diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -14,39 +14,63 @@
14
14
  # See the License for the specific language governing permissions and
15
15
  # limitations under the License.
16
16
 
17
+ import copy
17
18
  import inspect
18
19
  import itertools
20
+ import json
19
21
  import os
20
22
  import re
21
23
  from collections import OrderedDict
22
- from functools import partial
24
+ from functools import partial, wraps
25
+ from pathlib import Path
23
26
  from typing import Any, Callable, List, Optional, Tuple, Union
24
27
 
25
28
  import safetensors
26
29
  import torch
27
- from huggingface_hub import create_repo
30
+ from huggingface_hub import create_repo, split_torch_state_dict_into_shards
28
31
  from huggingface_hub.utils import validate_hf_hub_args
29
32
  from torch import Tensor, nn
30
33
 
31
34
  from .. import __version__
35
+ from ..quantizers import DiffusersAutoQuantizer, DiffusersQuantizer
36
+ from ..quantizers.quantization_config import QuantizationMethod
32
37
  from ..utils import (
33
38
  CONFIG_NAME,
34
39
  FLAX_WEIGHTS_NAME,
35
- SAFETENSORS_FILE_EXTENSION,
40
+ SAFE_WEIGHTS_INDEX_NAME,
36
41
  SAFETENSORS_WEIGHTS_NAME,
42
+ WEIGHTS_INDEX_NAME,
37
43
  WEIGHTS_NAME,
38
44
  _add_variant,
45
+ _get_checkpoint_shard_files,
39
46
  _get_model_file,
40
47
  deprecate,
41
48
  is_accelerate_available,
49
+ is_bitsandbytes_available,
50
+ is_bitsandbytes_version,
42
51
  is_torch_version,
43
52
  logging,
44
53
  )
45
- from ..utils.hub_utils import PushToHubMixin, load_or_create_model_card, populate_model_card
54
+ from ..utils.hub_utils import (
55
+ PushToHubMixin,
56
+ load_or_create_model_card,
57
+ populate_model_card,
58
+ )
59
+ from .model_loading_utils import (
60
+ _determine_device_map,
61
+ _fetch_index_file,
62
+ _fetch_index_file_legacy,
63
+ _load_state_dict_into_model,
64
+ _merge_sharded_checkpoints,
65
+ load_model_dict_into_meta,
66
+ load_state_dict,
67
+ )
46
68
 
47
69
 
48
70
  logger = logging.get_logger(__name__)
49
71
 
72
+ _REGEX_SHARD = re.compile(r"(.*?)-\d{5}-of-\d{5}")
73
+
50
74
 
51
75
  if is_torch_version(">=", "1.9.0"):
52
76
  _LOW_CPU_MEM_USAGE_DEFAULT = True
@@ -56,8 +80,6 @@ else:
56
80
 
57
81
  if is_accelerate_available():
58
82
  import accelerate
59
- from accelerate.utils import set_module_tensor_to_device
60
- from accelerate.utils.versions import is_torch_version
61
83
 
62
84
 
63
85
  def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
@@ -77,108 +99,39 @@ def get_parameter_device(parameter: torch.nn.Module) -> torch.device:
77
99
 
