diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,900 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import copy
|
16
|
+
import inspect
|
17
|
+
import os
|
18
|
+
from pathlib import Path
|
19
|
+
from typing import Callable, Dict, List, Optional, Union
|
20
|
+
|
21
|
+
import safetensors
|
22
|
+
import torch
|
23
|
+
import torch.nn as nn
|
24
|
+
from huggingface_hub import model_info
|
25
|
+
from huggingface_hub.constants import HF_HUB_OFFLINE
|
26
|
+
|
27
|
+
from ..models.modeling_utils import ModelMixin, load_state_dict
|
28
|
+
from ..utils import (
|
29
|
+
USE_PEFT_BACKEND,
|
30
|
+
_get_model_file,
|
31
|
+
convert_state_dict_to_diffusers,
|
32
|
+
convert_state_dict_to_peft,
|
33
|
+
delete_adapter_layers,
|
34
|
+
deprecate,
|
35
|
+
get_adapter_name,
|
36
|
+
get_peft_kwargs,
|
37
|
+
is_accelerate_available,
|
38
|
+
is_peft_available,
|
39
|
+
is_peft_version,
|
40
|
+
is_transformers_available,
|
41
|
+
is_transformers_version,
|
42
|
+
logging,
|
43
|
+
recurse_remove_peft_layers,
|
44
|
+
scale_lora_layers,
|
45
|
+
set_adapter_layers,
|
46
|
+
set_weights_and_activate_adapters,
|
47
|
+
)
|
48
|
+
|
49
|
+
|
50
|
+
if is_transformers_available():
|
51
|
+
from transformers import PreTrainedModel
|
52
|
+
|
53
|
+
from ..models.lora import text_encoder_attn_modules, text_encoder_mlp_modules
|
54
|
+
|
55
|
+
if is_peft_available():
|
56
|
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
57
|
+
|
58
|
+
if is_accelerate_available():
|
59
|
+
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
60
|
+
|
61
|
+
logger = logging.get_logger(__name__)
|
62
|
+
|
63
|
+
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
64
|
+
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
65
|
+
|
66
|
+
|
67
|
+
def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None):
|
68
|
+
"""
|
69
|
+
Fuses LoRAs for the text encoder.
|
70
|
+
|
71
|
+
Args:
|
72
|
+
text_encoder (`torch.nn.Module`):
|
73
|
+
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
|
74
|
+
attribute.
|
75
|
+
lora_scale (`float`, defaults to 1.0):
|
76
|
+
Controls how much to influence the outputs with the LoRA parameters.
|
77
|
+
safe_fusing (`bool`, defaults to `False`):
|
78
|
+
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
|
79
|
+
adapter_names (`List[str]` or `str`):
|
80
|
+
The names of the adapters to use.
|
81
|
+
"""
|
82
|
+
merge_kwargs = {"safe_merge": safe_fusing}
|
83
|
+
|
84
|
+
for module in text_encoder.modules():
|
85
|
+
if isinstance(module, BaseTunerLayer):
|
86
|
+
if lora_scale != 1.0:
|
87
|
+
module.scale_layer(lora_scale)
|
88
|
+
|
89
|
+
# For BC with previous PEFT versions, we need to check the signature
|
90
|
+
# of the `merge` method to see if it supports the `adapter_names` argument.
|
91
|
+
supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
|
92
|
+
if "adapter_names" in supported_merge_kwargs:
|
93
|
+
merge_kwargs["adapter_names"] = adapter_names
|
94
|
+
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
|
95
|
+
raise ValueError(
|
96
|
+
"The `adapter_names` argument is not supported with your PEFT version. "
|
97
|
+
"Please upgrade to the latest version of PEFT. `pip install -U peft`"
|
98
|
+
)
|
99
|
+
|
100
|
+
module.merge(**merge_kwargs)
|
101
|
+
|
102
|
+
|
103
|
+
def unfuse_text_encoder_lora(text_encoder):
|
104
|
+
"""
|
105
|
+
Unfuses LoRAs for the text encoder.
|
106
|
+
|
107
|
+
Args:
|
108
|
+
text_encoder (`torch.nn.Module`):
|
109
|
+
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
|
110
|
+
attribute.
|
111
|
+
"""
|
112
|
+
for module in text_encoder.modules():
|
113
|
+
if isinstance(module, BaseTunerLayer):
|
114
|
+
module.unmerge()
|
115
|
+
|
116
|
+
|
117
|
+
def set_adapters_for_text_encoder(
|
118
|
+
adapter_names: Union[List[str], str],
|
119
|
+
text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
|
120
|
+
text_encoder_weights: Optional[Union[float, List[float], List[None]]] = None,
|
121
|
+
):
|
122
|
+
"""
|
123
|
+
Sets the adapter layers for the text encoder.
|
124
|
+
|
125
|
+
Args:
|
126
|
+
adapter_names (`List[str]` or `str`):
|
127
|
+
The names of the adapters to use.
|
128
|
+
text_encoder (`torch.nn.Module`, *optional*):
|
129
|
+
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
|
130
|
+
attribute.
|
131
|
+
text_encoder_weights (`List[float]`, *optional*):
|
132
|
+
The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters.
