompt_embeds=prompt_embeds,
782
+ pooled_prompt_embeds=pooled_prompt_embeds,
783
+ device=device,
784
+ num_images_per_prompt=num_images_per_prompt,
785
+ max_sequence_length=max_sequence_length,
786
+ lora_scale=lora_scale,
787
+ )
788
+
789
+ init_image = self.image_processor.preprocess(image, height=height, width=width)
790
+ init_image = init_image.to(dtype=torch.float32)
791
+
792
+ num_channels_latents = self.transformer.config.in_channels // 4
793
+
794
+ if isinstance(self.controlnet, FluxControlNetModel):
795
+ control_image = self.prepare_image(
796
+ image=control_image,
797
+ width=width,
798
+ height=height,
799
+ batch_size=batch_size * num_images_per_prompt,
800
+ num_images_per_prompt=num_images_per_prompt,
801
+ device=device,
802
+ dtype=self.vae.dtype,
803
+ )
804
+ height, width = control_image.shape[-2:]
805
+
806
+ control_image = retrieve_latents(self.vae.encode(control_image), generator=generator)
807
+ control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
808
+
809
+ height_control_image, width_control_image = control_image.shape[2:]
810
+ control_image = self._pack_latents(
811
+ control_image,
812
+ batch_size * num_images_per_prompt,
813
+ num_channels_latents,
814
+ height_control_image,
815
+ width_control_image,
816
+ )
817
+
818
+ if control_mode is not None:
819
+ control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
820
+ control_mode = control_mode.reshape([-1, 1])
821
+
822
+ elif isinstance(self.controlnet, FluxMultiControlNetModel):
823
+ control_images = []
824
+
825
+ for control_image_ in control_image:
826
+ control_image_ = self.prepare_image(
827
+ image=control_image_,
828
+ width=width,
829
+ height=height,
830
+ batch_size=batch_size * num_images_per_prompt,
831
+ num_images_per_prompt=num_images_per_prompt,
832
+ device=device,
833
+ dtype=self.vae.dtype,
834
+ )
835
+ height, width = control_image_.shape[-2:]
836
+
837
+ control_image_ = retrieve_latents(self.vae.encode(control_image_), generator=generator)
838
+ control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
839
+
840
+ height_control_image, width_control_image = control_image_.shape[2:]
841
+ control_image_ = self._pack_latents(
842
+ control_image_,
843
+ batch_size * num_images_per_prompt,
844
+ num_channels_latents,
845
+ height_control_image,
846
+ width_control_image,
847
+ )
848
+
849
+ control_images.append(control_image_)
850
+
851
+ control_image = control_images
852
+
853
+ control_mode_ = []
854
+ if isinstance(control_mode, list):
855
+ for cmode in control_mode:
856
+ if cmode is None:
857
+ control_mode_.append(-1)
858
+ else:
859
+ control_mode_.append(cmode)
860
+ control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
861
+ control_mode = control_mode.reshape([-1, 1])
862
+
863
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
864
+ image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
865
+ mu = calculate_shift(
866
+ image_seq_len,
867
+ self.scheduler.config.base_image_seq_len,
868
+ self.scheduler.config.max_image_seq_len,
869
+ self.scheduler.config.base_shift,
870
+ self.scheduler.config.max_shift,
871
+ )
872
+ timesteps, num_inference_steps = retrieve_timesteps(
873
+ self.scheduler,
874
+ num_inference_steps,
875
+ device,
876
+ sigmas=sigmas,
877
+ mu=mu,
878
+ )
879
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
880
+
881
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
882
+ latents, latent_image_ids = self.prepare_latents(
883
+ init_image,
884
+ latent_timestep,
885
+ batch_size * num_images_per_prompt,
886
+ num_channels_latents,
887
+ height,
888
+ width,
889
+ prompt_embeds.dtype,
890
+ device,
891
+ generator,
892
+ latents,
893
+ )
894
+
895
+ controlnet_keep = []
896
+ for i in range(len(timesteps)):
897
+ keeps = [
898
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
899
+ for s, e in zip(control_guidance_start, control_guidance_end)
900
+ ]
901
+ controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
902
+
903
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
904
+ self._num_timesteps = len(timesteps)
905
+
906
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
907
+ for i, t in enumerate(timesteps):
908
+ if self.interrupt:
909
+ continue
910
+
911
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
912
+
913
+ if isinstance(self.controlnet, FluxMultiControlNetModel):
914
+ use_guidance = self.controlnet.nets[0].config.guidance_embeds
915
+ else:
916
+ use_guidance = self.controlnet.config.guidance_embeds
917
+
918
+ guidance = torch.tensor([guidance_scale], device=device) if use_guidance else None
919
+ guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
920
+
921
+ if isinstance(controlnet_keep[i], list):
922
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
923
+ else:
924
+ controlnet_cond_scale = controlnet_conditioning_scale
925
+ if isinstance(controlnet_cond_scale, list):
926
+ controlnet_cond_scale = controlnet_cond_scale[0]
927
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
928
+
929
+ controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
930
+ hidden_states=latents,
931
+ controlnet_cond=control_image,
932
+ controlnet_mode=control_mode,
933
+ conditioning_scale=cond_scale,
934
+ timestep=timestep / 1000,
935
+ guidance=guidance,
936
+ pooled_projections=pooled_prompt_embeds,
937
+ encoder_hidden_states=prompt_embeds,
938
+ txt_ids=text_ids,
939
+ img_ids=latent_image_ids,
940
+ joint_attention_kwargs=self.joint_attention_kwargs,
941
+ return_dict=False,
942
+ )
943
+
944
+ guidance = (
945
+ torch.tensor([guidance_scale], device=device) if self.transformer.config.guidance_embeds else None
946
+ )
947
+ guidance = guidance.expand(latents.shape[0]) if guidance is not None else None
948
+
949
+ noise_pred = self.transformer(
950
+ hidden_states=latents,
951
+ timestep=timestep / 1000,
952
+ guidance=guidance,
953
+ pooled_projections=pooled_prompt_embeds,
954
+ encoder_hidden_states=prompt_embeds,
955
+ controlnet_block_samples=controlnet_block_samples,
956
+ controlnet_single_block_samples=controlnet_single_block_samples,
957
+ txt_ids=text_ids,
958
+ img_ids=latent_image_ids,
959
+ joint_attention_kwargs=self.joint_attention_kwargs,
960
+ return_dict=False,
961
+ )[0]
962
+
963
+ latents_dtype = latents.dtype
964
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
965
+
966
+ if latents.dtype != latents_dtype:
967
+ if torch.backends.mps.is_available():
968
+ latents = latents.to(latents_dtype)
969
+
970
+ if callback_on_step_end is not None:
971
+ callback_kwargs = {}
972
+ for k in callback_on_step_end_tensor_inputs:
973
+ callback_kwargs[k] = locals()[k]
974
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
975
+
976
+ latents = callback_outputs.pop("latents", latents)
977
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
978
+
979
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
980
+ progress_bar.update()
981
+
982
+ if XLA_AVAILABLE:
983
+ xm.mark_step()
984
+
985
+ if output_type == "latent":
986
+ image = latents
987
+ else:
988
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
989
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
990
+ image = self.vae.decode(latents, return_dict=False)[0]
991
+ image = self.image_processor.postprocess(image, output_type=output_type)
992
+
993
+ self.maybe_free_model_hooks()
994
+
995
+ if not return_dict:
996
+ return (image,)
997
+
998
+ return FluxPipelineOutput(images=image)