78
100
 
79
101
  def get_parameter_dtype(parameter: torch.nn.Module) -> torch.dtype:
80
- try:
81
- params = tuple(parameter.parameters())
82
- if len(params) > 0:
83
- return params[0].dtype
84
-
85
- buffers = tuple(parameter.buffers())
86
- if len(buffers) > 0:
87
- return buffers[0].dtype
88
-
89
- except StopIteration:
90
- # For torch.nn.DataParallel compatibility in PyTorch 1.5
91
-
92
- def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
93
- tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
94
- return tuples
95
-
96
- gen = parameter._named_members(get_members_fn=find_tensor_attributes)
97
- first_tuple = next(gen)
98
- return first_tuple[1].dtype
99
-
100
-
101
- def load_state_dict(checkpoint_file: Union[str, os.PathLike], variant: Optional[str] = None):
102
102
  """
103
- Reads a checkpoint file, returning properly formatted errors if they arise.
103
+ Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
104
104
  """
105
- try:
106
- file_extension = os.path.basename(checkpoint_file).split(".")[-1]
107
- if file_extension == SAFETENSORS_FILE_EXTENSION:
108
- return safetensors.torch.load_file(checkpoint_file, device="cpu")
109
- else:
110
- return torch.load(checkpoint_file, map_location="cpu")
111
- except Exception as e:
112
- try:
113
- with open(checkpoint_file) as f:
114
- if f.read().startswith("version"):
115
- raise OSError(
116
- "You seem to have cloned a repository without having git-lfs installed. Please install "
117
- "git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
118
- "you cloned."
119
- )
120
- else:
121
- raise ValueError(
122
- f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
123
- "model. Make sure you have saved the model properly."
124
- ) from e
125
- except (UnicodeDecodeError, ValueError):
126
- raise OSError(
127
- f"Unable to load weights from checkpoint file for '{checkpoint_file}' " f"at '{checkpoint_file}'. "
128
- )
129
-
130
-
131
- def load_model_dict_into_meta(
132
- model,
133
- state_dict: OrderedDict,
134
- device: Optional[Union[str, torch.device]] = None,
135
- dtype: Optional[Union[str, torch.dtype]] = None,
136
- model_name_or_path: Optional[str] = None,
137
- ) -> List[str]:
138
- device = device or torch.device("cpu")
139
- dtype = dtype or torch.float32
140
-
141
- accepts_dtype = "dtype" in set(inspect.signature(set_module_tensor_to_device).parameters.keys())
142
-
143
- unexpected_keys = []
144
- empty_state_dict = model.state_dict()
145
- for param_name, param in state_dict.items():
146
- if param_name not in empty_state_dict:
147
- unexpected_keys.append(param_name)
148
- continue
149
-
150
- if empty_state_dict[param_name].shape != param.shape:
151
- model_name_or_path_str = f"{model_name_or_path} " if model_name_or_path is not None else ""
152
- raise ValueError(
153
- f"Cannot load {model_name_or_path_str}because {param_name} expected shape {empty_state_dict[param_name]}, but got {param.shape}. If you want to instead overwrite randomly initialized weights, please make sure to pass both `low_cpu_mem_usage=False` and `ignore_mismatched_sizes=True`. For more information, see also: https://github.com/huggingface/diffusers/issues/1619#issuecomment-1345604389 as an example."
154
- )
155
-
156
- if accepts_dtype:
157
- set_module_tensor_to_device(model, param_name, device, value=param, dtype=dtype)
158
- else:
159
- set_module_tensor_to_device(model, param_name, device, value=param)
160
- return unexpected_keys
161
-
162
-
163
- def _load_state_dict_into_model(model_to_load, state_dict: OrderedDict) -> List[str]:
164
- # Convert old format to new format if needed from a PyTorch state_dict
165
- # copy state_dict so _load_from_state_dict can modify it
166
- state_dict = state_dict.copy()
167
- error_msgs = []
168
-
169
- # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
170
- # so we need to apply the function recursively.
171
- def load(module: torch.nn.Module, prefix: str = ""):
172
- args = (state_dict, prefix, {}, True, [], [], error_msgs)
173
- module._load_from_state_dict(*args)
174
-
175
- for name, child in module._modules.items():
176
- if child is not None:
177
- load(child, prefix + name + ".")
178
-
179
- load(model_to_load)
180
-
181
- return error_msgs
105
+ last_dtype = None
106
+ for param in parameter.parameters():
107
+ last_dtype = param.dtype
108
+ if param.is_floating_point():
109
+ return param.dtype
110
+
111
+ for buffer in parameter.buffers():
112
+ last_dtype = buffer.dtype
113
+ if buffer.is_floating_point():
114
+ return buffer.dtype
115
+
116
+ if last_dtype is not None:
117
+ # if no floating dtype was found return whatever the first dtype is
118
+ return last_dtype
119
+
120
+ # For nn.DataParallel compatibility in PyTorch > 1.5
121
+ def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
122
+ tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
123
+ return tuples
124
+
125
+ gen = parameter._named_members(get_members_fn=find_tensor_attributes)
126
+ last_tuple = None
127
+ for tuple in gen:
128
+ last_tuple = tuple
129
+ if tuple[1].is_floating_point():
130
+ return tuple[1].dtype
131
+
132
+ if last_tuple is not None:
133
+ # fallback to the last dtype
134
+ return last_tuple[1].dtype
182
135
 
183
136
 
184
137
  class ModelMixin(torch.nn.Module, PushToHubMixin):
@@ -195,6 +148,8 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
195
148
  _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
196
149
  _supports_gradient_checkpointing = False
197
150
  _keys_to_ignore_on_load_unexpected = None
151
+ _no_split_modules = None
152
+ _keep_in_fp32_modules = None
198
153
 
199
154
  def __init__(self):
200
155
  super().__init__()
@@ -241,6 +196,65 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
241
196
  if self._supports_gradient_checkpointing:
242
197
  self.apply(partial(self._set_gradient_checkpointing, value=False))
243
198
 