|
133
|
+
"""
|
134
|
+
if text_encoder is None:
|
135
|
+
raise ValueError(
|
136
|
+
"The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead."
|
137
|
+
)
|
138
|
+
|
139
|
+
def process_weights(adapter_names, weights):
|
140
|
+
# Expand weights into a list, one entry per adapter
|
141
|
+
# e.g. for 2 adapters: 7 -> [7,7] ; [3, None] -> [3, None]
|
142
|
+
if not isinstance(weights, list):
|
143
|
+
weights = [weights] * len(adapter_names)
|
144
|
+
|
145
|
+
if len(adapter_names) != len(weights):
|
146
|
+
raise ValueError(
|
147
|
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}"
|
148
|
+
)
|
149
|
+
|
150
|
+
# Set None values to default of 1.0
|
151
|
+
# e.g. [7,7] -> [7,7] ; [3, None] -> [3,1]
|
152
|
+
weights = [w if w is not None else 1.0 for w in weights]
|
153
|
+
|
154
|
+
return weights
|
155
|
+
|
156
|
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
157
|
+
text_encoder_weights = process_weights(adapter_names, text_encoder_weights)
|
158
|
+
set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights)
|
159
|
+
|
160
|
+
|
161
|
+
def disable_lora_for_text_encoder(text_encoder: Optional["PreTrainedModel"] = None):
|
162
|
+
"""
|
163
|
+
Disables the LoRA layers for the text encoder.
|
164
|
+
|
165
|
+
Args:
|
166
|
+
text_encoder (`torch.nn.Module`, *optional*):
|
167
|
+
The text encoder module to disable the LoRA layers for. If `None`, it will try to get the `text_encoder`
|
168
|
+
attribute.
|
169
|
+
"""
|
170
|
+
if text_encoder is None:
|
171
|
+
raise ValueError("Text Encoder not found.")
|
172
|
+
set_adapter_layers(text_encoder, enabled=False)
|
173
|
+
|
174
|
+
|
175
|
+
def enable_lora_for_text_encoder(text_encoder: Optional["PreTrainedModel"] = None):
|
176
|
+
"""
|
177
|
+
Enables the LoRA layers for the text encoder.
|
178
|
+
|
179
|
+
Args:
|
180
|
+
text_encoder (`torch.nn.Module`, *optional*):
|
181
|
+
The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder`
|
182
|
+
attribute.
|
183
|
+
"""
|
184
|
+
if text_encoder is None:
|
185
|
+
raise ValueError("Text Encoder not found.")
|
186
|
+
set_adapter_layers(text_encoder, enabled=True)
|
187
|
+
|
188
|
+
|
189
|
+
def _remove_text_encoder_monkey_patch(text_encoder):
|
190
|
+
recurse_remove_peft_layers(text_encoder)
|
191
|
+
if getattr(text_encoder, "peft_config", None) is not None:
|
192
|
+
del text_encoder.peft_config
|
193
|
+
text_encoder._hf_peft_config_loaded = None
|
194
|
+
|
195
|
+
|
196
|
+
def _fetch_state_dict(
|
197
|
+
pretrained_model_name_or_path_or_dict,
|
198
|
+
weight_name,
|
199
|
+
use_safetensors,
|
200
|
+
local_files_only,
|
201
|
+
cache_dir,
|
202
|
+
force_download,
|
203
|
+
proxies,
|
204
|
+
token,
|
205
|
+
revision,
|
206
|
+
subfolder,
|
207
|
+
user_agent,
|
208
|
+
allow_pickle,
|
209
|
+
):
|
210
|
+
model_file = None
|
211
|
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
212
|
+
# Let's first try to load .safetensors weights
|
213
|
+
if (use_safetensors and weight_name is None) or (
|
214
|
+
weight_name is not None and weight_name.endswith(".safetensors")
|
215
|
+
):
|
216
|
+
try:
|
217
|
+
# Here we're relaxing the loading check to enable more Inference API
|
218
|
+
# friendliness where sometimes, it's not at all possible to automatically
|
219
|
+
# determine `weight_name`.
|
220
|
+
if weight_name is None:
|
221
|
+
weight_name = _best_guess_weight_name(
|
222
|
+
pretrained_model_name_or_path_or_dict,
|
223
|
+
file_extension=".safetensors",
|
224
|
+
local_files_only=local_files_only,
|
225
|
+
)
|
226
|
+
model_file = _get_model_file(
|
227
|
+
pretrained_model_name_or_path_or_dict,
|
228
|
+
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
229
|
+
cache_dir=cache_dir,
|
230
|
+
force_download=force_download,
|
231
|
+
proxies=proxies,
|
232
|
+
local_files_only=local_files_only,
|
233
|
+
token=token,
|
234
|
+
revision=revision,
|
235
|
+
subfolder=subfolder,
|
236
|
+
user_agent=user_agent,
|
237
|
+
)
|
238
|
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
239
|
+
except (IOError, safetensors.SafetensorError) as e:
|
240
|
+
if not allow_pickle:
|
241
|
+
raise e
|
242
|
+
# try loading non-safetensors weights
|
243
|
+
model_file = None
|
244
|
+
pass
|
245
|
+
|
246
|
+
if model_file is None:
|
247
|
+
if weight_name is None:
|
248
|
+
weight_name = _best_guess_weight_name(
|
249
|
+
pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only
|
250
|
+
)
|
251
|
+
model_file = _get_model_file(
|
252
|
+
pretrained_model_name_or_path_or_dict,
|
253
|
+
weights_name=weight_name or LORA_WEIGHT_NAME,
|
254
|
+
cache_dir=cache_dir,
|
255
|
+
force_download=force_download,
|
256
|
+
proxies=proxies,
|
257
|
+
local_files_only=local_files_only,
|
258
|
+
token=token,
|
259
|
+
revision=revision,
|
260
|
+
subfolder=subfolder,
|
261
|
+
user_agent=user_agent,
|
262
|
+
)
|
263
|
+
state_dict = load_state_dict(model_file)
|
264
|
+
else:
|
265
|
+
state_dict = pretrained_model_name_or_path_or_dict
|
266
|
+
|
267
|
+
return state_dict
|
268
|
+
|
269
|
+
|
270
|
+
def _best_guess_weight_name(
|
271
|
+
pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False
|
272
|
+
):
|
273
|
+
if local_files_only or HF_HUB_OFFLINE:
|
274
|
+
raise ValueError("When using the offline mode, you must specify a `weight_name`.")
|
275
|
+
|
276
|
+
targeted_files = []
|
277
|
+
|
278
|
+
if os.path.isfile(pretrained_model_name_or_path_or_dict):
|
279
|
+
return
|
280
|
+
elif os.path.isdir(pretrained_model_name_or_path_or_dict):
|
281
|
+
targeted_files = [f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)]
|
282
|
+
else:
|
283
|
+
files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
|
284
|
+
targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
|
285
|
+
if len(targeted_files) == 0:
|
286
|
+
return
|
287
|
+
|
288
|
+
# "scheduler" does not correspond to a LoRA checkpoint.
|
289
|
+
# "optimizer" does not correspond to a LoRA checkpoint
|
290
|
+
# only top-level checkpoints are considered and not the other ones, hence "checkpoint".
|
291
|
+
unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
|
292
|
+
targeted_files = list(
|
293
|
+
filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
|
294
|
+
)
|
295
|
+
|
296
|
+
if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files):
|
297
|
+
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files))
|
298
|
+
elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files):
|
299
|
+
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files))
|
300
|
+
|
301
|
+
if len(targeted_files) > 1:
|
302
|
+
raise ValueError(
|
303
|
+
f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}."
|
304
|
+
)
|
305
|
+
weight_name = targeted_files[0]
|
306
|
+
return weight_name
|
307
|
+
|
308
|
+
|
309
|
+
def _load_lora_into_text_encoder(
|
310
|
+
state_dict,
|
311
|
+
network_alphas,
|
312
|
+
text_encoder,
|
313
|
+
prefix=None,
|
314
|
+
lora_scale=1.0,
|
315
|
+
text_encoder_name="text_encoder",
|
316
|
+
adapter_name=None,
|
317
|
+
_pipeline=None,
|
318
|
+
low_cpu_mem_usage=False,
|
319
|
+
):
|
320
|
+
if not USE_PEFT_BACKEND:
|
321
|
+
raise ValueError("PEFT backend is required for this method.")
|
322
|
+
|
323
|
+
peft_kwargs = {}
|
324
|
+
if low_cpu_mem_usage:
|
325
|
+
if not is_peft_version(">=", "0.13.1"):
|
326
|
+
raise ValueError(
|
327
|
+
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
328
|
+
)
|
329
|
+
if not is_transformers_version(">", "4.45.2"):
|
330
|
+
# Note from sayakpaul: It's not in `transformers` stable yet.
|
331
|
+
# https://github.com/huggingface/transformers/pull/33725/
|
332
|
+
raise ValueError(
|
333
|
+
"`low_cpu_mem_usage=True` is not compatible with this `transformers` version. Please update it with `pip install -U transformers`."
|
334
|
+
)
|
335
|
+
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
336
|
+
|
337
|
+
from peft import LoraConfig
|
338
|
+
|
339
|
+
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
|
340
|
+
# then the `state_dict` keys should have `unet_name` and/or `text_encoder_name` as
|
341
|
+
# their prefixes.
|
342
|
+
keys = list(state_dict.keys())
|
343
|
+
prefix = text_encoder_name if prefix is None else prefix
|
344
|
+
|
345
|
+
# Safe prefix to check with.
|
346
|
+
if any(text_encoder_name in key for key in keys):
|
347
|
+
# Load the layers corresponding to text encoder and make necessary adjustments.
|
348
|
+
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
|
349
|
+
text_encoder_lora_state_dict = {
|
350
|
+
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
|
351
|
+
}
|
352
|
+
|
353
|
+
if len(text_encoder_lora_state_dict) > 0:
|
354
|
+
logger.info(f"Loading {prefix}.")