199
+ def set_use_npu_flash_attention(self, valid: bool) -> None:
200
+ r"""
201
+ Set the switch for the npu flash attention.
202
+ """
203
+
204
+ def fn_recursive_set_npu_flash_attention(module: torch.nn.Module):
205
+ if hasattr(module, "set_use_npu_flash_attention"):
206
+ module.set_use_npu_flash_attention(valid)
207
+
208
+ for child in module.children():
209
+ fn_recursive_set_npu_flash_attention(child)
210
+
211
+ for module in self.children():
212
+ if isinstance(module, torch.nn.Module):
213
+ fn_recursive_set_npu_flash_attention(module)
214
+
215
+ def enable_npu_flash_attention(self) -> None:
216
+ r"""
217
+ Enable npu flash attention from torch_npu
218
+
219
+ """
220
+ self.set_use_npu_flash_attention(True)
221
+
222
+ def disable_npu_flash_attention(self) -> None:
223
+ r"""
224
+ disable npu flash attention from torch_npu
225
+
226
+ """
227
+ self.set_use_npu_flash_attention(False)
228
+
229
+ def set_use_xla_flash_attention(
230
+ self, use_xla_flash_attention: bool, partition_spec: Optional[Callable] = None
231
+ ) -> None:
232
+ # Recursively walk through all the children.
233
+ # Any children which exposes the set_use_xla_flash_attention method
234
+ # gets the message
235
+ def fn_recursive_set_flash_attention(module: torch.nn.Module):
236
+ if hasattr(module, "set_use_xla_flash_attention"):
237
+ module.set_use_xla_flash_attention(use_xla_flash_attention, partition_spec)
238
+
239
+ for child in module.children():
240
+ fn_recursive_set_flash_attention(child)
241
+
242
+ for module in self.children():
243
+ if isinstance(module, torch.nn.Module):
244
+ fn_recursive_set_flash_attention(module)
245
+
246
+ def enable_xla_flash_attention(self, partition_spec: Optional[Callable] = None):
247
+ r"""
248
+ Enable the flash attention pallals kernel for torch_xla.
249
+ """
250
+ self.set_use_xla_flash_attention(True, partition_spec)
251
+
252
+ def disable_xla_flash_attention(self):
253
+ r"""
254
+ Disable the flash attention pallals kernel for torch_xla.
255
+ """
256
+ self.set_use_xla_flash_attention(False)
257
+
244
258
  def set_use_memory_efficient_attention_xformers(
245
259
  self, valid: bool, attention_op: Optional[Callable] = None
246
260
  ) -> None:
@@ -307,6 +321,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
307
321
  save_function: Optional[Callable] = None,
308
322
  safe_serialization: bool = True,
309
323
  variant: Optional[str] = None,
324
+ max_shard_size: Union[int, str] = "10GB",
310
325
  push_to_hub: bool = False,
311
326
  **kwargs,
312
327
  ):
@@ -329,6 +344,13 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
329
344
  Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
330
345
  variant (`str`, *optional*):
331
346
  If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
347
+ max_shard_size (`int` or `str`, defaults to `"10GB"`):
348
+ The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
349
+ lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
350
+ If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
351
+ period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
352
+ This is to establish a common default size for this argument across different libraries in the Hugging
353
+ Face ecosystem (`transformers`, and `accelerate`, for example).
332
354
  push_to_hub (`bool`, *optional*, defaults to `False`):
333
355
  Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
334
356
  repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
@@ -340,11 +362,30 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
340
362
  logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
341
363
  return
342
364
 
365
+ hf_quantizer = getattr(self, "hf_quantizer", None)
366
+ if hf_quantizer is not None:
367
+ quantization_serializable = (
368
+ hf_quantizer is not None
369
+ and isinstance(hf_quantizer, DiffusersQuantizer)
370
+ and hf_quantizer.is_serializable
371
+ )
372
+ if not quantization_serializable:
373
+ raise ValueError(
374
+ f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
375
+ " the logger on the traceback to understand the reason why the quantized model is not serializable."
376
+ )
377
+
378
+ weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
379
+ weights_name = _add_variant(weights_name, variant)
380
+ weights_name_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(
381
+ ".safetensors", "{suffix}.safetensors"
382
+ )
383
+
343
384
  os.makedirs(save_directory, exist_ok=True)
344
385
 
345
386
  if push_to_hub:
346
387
  commit_message = kwargs.pop("commit_message", None)
347
- private = kwargs.pop("private", False)
388
+ private = kwargs.pop("private", None)
348
389
  create_pr = kwargs.pop("create_pr", False)
349
390
  token = kwargs.pop("token", None)
350
391
  repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
@@ -361,24 +402,64 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
361
402
  # Save the model
362
403
  state_dict = model_to_save.state_dict()
363
404
 
364
- weights_name = SAFETENSORS_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
365
- weights_name = _add_variant(weights_name, variant)
366
-
367
405
  # Save the model
368
- if safe_serialization:
369
- safetensors.torch.save_file(
370
- state_dict, os.path.join(save_directory, weights_name), metadata={"format": "pt"}
406
+ state_dict_split = split_torch_state_dict_into_shards(
407
+ state_dict, max_shard_size=max_shard_size, filename_pattern=weights_name_pattern
408
+ )
409
+
410
+ # Clean the folder from a previous save
411
+ if is_main_process:
412
+ for filename in os.listdir(save_directory):
413
+ if filename in state_dict_split.filename_to_tensors.keys():
414
+ continue
415
+ full_filename = os.path.join(save_directory, filename)
416
+ if not os.path.isfile(full_filename):
417
+ continue
418
+ weights_without_ext = weights_name_pattern.replace(".bin", "").replace(".safetensors", "")
419
+ weights_without_ext = weights_without_ext.replace("{suffix}", "")
420
+ filename_without_ext = filename.replace(".bin", "").replace(".safetensors", "")
421
+ # make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
422
+ if (
423
+ filename.startswith(weights_without_ext)
424
+ and _REGEX_SHARD.fullmatch(filename_without_ext) is not None
425
+ ):
426
+ os.remove(full_filename)
427
+
428
+ for filename, tensors in state_dict_split.filename_to_tensors.items():
429
+ shard = {tensor: state_dict[tensor] for tensor in tensors}
430
+ filepath = os.path.join(save_directory, filename)
431
+ if safe_serialization:
432
+ # At some point we will need to deal better with save_function (used for TPU and other distributed
433
+ # joyfulness), but for now this enough.
434
+ safetensors.torch.save_file(shard, filepath, metadata={"format": "pt"})
435
+ else:
436
+ torch.save(shard, filepath)
437
+
438
+ if state_dict_split.is_sharded:
439
+ index = {
440
+ "metadata": state_dict_split.metadata,
441
+ "weight_map": state_dict_split.tensor_to_filename,
442
+ }
443
+ save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
444
+ save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
445
+ # Save the index as well
446
+ with open(save_index_file, "w", encoding="utf-8") as f:
447
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
448
+ f.write(content)
449
+ logger.info(
450
+ f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
451
+ f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
452
+ f"index located at {save_index_file}."
371
453
  )
372
454
  else:
373
- torch.save(state_dict, os.path.join(save_directory, weights_name))
374
-
375
- logger.info(f"Model weights saved in {os.path.join(save_directory, weights_name)}")
455
+ path_to_weights = os.path.join(save_directory, weights_name)
456
+ logger.info(f"Model weights saved in {path_to_weights}")
376
457
 