|
355
|
+
rank = {}
|
356
|
+
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict)
|
357
|
+
|
358
|
+
# convert state dict
|
359
|
+
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict)
|
360
|
+
|
361
|
+
for name, _ in text_encoder_attn_modules(text_encoder):
|
362
|
+
for module in ("out_proj", "q_proj", "k_proj", "v_proj"):
|
363
|
+
rank_key = f"{name}.{module}.lora_B.weight"
|
364
|
+
if rank_key not in text_encoder_lora_state_dict:
|
365
|
+
continue
|
366
|
+
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
|
367
|
+
|
368
|
+
for name, _ in text_encoder_mlp_modules(text_encoder):
|
369
|
+
for module in ("fc1", "fc2"):
|
370
|
+
rank_key = f"{name}.{module}.lora_B.weight"
|
371
|
+
if rank_key not in text_encoder_lora_state_dict:
|
372
|
+
continue
|
373
|
+
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
|
374
|
+
|
375
|
+
if network_alphas is not None:
|
376
|
+
alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix]
|
377
|
+
network_alphas = {k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys}
|
378
|
+
|
379
|
+
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False)
|
380
|
+
|
381
|
+
if "use_dora" in lora_config_kwargs:
|
382
|
+
if lora_config_kwargs["use_dora"]:
|
383
|
+
if is_peft_version("<", "0.9.0"):
|
384
|
+
raise ValueError(
|
385
|
+
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
386
|
+
)
|
387
|
+
else:
|
388
|
+
if is_peft_version("<", "0.9.0"):
|
389
|
+
lora_config_kwargs.pop("use_dora")
|
390
|
+
|
391
|
+
if "lora_bias" in lora_config_kwargs:
|
392
|
+
if lora_config_kwargs["lora_bias"]:
|
393
|
+
if is_peft_version("<=", "0.13.2"):
|
394
|
+
raise ValueError(
|
395
|
+
"You need `peft` 0.14.0 at least to use `bias` in LoRAs. Please upgrade your installation of `peft`."
|
396
|
+
)
|
397
|
+
else:
|
398
|
+
if is_peft_version("<=", "0.13.2"):
|
399
|
+
lora_config_kwargs.pop("lora_bias")
|
400
|
+
|
401
|
+
lora_config = LoraConfig(**lora_config_kwargs)
|
402
|
+
|
403
|
+
# adapter_name
|
404
|
+
if adapter_name is None:
|
405
|
+
adapter_name = get_adapter_name(text_encoder)
|
406
|
+
|
407
|
+
is_model_cpu_offload, is_sequential_cpu_offload = _func_optionally_disable_offloading(_pipeline)
|
408
|
+
|
409
|
+
# inject LoRA layers and load the state dict
|
410
|
+
# in transformers we automatically check whether the adapter name is already in use or not
|
411
|
+
text_encoder.load_adapter(
|
412
|
+
adapter_name=adapter_name,
|
413
|
+
adapter_state_dict=text_encoder_lora_state_dict,
|
414
|
+
peft_config=lora_config,
|
415
|
+
**peft_kwargs,
|
416
|
+
)
|
417
|
+
|
418
|
+
# scale LoRA layers with `lora_scale`
|
419
|
+
scale_lora_layers(text_encoder, weight=lora_scale)
|
420
|
+
|
421
|
+
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)
|
422
|
+
|
423
|
+
# Offload back.
|
424
|
+
if is_model_cpu_offload:
|
425
|
+
_pipeline.enable_model_cpu_offload()
|
426
|
+
elif is_sequential_cpu_offload:
|
427
|
+
_pipeline.enable_sequential_cpu_offload()
|
428
|
+
# Unsafe code />
|
429
|
+
|
430
|
+
|
431
|
+
def _func_optionally_disable_offloading(_pipeline):
|
432
|
+
is_model_cpu_offload = False
|
433
|
+
is_sequential_cpu_offload = False
|
434
|
+
|
435
|
+
if _pipeline is not None and _pipeline.hf_device_map is None:
|
436
|
+
for _, component in _pipeline.components.items():
|
437
|
+
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
|
438
|
+
if not is_model_cpu_offload:
|
439
|
+
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload)
|
440
|
+
if not is_sequential_cpu_offload:
|
441
|
+
is_sequential_cpu_offload = (
|
442
|
+
isinstance(component._hf_hook, AlignDevicesHook)
|
443
|
+
or hasattr(component._hf_hook, "hooks")
|
444
|
+
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)
|
445
|
+
)
|
446
|
+
|
447
|
+
logger.info(
|
448
|
+
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
|
449
|
+
)
|
450
|
+
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
|
451
|
+
|
452
|
+
return (is_model_cpu_offload, is_sequential_cpu_offload)
|
453
|
+
|
454
|
+
|
455
|
+
class LoraBaseMixin:
|
456
|
+
"""Utility class for handling LoRAs."""
|
457
|
+
|
458
|
+
_lora_loadable_modules = []
|
459
|
+
num_fused_loras = 0
|
460
|
+
|
461
|
+
def load_lora_weights(self, **kwargs):
|
462
|
+
raise NotImplementedError("`load_lora_weights()` is not implemented.")
|
463
|
+
|
464
|
+
@classmethod
|
465
|
+
def save_lora_weights(cls, **kwargs):
|
466
|
+
raise NotImplementedError("`save_lora_weights()` not implemented.")