377
458
  if push_to_hub:
378
459
  # Create a new empty model card and eventually tag it
379
460
  model_card = load_or_create_model_card(repo_id, token=token)
380
461
  model_card = populate_model_card(model_card)
381
- model_card.save(os.path.join(save_directory, "README.md"))
462
+ model_card.save(Path(save_directory, "README.md").as_posix())
382
463
 
383
464
  self._upload_folder(
384
465
  save_directory,
@@ -388,6 +469,18 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
388
469
  create_pr=create_pr,
389
470
  )
390
471
 
472
+ def dequantize(self):
473
+ """
474
+ Potentially dequantize the model in case it has been quantized by a quantization method that support
475
+ dequantization.
476
+ """
477
+ hf_quantizer = getattr(self, "hf_quantizer", None)
478
+
479
+ if hf_quantizer is None:
480
+ raise ValueError("You need to first quantize your model in order to dequantize it")
481
+
482
+ return hf_quantizer.dequantize(self)
483
+
391
484
  @classmethod
392
485
  @validate_hf_hub_args
393
486
  def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
@@ -415,9 +508,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
415
508
  force_download (`bool`, *optional*, defaults to `False`):
416
509
  Whether or not to force the (re-)download of the model weights and configuration files, overriding the
417
510
  cached versions if they exist.
418
- resume_download (`bool`, *optional*, defaults to `False`):
419
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
420
- incompletely downloaded files are deleted.
421
511
  proxies (`Dict[str, str]`, *optional*):
422
512
  A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
423
513
  'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
@@ -443,7 +533,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
443
533
  device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
444
534
  A map that specifies where each submodule should go. It doesn't need to be defined for each
445
535
  parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
446
- same device.
536
+ same device. Defaults to `None`, meaning that the model will be loaded on CPU.
447
537
 
448
538
  Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
449
539
  more information about each option see [designing a device
@@ -499,7 +589,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
499
589
  ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
500
590
  force_download = kwargs.pop("force_download", False)
501
591
  from_flax = kwargs.pop("from_flax", False)
502
- resume_download = kwargs.pop("resume_download", False)
503
592
  proxies = kwargs.pop("proxies", None)
504
593
  output_loading_info = kwargs.pop("output_loading_info", False)
505
594
  local_files_only = kwargs.pop("local_files_only", None)
@@ -514,6 +603,7 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
514
603
  low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
515
604
  variant = kwargs.pop("variant", None)
516
605
  use_safetensors = kwargs.pop("use_safetensors", None)
606
+ quantization_config = kwargs.pop("quantization_config", None)
517
607
 
518
608
  allow_pickle = False
519
609
  if use_safetensors is None:
@@ -554,6 +644,36 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
554
644
  " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
555
645
  )
556
646
 
647
+ # change device_map into a map if we passed an int, a str or a torch.device
648
+ if isinstance(device_map, torch.device):
649
+ device_map = {"": device_map}
650
+ elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
651
+ try:
652
+ device_map = {"": torch.device(device_map)}
653
+ except RuntimeError:
654
+ raise ValueError(
655
+ "When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
656
+ f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
657
+ )
658
+ elif isinstance(device_map, int):
659
+ if device_map < 0:
660
+ raise ValueError(
661
+ "You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
662
+ )
663
+ else:
664
+ device_map = {"": device_map}
665
+
666
+ if device_map is not None:
667
+ if low_cpu_mem_usage is None:
668
+ low_cpu_mem_usage = True
669
+ elif not low_cpu_mem_usage:
670
+ raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")
671
+
672
+ if low_cpu_mem_usage:
673
+ if device_map is not None and not is_torch_version(">=", "1.10"):
674
+ # The max memory utils require PyTorch >= 1.10 to have torch.cuda.mem_get_info.
675
+ raise ValueError("`low_cpu_mem_usage` and `device_map` require PyTorch >= 1.10.")
676
+
557
677
  # Load config if we don't provide a configuration
558
678
  config_path = pretrained_model_name_or_path
559
679
 