|
467
|
+
|
468
|
+
@classmethod
|
469
|
+
def lora_state_dict(cls, **kwargs):
|
470
|
+
raise NotImplementedError("`lora_state_dict()` is not implemented.")
|
471
|
+
|
472
|
+
@classmethod
|
473
|
+
def _optionally_disable_offloading(cls, _pipeline):
|
474
|
+
"""
|
475
|
+
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
476
|
+
|
477
|
+
Args:
|
478
|
+
_pipeline (`DiffusionPipeline`):
|
479
|
+
The pipeline to disable offloading for.
|
480
|
+
|
481
|
+
Returns:
|
482
|
+
tuple:
|
483
|
+
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
484
|
+
"""
|
485
|
+
return _func_optionally_disable_offloading(_pipeline=_pipeline)
|
486
|
+
|
487
|
+
@classmethod
|
488
|
+
def _fetch_state_dict(cls, *args, **kwargs):
|
489
|
+
deprecation_message = f"Using the `_fetch_state_dict()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _fetch_state_dict`."
|
490
|
+
deprecate("_fetch_state_dict", "0.35.0", deprecation_message)
|
491
|
+
return _fetch_state_dict(*args, **kwargs)
|
492
|
+
|
493
|
+
@classmethod
|
494
|
+
def _best_guess_weight_name(cls, *args, **kwargs):
|
495
|
+
deprecation_message = f"Using the `_best_guess_weight_name()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _best_guess_weight_name`."
|
496
|
+
deprecate("_best_guess_weight_name", "0.35.0", deprecation_message)
|
497
|
+
return _best_guess_weight_name(*args, **kwargs)
|
498
|
+
|
499
|
+
def unload_lora_weights(self):
|
500
|
+
"""
|
501
|
+
Unloads the LoRA parameters.
|
502
|
+
|
503
|
+
Examples:
|
504
|
+
|
505
|
+
```python
|
506
|
+
>>> # Assuming `pipeline` is already loaded with the LoRA parameters.
|
507
|
+
>>> pipeline.unload_lora_weights()
|
508
|
+
>>> ...
|
509
|
+
```
|
510
|
+
"""
|
511
|
+
if not USE_PEFT_BACKEND:
|
512
|
+
raise ValueError("PEFT backend is required for this method.")
|
513
|
+
|
514
|
+
for component in self._lora_loadable_modules:
|
515
|
+
model = getattr(self, component, None)
|
516
|
+
if model is not None:
|
517
|
+
if issubclass(model.__class__, ModelMixin):
|
518
|
+
model.unload_lora()
|
519
|
+
elif issubclass(model.__class__, PreTrainedModel):
|
520
|
+
_remove_text_encoder_monkey_patch(model)
|
521
|
+
|
522
|
+
def fuse_lora(
|
523
|
+
self,
|
524
|
+
components: List[str] = [],
|
525
|
+
lora_scale: float = 1.0,
|
526
|
+
safe_fusing: bool = False,
|
527
|
+
adapter_names: Optional[List[str]] = None,
|
528
|
+
**kwargs,
|
529
|
+
):
|
530
|
+
r"""
|
531
|
+
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
|
532
|
+
|
533
|
+
<Tip warning={true}>
|
534
|
+
|
535
|
+
This is an experimental API.
|
536
|
+
|
537
|
+
</Tip>
|
538
|
+
|
539
|
+
Args:
|
540
|
+
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
|
541
|
+
lora_scale (`float`, defaults to 1.0):
|
542
|
+
Controls how much to influence the outputs with the LoRA parameters.
|
543
|
+
safe_fusing (`bool`, defaults to `False`):
|
544
|
+
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
|
545
|
+
adapter_names (`List[str]`, *optional*):
|
546
|
+
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
|
547
|
+
|
548
|
+
Example:
|
549
|
+
|
550
|
+
```py
|
551
|
+
from diffusers import DiffusionPipeline
|
552
|
+
import torch
|
553
|
+
|
554
|
+
pipeline = DiffusionPipeline.from_pretrained(
|
555
|
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
556
|
+
).to("cuda")
|
557
|
+
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
558
|
+
pipeline.fuse_lora(lora_scale=0.7)
|
559
|
+
```
|
560
|
+
"""
|
561
|
+
if "fuse_unet" in kwargs:
|
562
|
+
depr_message = "Passing `fuse_unet` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_unet` will be removed in a future version."
|
563
|
+
deprecate(
|
564
|
+
"fuse_unet",
|
565
|
+
"1.0.0",
|
566
|
+
depr_message,
|
567
|
+
)
|
568
|
+
if "fuse_transformer" in kwargs:
|
569
|
+
depr_message = "Passing `fuse_transformer` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_transformer` will be removed in a future version."
|
570
|
+
deprecate(
|
571
|
+
"fuse_transformer",
|
572
|
+
"1.0.0",
|
573
|
+
depr_message,
|
574
|
+
)
|
575
|
+
if "fuse_text_encoder" in kwargs:
|
576
|
+
depr_message = "Passing `fuse_text_encoder` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_text_encoder` will be removed in a future version."