@@ -570,19 +690,99 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
570
690
  return_unused_kwargs=True,
571
691
  return_commit_hash=True,
572
692
  force_download=force_download,
573
- resume_download=resume_download,
574
693
  proxies=proxies,
575
694
  local_files_only=local_files_only,
576
695
  token=token,
577
696
  revision=revision,
578
697
  subfolder=subfolder,
579
- device_map=device_map,
580
- max_memory=max_memory,
581
- offload_folder=offload_folder,
582
- offload_state_dict=offload_state_dict,
583
698
  user_agent=user_agent,
584
699
  **kwargs,
585
700
  )
701
+ # no in-place modification of the original config.
702
+ config = copy.deepcopy(config)
703
+
704
+ # determine initial quantization config.
705
+ #######################################
706
+ pre_quantized = "quantization_config" in config and config["quantization_config"] is not None
707
+ if pre_quantized or quantization_config is not None:
708
+ if pre_quantized:
709
+ config["quantization_config"] = DiffusersAutoQuantizer.merge_quantization_configs(
710
+ config["quantization_config"], quantization_config
711
+ )
712
+ else:
713
+ config["quantization_config"] = quantization_config
714
+ hf_quantizer = DiffusersAutoQuantizer.from_config(
715
+ config["quantization_config"], pre_quantized=pre_quantized
716
+ )
717
+ else:
718
+ hf_quantizer = None
719
+
720
+ if hf_quantizer is not None:
721
+ if device_map is not None:
722
+ raise NotImplementedError(
723
+ "Currently, providing `device_map` is not supported for quantized models. Providing `device_map` as an input will be added in the future."
724
+ )
725
+
726
+ hf_quantizer.validate_environment(torch_dtype=torch_dtype, from_flax=from_flax, device_map=device_map)
727
+ torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)
728
+
729
+ # In order to ensure popular quantization methods are supported. Can be disable with `disable_telemetry`
730
+ user_agent["quant"] = hf_quantizer.quantization_config.quant_method.value
731
+
732
+ # Force-set to `True` for more mem efficiency
733
+ if low_cpu_mem_usage is None:
734
+ low_cpu_mem_usage = True
735
+ logger.info("Set `low_cpu_mem_usage` to True as `hf_quantizer` is not None.")
736
+ elif not low_cpu_mem_usage:
737
+ raise ValueError("`low_cpu_mem_usage` cannot be False or None when using quantization.")
738
+
739
+ # Check if `_keep_in_fp32_modules` is not None
740
+ use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
741
+ (torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
742
+ )
743
+ if use_keep_in_fp32_modules:
744
+ keep_in_fp32_modules = cls._keep_in_fp32_modules
745
+ if not isinstance(keep_in_fp32_modules, list):
746
+ keep_in_fp32_modules = [keep_in_fp32_modules]
747
+
748
+ if low_cpu_mem_usage is None:
749
+ low_cpu_mem_usage = True
750
+ logger.info("Set `low_cpu_mem_usage` to True as `_keep_in_fp32_modules` is not None.")
751
+ elif not low_cpu_mem_usage:
752
+ raise ValueError("`low_cpu_mem_usage` cannot be False when `keep_in_fp32_modules` is True.")
753
+ else:
754
+ keep_in_fp32_modules = []
755
+ #######################################
756
+
757
+ # Determine if we're loading from a directory of sharded checkpoints.
758
+ is_sharded = False
759
+ index_file = None
760
+ is_local = os.path.isdir(pretrained_model_name_or_path)
761
+ index_file_kwargs = {
762
+ "is_local": is_local,
763
+ "pretrained_model_name_or_path": pretrained_model_name_or_path,
764
+ "subfolder": subfolder or "",
765
+ "use_safetensors": use_safetensors,
766
+ "cache_dir": cache_dir,
767
+ "variant": variant,
768
+ "force_download": force_download,
769
+ "proxies": proxies,
770
+ "local_files_only": local_files_only,
771
+ "token": token,
772
+ "revision": revision,
773
+ "user_agent": user_agent,
774
+ "commit_hash": commit_hash,
775
+ }
776
+ index_file = _fetch_index_file(**index_file_kwargs)
777
+ # In case the index file was not found we still have to consider the legacy format.
778
+ # this becomes applicable when the variant is not None.
779
+ if variant is not None and (index_file is None or not os.path.exists(index_file)):
780
+ index_file = _fetch_index_file_legacy(**index_file_kwargs)
781
+ if index_file is not None and index_file.is_file():
782
+ is_sharded = True
783
+
784
+ if is_sharded and from_flax:
785
+ raise ValueError("Loading of sharded checkpoints is not supported when `from_flax=True`.")
586
786
 
587
787
  # load model
588
788
  model_file = None
@@ -592,7 +792,6 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
592
792
  weights_name=FLAX_WEIGHTS_NAME,
593
793
  cache_dir=cache_dir,
594
794
  force_download=force_download,
595
- resume_download=resume_download,
596
795
  proxies=proxies,
597
796
  local_files_only=local_files_only,
598
797
  token=token,
@@ -608,14 +807,31 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
608
807
 
609
808
  model = load_flax_checkpoint_in_pytorch_model(model, model_file)
610
809
  else:
611
- if use_safetensors:
810
+ if is_sharded:
811
+ sharded_ckpt_cached_folder, sharded_metadata = _get_checkpoint_shard_files(
812
+ pretrained_model_name_or_path,
813
+ index_file,
814
+ cache_dir=cache_dir,
815
+ proxies=proxies,
816
+ local_files_only=local_files_only,
817
+ token=token,
818
+ user_agent=user_agent,
819
+ revision=revision,
820
+ subfolder=subfolder or "",
821
+ )
822
+ # TODO: https://github.com/huggingface/diffusers/issues/10013
823
+ if hf_quantizer is not None:
824
+ model_file = _merge_sharded_checkpoints(sharded_ckpt_cached_folder, sharded_metadata)
825
+ logger.info("Merged sharded checkpoints as `hf_quantizer` is not None.")
826
+ is_sharded = False
827
+
828
+ elif use_safetensors and not is_sharded:
612
829
  try:
613
830
  model_file = _get_model_file(
614
831
  pretrained_model_name_or_path,
615
832
  weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
616
833
  cache_dir=cache_dir,
617
834
  force_download=force_download,
618
- resume_download=resume_download,
619
835
  proxies=proxies,
620
836
  local_files_only=local_files_only,
621
837
  token=token,
@@ -624,17 +840,21 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
624
840
  user_agent=user_agent,
625
841
  commit_hash=commit_hash,
626
842
  )
843
+
627
844
  except IOError as e:
845
+ logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
628
846
  if not allow_pickle:
629
- raise e
630
- pass
631
- if model_file is None:
847
+ raise
848
+ logger.warning(
849
+ "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
850
+ )
851
+
852
+ if model_file is None and not is_sharded:
632
853
  model_file = _get_model_file(
633
854
  pretrained_model_name_or_path,
634
855
  weights_name=_add_variant(WEIGHTS_NAME, variant),
635
856
  cache_dir=cache_dir,
636
857
  force_download=force_download,
637
- resume_download=resume_download,
638
858
  proxies=proxies,
639
859
  local_files_only=local_files_only,
640
860
  token=token,
@@ -649,13 +869,27 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
649
869
  with accelerate.init_empty_weights():
650
870
  model = cls.from_config(config, **unused_kwargs)
651
871
 
872
+ if hf_quantizer is not None:
873
+ hf_quantizer.preprocess_model(
874
+ model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
875
+ )
876
+
652
877
  # if device_map is None, load the state dict and move the params from meta device to the cpu
653
- if device_map is None:
654
- param_device = "cpu"
878
+ if device_map is None and not is_sharded:
879
+ # `torch.cuda.current_device()` is fine here when `hf_quantizer` is not None.
880
+ # It would error out during the `validate_environment()` call above in the absence of cuda.
881
+ if hf_quantizer is None:
882
+ param_device = "cpu"
883
+ # TODO (sayakpaul, SunMarc): remove this after model loading refactor
884
+ else:
885
+ param_device = torch.device(torch.cuda.current_device())
655
886
  state_dict = load_state_dict(model_file, variant=variant)
656
887
  model._convert_deprecated_attention_blocks(state_dict)
888
+
657
889
  # move the params from meta device to cpu
658
890
  missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
891
+ if hf_quantizer is not None:
892
+ missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix="")
659
893
  if len(missing_keys) > 0:
660
894
  raise ValueError(
661
895
  f"Cannot load {cls} from {pretrained_model_name_or_path} because the following keys are"
@@ -670,6 +904,8 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
670
904
  device=param_device,
671
905
  dtype=torch_dtype,
672
906
  model_name_or_path=pretrained_model_name_or_path,
907
+ hf_quantizer=hf_quantizer,
908
+ keep_in_fp32_modules=keep_in_fp32_modules,
673
909
  )
674
910
 
675
911
  if cls._keys_to_ignore_on_load_unexpected is not None:
@@ -684,15 +920,25 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
684
920
  else: # else let accelerate handle loading and dispatching.
685
921
  # Load weights and dispatch according to the device_map
686
922
  # by default the device_map is None and the weights are loaded on the CPU
923
+ force_hook = True
924
+ device_map = _determine_device_map(
925
+ model, device_map, max_memory, torch_dtype, keep_in_fp32_modules, hf_quantizer
926
+ )
927
+ if device_map is None and is_sharded:
928
+ # we load the parameters on the cpu
929
+ device_map = {"": "cpu"}
930
+ force_hook = False
687
931
  try:
688
932
  accelerate.load_checkpoint_and_dispatch(
689
933
  model,
690
- model_file,
934
+ model_file if not is_sharded else index_file,
691
935
  device_map,
692
936
  max_memory=max_memory,
693
937
  offload_folder=offload_folder,
694
938
  offload_state_dict=offload_state_dict,
695
939
  dtype=torch_dtype,
940
+ force_hooks=force_hook,
941
+ strict=True,
696
942
  )
697
943
  except AttributeError as e:
698
944
  # When using accelerate loading, we do not have the ability to load the state
@@ -715,12 +961,14 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
715
961
  model._temp_convert_self_to_deprecated_attention_blocks()
716
962
  accelerate.load_checkpoint_and_dispatch(
717
963
  model,
718
- model_file,
964
+ model_file if not is_sharded else index_file,
719
965
  device_map,
720
966
  max_memory=max_memory,
721
967
  offload_folder=offload_folder,
722
968
  offload_state_dict=offload_state_dict,
723
969
  dtype=torch_dtype,
970
+ force_hooks=force_hook,
971
+ strict=True,
724
972
  )
725
973
  model._undo_temp_convert_self_to_deprecated_attention_blocks()
726
974
  else:
@@ -753,14 +1001,25 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
753
1001
  "error_msgs": error_msgs,
754
1002
  }
755
1003
 