|
577
|
+
deprecate(
|
578
|
+
"fuse_text_encoder",
|
579
|
+
"1.0.0",
|
580
|
+
depr_message,
|
581
|
+
)
|
582
|
+
|
583
|
+
if len(components) == 0:
|
584
|
+
raise ValueError("`components` cannot be an empty list.")
|
585
|
+
|
586
|
+
for fuse_component in components:
|
587
|
+
if fuse_component not in self._lora_loadable_modules:
|
588
|
+
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.")
|
589
|
+
|
590
|
+
model = getattr(self, fuse_component, None)
|
591
|
+
if model is not None:
|
592
|
+
# check if diffusers model
|
593
|
+
if issubclass(model.__class__, ModelMixin):
|
594
|
+
model.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names)
|
595
|
+
# handle transformers models.
|
596
|
+
if issubclass(model.__class__, PreTrainedModel):
|
597
|
+
fuse_text_encoder_lora(
|
598
|
+
model, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
|
599
|
+
)
|
600
|
+
|
601
|
+
self.num_fused_loras += 1
|
602
|
+
|
603
|
+
def unfuse_lora(self, components: List[str] = [], **kwargs):
|
604
|
+
r"""
|
605
|
+
Reverses the effect of
|
606
|
+
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
|
607
|
+
|
608
|
+
<Tip warning={true}>
|
609
|
+
|
610
|
+
This is an experimental API.
|
611
|
+
|
612
|
+
</Tip>
|
613
|
+
|
614
|
+
Args:
|
615
|
+
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
|
616
|
+
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
|
617
|
+
unfuse_text_encoder (`bool`, defaults to `True`):
|
618
|
+
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
|
619
|
+
LoRA parameters then it won't have any effect.
|
620
|
+
"""
|
621
|
+
if "unfuse_unet" in kwargs:
|
622
|
+
depr_message = "Passing `unfuse_unet` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_unet` will be removed in a future version."
|
623
|
+
deprecate(
|
624
|
+
"unfuse_unet",
|
625
|
+
"1.0.0",
|
626
|
+
depr_message,
|
627
|
+
)
|
628
|
+
if "unfuse_transformer" in kwargs:
|
629
|
+
depr_message = "Passing `unfuse_transformer` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_transformer` will be removed in a future version."
|
630
|
+
deprecate(
|
631
|
+
"unfuse_transformer",
|
632
|
+
"1.0.0",
|
633
|
+
depr_message,
|
634
|
+
)
|
635
|
+
if "unfuse_text_encoder" in kwargs:
|
636
|
+
depr_message = "Passing `unfuse_text_encoder` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_text_encoder` will be removed in a future version."
|
637
|
+
deprecate(
|
638
|
+
"unfuse_text_encoder",
|
639
|
+
"1.0.0",
|
640
|
+
depr_message,
|
641
|
+
)
|
642
|
+
|
643
|
+
if len(components) == 0:
|
644
|
+
raise ValueError("`components` cannot be an empty list.")
|
645
|
+
|
646
|
+
for fuse_component in components:
|
647
|
+
if fuse_component not in self._lora_loadable_modules:
|
648
|
+
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.")
|
649
|
+
|
650
|
+
model = getattr(self, fuse_component, None)
|
651
|
+
if model is not None:
|
652
|
+
if issubclass(model.__class__, (ModelMixin, PreTrainedModel)):
|
653
|
+
for module in model.modules():
|
654
|
+
if isinstance(module, BaseTunerLayer):
|
655
|
+
module.unmerge()
|
656
|
+
|
657
|
+
self.num_fused_loras -= 1
|
658
|
+
|
659
|
+
def set_adapters(
|
660
|
+
self,
|
661
|
+
adapter_names: Union[List[str], str],
|
662
|
+
adapter_weights: Optional[Union[float, Dict, List[float], List[Dict]]] = None,
|
663
|
+
):
|
664
|
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
665
|
+
|
666
|
+
adapter_weights = copy.deepcopy(adapter_weights)
|
667
|
+
|
668
|
+
# Expand weights into a list, one entry per adapter
|
669
|
+
if not isinstance(adapter_weights, list):
|
670
|
+
adapter_weights = [adapter_weights] * len(adapter_names)
|
671
|
+
|
672
|
+
if len(adapter_names) != len(adapter_weights):
|
673
|
+
raise ValueError(
|
674
|
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(adapter_weights)}"
|
675
|
+
)
|
676
|
+
|
677
|
+
list_adapters = self.get_list_adapters() # eg {"unet": ["adapter1", "adapter2"], "text_encoder": ["adapter2"]}
|
678
|
+
# eg ["adapter1", "adapter2"]
|
679
|
+
all_adapters = {adapter for adapters in list_adapters.values() for adapter in adapters}
|
680
|
+
missing_adapters = set(adapter_names) - all_adapters
|
681
|
+
if len(missing_adapters) > 0:
|
682
|
+
raise ValueError(
|
683
|
+
f"Adapter name(s) {missing_adapters} not in the list of present adapters: {all_adapters}."