1004
+ if hf_quantizer is not None:
1005
+ hf_quantizer.postprocess_model(model)
1006
+ model.hf_quantizer = hf_quantizer
1007
+
756
1008
  if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
757
1009
  raise ValueError(
758
1010
  f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
759
1011
  )
760
- elif torch_dtype is not None:
1012
+ # When using `use_keep_in_fp32_modules` if we do a global `to()` here, then we will
1013
+ # completely lose the effectivity of `use_keep_in_fp32_modules`.
1014
+ elif torch_dtype is not None and hf_quantizer is None and not use_keep_in_fp32_modules:
761
1015
  model = model.to(torch_dtype)
762
1016
 
763
- model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1017
+ if hf_quantizer is not None:
1018
+ # We also make sure to purge `_pre_quantization_dtype` when we serialize
1019
+ # the model config because `_pre_quantization_dtype` is `torch.dtype`, not JSON serializable.
1020
+ model.register_to_config(_name_or_path=pretrained_model_name_or_path, _pre_quantization_dtype=torch_dtype)
1021
+ else:
1022
+ model.register_to_config(_name_or_path=pretrained_model_name_or_path)
764
1023
 
765
1024
  # Set model in evaluation mode to deactivate DropOut modules by default
766
1025
  model.eval()
@@ -769,6 +1028,76 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
769
1028
 
770
1029
  return model
771
1030
 
1031
+ # Adapted from `transformers`.
1032
+ @wraps(torch.nn.Module.cuda)
1033
+ def cuda(self, *args, **kwargs):
1034
+ # Checks if the model has been loaded in 4-bit or 8-bit with BNB
1035
+ if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
1036
+ if getattr(self, "is_loaded_in_8bit", False):
1037
+ raise ValueError(
1038
+ "Calling `cuda()` is not supported for `8-bit` quantized models. "
1039
+ " Please use the model as it is, since the model has already been set to the correct devices."
1040
+ )
1041
+ elif is_bitsandbytes_version("<", "0.43.2"):
1042
+ raise ValueError(
1043
+ "Calling `cuda()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
1044
+ f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
1045
+ )
1046
+ return super().cuda(*args, **kwargs)
1047
+
1048
+ # Adapted from `transformers`.
1049
+ @wraps(torch.nn.Module.to)
1050
+ def to(self, *args, **kwargs):
1051
+ dtype_present_in_args = "dtype" in kwargs
1052
+
1053
+ if not dtype_present_in_args:
1054
+ for arg in args:
1055
+ if isinstance(arg, torch.dtype):
1056
+ dtype_present_in_args = True
1057
+ break
1058
+
1059
+ if getattr(self, "is_quantized", False):
1060
+ if dtype_present_in_args:
1061
+ raise ValueError(
1062
+ "Casting a quantized model to a new `dtype` is unsupported. To set the dtype of unquantized layers, please "
1063
+ "use the `torch_dtype` argument when loading the model using `from_pretrained` or `from_single_file`"
1064
+ )
1065
+
1066
+ if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
1067
+ if getattr(self, "is_loaded_in_8bit", False):
1068
+ raise ValueError(
1069
+ "`.to` is not supported for `8-bit` bitsandbytes models. Please use the model as it is, since the"
1070
+ " model has already been set to the correct devices and casted to the correct `dtype`."
1071
+ )
1072
+ elif is_bitsandbytes_version("<", "0.43.2"):
1073
+ raise ValueError(
1074
+ "Calling `to()` is not supported for `4-bit` quantized models with the installed version of bitsandbytes. "
1075
+ f"The current device is `{self.device}`. If you intended to move the model, please install bitsandbytes >= 0.43.2."
1076
+ )
1077
+ return super().to(*args, **kwargs)
1078
+
1079
+ # Taken from `transformers`.
1080
+ def half(self, *args):
1081
+ # Checks if the model is quantized
1082
+ if getattr(self, "is_quantized", False):
1083
+ raise ValueError(
1084
+ "`.half()` is not supported for quantized model. Please use the model as it is, since the"
1085
+ " model has already been cast to the correct `dtype`."
1086
+ )
1087
+ else:
1088
+ return super().half(*args)
1089
+
1090
+ # Taken from `transformers`.
1091
+ def float(self, *args):
1092
+ # Checks if the model is quantized
1093
+ if getattr(self, "is_quantized", False):
1094
+ raise ValueError(
1095
+ "`.float()` is not supported for quantized model. Please use the model as it is, since the"
1096
+ " model has already been cast to the correct `dtype`."
1097
+ )
1098
+ else:
1099
+ return super().float(*args)
1100
+
772
1101
  @classmethod
773
1102
  def _load_pretrained_model(
774
1103
  cls,
@@ -873,6 +1202,45 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
873
1202
 
874
1203
  return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
875
1204
 
1205
+ @classmethod
1206
+ def _get_signature_keys(cls, obj):
1207
+ parameters = inspect.signature(obj.__init__).parameters
1208
+ required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
1209
+ optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1210
+ expected_modules = set(required_parameters.keys()) - {"self"}
1211
+
1212
+ return expected_modules, optional_parameters
1213
+
1214
+ # Adapted from `transformers` modeling_utils.py
1215
+ def _get_no_split_modules(self, device_map: str):
1216
+ """
1217
+ Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
1218
+ get the underlying `_no_split_modules`.
1219
+
1220
+ Args:
1221
+ device_map (`str`):
1222
+ The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]
1223
+
1224
+ Returns:
1225
+ `List[str]`: List of modules that should not be split
1226
+ """
1227
+ _no_split_modules = set()
1228
+ modules_to_check = [self]
1229
+ while len(modules_to_check) > 0:
1230
+ module = modules_to_check.pop(-1)
1231
+ # if the module does not appear in _no_split_modules, we also check the children
1232
+ if module.__class__.__name__ not in _no_split_modules:
1233
+ if isinstance(module, ModelMixin):
1234
+ if module._no_split_modules is None:
1235
+ raise ValueError(
1236
+ f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
1237
+ "class needs to implement the `_no_split_modules` attribute."
1238
+ )
1239
+ else:
1240
+ _no_split_modules = _no_split_modules | set(module._no_split_modules)
1241
+ modules_to_check += list(module.children())
1242
+ return list(_no_split_modules)
1243
+
876
1244
  @property
877
1245
  def device(self) -> torch.device:
878
1246
  """
@@ -912,19 +1280,63 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
912
1280
  859520964
913
1281
  ```
914
1282
  """
1283
+ is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
1284
+
1285
+ if is_loaded_in_4bit:
1286
+ if is_bitsandbytes_available():
1287
+ import bitsandbytes as bnb
1288
+ else:
1289
+ raise ValueError(
1290
+ "bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
1291
+ " make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
1292
+ )
915
1293
 
916
1294
  if exclude_embeddings:
917
1295
  embedding_param_names = [
918
- f"{name}.weight"
919
- for name, module_type in self.named_modules()
920
- if isinstance(module_type, torch.nn.Embedding)
1296
+ f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
921
1297
  ]
922
- non_embedding_parameters = [
1298
+ total_parameters = [
923
1299
  parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
924
1300
  ]
925
- return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
926
1301
  else:
927
- return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
1302
+ total_parameters = list(self.parameters())
1303
+
1304
+ total_numel = []
1305
+
1306
+ for param in total_parameters:
1307
+ if param.requires_grad or not only_trainable:
1308
+ # For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
1309
+ # used for the 4bit quantization (uint8 tensors are stored)
1310
+ if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
1311
+ if hasattr(param, "element_size"):
1312
+ num_bytes = param.element_size()
1313
+ elif hasattr(param, "quant_storage"):
1314
+ num_bytes = param.quant_storage.itemsize
1315
+ else:
1316
+ num_bytes = 1
1317
+ total_numel.append(param.numel() * 2 * num_bytes)
1318
+ else:
1319
+ total_numel.append(param.numel())
1320
+
1321
+ return sum(total_numel)
1322
+
1323
+ def get_memory_footprint(self, return_buffers=True):
1324
+ r"""
1325
+ Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
1326
+ Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
1327
+ PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2
1328
+
1329
+ Arguments:
1330
+ return_buffers (`bool`, *optional*, defaults to `True`):
1331
+ Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
1332
+ are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
1333
+ norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
1334
+ """
1335
+ mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
1336
+ if return_buffers:
1337
+ mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
1338
+ mem = mem + mem_bufs
1339
+ return mem
928
1340
 
929
1341
  def _convert_deprecated_attention_blocks(self, state_dict: OrderedDict) -> None:
930
1342
  deprecated_attention_block_paths = []
@@ -1019,3 +1431,56 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
1019
1431
  del module.key
1020
1432
  del module.value
1021
1433
  del module.proj_attn
1434
+
1435
+
1436
+ class LegacyModelMixin(ModelMixin):
1437
+ r"""
1438
+ A subclass of `ModelMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
1439
+ pipeline-specific classes (like `DiTTransformer2DModel`).
1440
+ """
1441
+
1442
+ @classmethod
1443
+ @validate_hf_hub_args
1444
+ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
1445
+ # To prevent dependency import problem.
1446
+ from .model_loading_utils import _fetch_remapped_cls_from_config
1447
+
1448
+ # Create a copy of the kwargs so that we don't mess with the keyword arguments in the downstream calls.
1449
+ kwargs_copy = kwargs.copy()
1450
+
1451
+ cache_dir = kwargs.pop("cache_dir", None)
1452
+ force_download = kwargs.pop("force_download", False)
1453
+ proxies = kwargs.pop("proxies", None)
1454
+ local_files_only = kwargs.pop("local_files_only", None)
1455
+ token = kwargs.pop("token", None)
1456
+ revision = kwargs.pop("revision", None)
1457
+ subfolder = kwargs.pop("subfolder", None)
1458
+
1459
+ # Load config if we don't provide a configuration
1460
+ config_path = pretrained_model_name_or_path
1461
+
1462
+ user_agent = {
1463
+ "diffusers": __version__,
1464
+ "file_type": "model",
1465
+ "framework": "pytorch",
1466
+ }
1467
+
1468
+ # load config
1469
+ config, _, _ = cls.load_config(
1470
+ config_path,
1471
+ cache_dir=cache_dir,
1472
+ return_unused_kwargs=True,
1473
+ return_commit_hash=True,
1474
+ force_download=force_download,
1475
+ proxies=proxies,
1476
+ local_files_only=local_files_only,
1477
+ token=token,
1478
+ revision=revision,
1479
+ subfolder=subfolder,
1480
+ user_agent=user_agent,
1481
+ **kwargs,
1482
+ )
1483
+ # resolve remapping
1484
+ remapped_class = _fetch_remapped_cls_from_config(config, cls)
1485
+
1486
+ return remapped_class.from_pretrained(pretrained_model_name_or_path, **kwargs_copy)