|
684
|
+
)
|
685
|
+
|
686
|
+
# eg {"adapter1": ["unet"], "adapter2": ["unet", "text_encoder"]}
|
687
|
+
invert_list_adapters = {
|
688
|
+
adapter: [part for part, adapters in list_adapters.items() if adapter in adapters]
|
689
|
+
for adapter in all_adapters
|
690
|
+
}
|
691
|
+
|
692
|
+
# Decompose weights into weights for denoiser and text encoders.
|
693
|
+
_component_adapter_weights = {}
|
694
|
+
for component in self._lora_loadable_modules:
|
695
|
+
model = getattr(self, component)
|
696
|
+
|
697
|
+
for adapter_name, weights in zip(adapter_names, adapter_weights):
|
698
|
+
if isinstance(weights, dict):
|
699
|
+
component_adapter_weights = weights.pop(component, None)
|
700
|
+
|
701
|
+
if component_adapter_weights is not None and not hasattr(self, component):
|
702
|
+
logger.warning(
|
703
|
+
f"Lora weight dict contains {component} weights but will be ignored because pipeline does not have {component}."
|
704
|
+
)
|
705
|
+
|
706
|
+
if component_adapter_weights is not None and component not in invert_list_adapters[adapter_name]:
|
707
|
+
logger.warning(
|
708
|
+
(
|
709
|
+
f"Lora weight dict for adapter '{adapter_name}' contains {component},"
|
710
|
+
f"but this will be ignored because {adapter_name} does not contain weights for {component}."
|
711
|
+
f"Valid parts for {adapter_name} are: {invert_list_adapters[adapter_name]}."
|
712
|
+
)
|
713
|
+
)
|
714
|
+
|
715
|
+
else:
|
716
|
+
component_adapter_weights = weights
|
717
|
+
|
718
|
+
_component_adapter_weights.setdefault(component, [])
|
719
|
+
_component_adapter_weights[component].append(component_adapter_weights)
|
720
|
+
|
721
|
+
if issubclass(model.__class__, ModelMixin):
|
722
|
+
model.set_adapters(adapter_names, _component_adapter_weights[component])
|
723
|
+
elif issubclass(model.__class__, PreTrainedModel):
|
724
|
+
set_adapters_for_text_encoder(adapter_names, model, _component_adapter_weights[component])
|
725
|
+
|
726
|
+
def disable_lora(self):
|
727
|
+
if not USE_PEFT_BACKEND:
|
728
|
+
raise ValueError("PEFT backend is required for this method.")
|
729
|
+
|
730
|
+
for component in self._lora_loadable_modules:
|
731
|
+
model = getattr(self, component, None)
|
732
|
+
if model is not None:
|
733
|
+
if issubclass(model.__class__, ModelMixin):
|
734
|
+
model.disable_lora()
|
735
|
+
elif issubclass(model.__class__, PreTrainedModel):
|
736
|
+
disable_lora_for_text_encoder(model)
|
737
|
+
|
738
|
+
def enable_lora(self):
|
739
|
+
if not USE_PEFT_BACKEND:
|
740
|
+
raise ValueError("PEFT backend is required for this method.")
|
741
|
+
|
742
|
+
for component in self._lora_loadable_modules:
|
743
|
+
model = getattr(self, component, None)
|
744
|
+
if model is not None:
|
745
|
+
if issubclass(model.__class__, ModelMixin):
|
746
|
+
model.enable_lora()
|
747
|
+
elif issubclass(model.__class__, PreTrainedModel):
|
748
|
+
enable_lora_for_text_encoder(model)
|
749
|
+
|
750
|
+
def delete_adapters(self, adapter_names: Union[List[str], str]):
|
751
|
+
"""
|
752
|
+
Args:
|
753
|
+
Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s).
|
754
|
+
adapter_names (`Union[List[str], str]`):
|
755
|
+
The names of the adapter to delete. Can be a single string or a list of strings
|
756
|
+
"""
|
757
|
+
if not USE_PEFT_BACKEND:
|
758
|
+
raise ValueError("PEFT backend is required for this method.")
|
759
|
+
|
760
|
+
if isinstance(adapter_names, str):
|
761
|
+
adapter_names = [adapter_names]
|
762
|
+
|
763
|
+
for component in self._lora_loadable_modules:
|
764
|
+
model = getattr(self, component, None)
|
765
|
+
if model is not None:
|
766
|
+
if issubclass(model.__class__, ModelMixin):
|
767
|
+
model.delete_adapters(adapter_names)
|
768
|
+
elif issubclass(model.__class__, PreTrainedModel):
|
769
|
+
for adapter_name in adapter_names:
|
770
|
+
delete_adapter_layers(model, adapter_name)
|
771
|
+
|
772
|
+
def get_active_adapters(self) -> List[str]:
|
773
|
+
"""
|
774
|
+
Gets the list of the current active adapters.
|
775
|
+
|
776
|
+
Example:
|
777
|
+
|
778
|
+
```python
|
779
|
+
from diffusers import DiffusionPipeline
|
780
|
+
|
781
|
+
pipeline = DiffusionPipeline.from_pretrained(
|
782
|
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
783
|
+
).to("cuda")
|
784
|
+
pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
|
785
|
+
pipeline.get_active_adapters()
|
786
|
+
```
|
787
|
+
"""
|
788
|
+
if not USE_PEFT_BACKEND:
|
789
|
+
raise ValueError(
|
790
|
+
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
|
791
|
+
)
|
792
|
+
|
793
|
+
active_adapters = []
|
794
|
+
|
795
|
+
for component in self._lora_loadable_modules:
|
796
|
+
model = getattr(self, component, None)
|
797
|
+
if model is not None and issubclass(model.__class__, ModelMixin):
|
798
|
+
for module in model.modules():
|
799
|
+
if isinstance(module, BaseTunerLayer):
|
800
|
+
active_adapters = module.active_adapters
|
801
|
+
break
|
802
|
+
|
803
|
+
return active_adapters
|
804
|
+
|
805
|
+
def get_list_adapters(self) -> Dict[str, List[str]]:
|
806
|
+
"""
|
807
|
+
Gets the current list of all available adapters in the pipeline.
|
808
|
+
"""
|
809
|
+
if not USE_PEFT_BACKEND:
|
810
|
+
raise ValueError(
|
811
|
+
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
|
812
|
+
)
|
813
|
+
|
814
|
+
set_adapters = {}
|
815
|
+
|
816
|
+
for component in self._lora_loadable_modules:
|
817
|
+
model = getattr(self, component, None)
|
818
|
+
if (
|
819
|
+
model is not None
|
820
|
+
and issubclass(model.__class__, (ModelMixin, PreTrainedModel))
|
821
|
+
and hasattr(model, "peft_config")
|
822
|
+
):
|
823
|
+
set_adapters[component] = list(model.peft_config.keys())
|
824
|
+
|
825
|
+
return set_adapters
|
826
|
+
|
827
|
+
def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None:
|
828
|
+
"""
|
829
|
+
Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case
|
830
|
+
you want to load multiple adapters and free some GPU memory.
|
831
|
+
|
832
|
+
Args:
|
833
|
+
adapter_names (`List[str]`):
|
834
|
+
List of adapters to send device to.
|
835
|
+
device (`Union[torch.device, str, int]`):
|
836
|
+
Device to send the adapters to. Can be either a torch device, a str or an integer.
|
837
|
+
"""
|
838
|
+
if not USE_PEFT_BACKEND:
|
839
|
+
raise ValueError("PEFT backend is required for this method.")
|
840
|
+
|
841
|
+
for component in self._lora_loadable_modules:
|
842
|
+
model = getattr(self, component, None)
|
843
|
+
if model is not None:
|
844
|
+
for module in model.modules():
|
845
|
+
if isinstance(module, BaseTunerLayer):
|
846
|
+
for adapter_name in adapter_names:
|
847
|
+
module.lora_A[adapter_name].to(device)
|
848
|
+
module.lora_B[adapter_name].to(device)
|
849
|
+
# this is a param, not a module, so device placement is not in-place -> re-assign
|
850
|
+
if hasattr(module, "lora_magnitude_vector") and module.lora_magnitude_vector is not None:
|
851
|
+
if adapter_name in module.lora_magnitude_vector:
|
852
|
+
module.lora_magnitude_vector[adapter_name] = module.lora_magnitude_vector[
|
853
|
+
adapter_name
|
854
|
+
].to(device)
|
855
|
+
|
856
|
+
@staticmethod
|
857
|
+
def pack_weights(layers, prefix):
|
858
|
+
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
859
|
+
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
860
|
+
return layers_state_dict
|
861
|
+
|
862
|
+
@staticmethod
|
863
|
+
def write_lora_layers(
|
864
|
+
state_dict: Dict[str, torch.Tensor],
|
865
|
+
save_directory: str,
|
866
|
+
is_main_process: bool,
|
867
|
+
weight_name: str,
|
868
|
+
save_function: Callable,
|
869
|
+
safe_serialization: bool,
|
870
|
+
):
|
871
|
+
if os.path.isfile(save_directory):
|
872
|
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
873
|
+
return
|
874
|
+
|
875
|
+
if save_function is None:
|
876
|
+
if safe_serialization:
|
877
|
+
|
878
|
+
def save_function(weights, filename):
|
879
|
+
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
880
|
+
|
881
|
+
else:
|
882
|
+
save_function = torch.save
|
883
|
+
|
884
|
+
os.makedirs(save_directory, exist_ok=True)
|
885
|
+
|
886
|
+
if weight_name is None:
|
887
|
+
if safe_serialization:
|
888
|
+
weight_name = LORA_WEIGHT_NAME_SAFE
|
889
|
+
else:
|
890
|
+
weight_name = LORA_WEIGHT_NAME
|
891
|
+
|
892
|
+
save_path = Path(save_directory, weight_name).as_posix()
|
893
|
+
save_function(state_dict, save_path)
|
894
|
+
logger.info(f"Model weights saved in {save_path}")
|
895
|
+
|
896
|
+
@property
|
897
|
+
def lora_scale(self) -> float:
|
898
|
+
# property function that returns the lora scale which can be set at run time by the pipeline.
|
899
|
+
# if _lora_scale has not been set, return 1
|
900
|
+
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0
|