diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,572 @@
|
|
1
|
+
# Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
|
16
|
+
|
17
|
+
import math
|
18
|
+
from typing import List, Optional, Tuple, Union
|
19
|
+
|
20
|
+
import numpy as np
|
21
|
+
import torch
|
22
|
+
|
23
|
+
from ..configuration_utils import ConfigMixin, register_to_config
|
24
|
+
from .scheduling_dpmsolver_sde import BrownianTreeNoiseSampler
|
25
|
+
from .scheduling_utils import SchedulerMixin, SchedulerOutput
|
26
|
+
|
27
|
+
|
28
|
+
class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
|
29
|
+
"""
|
30
|
+
Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021).
|
31
|
+
This scheduler was used in Stable Audio Open [1].
|
32
|
+
|
33
|
+
[1] Evans, Parker, et al. "Stable Audio Open" https://arxiv.org/abs/2407.14358
|
34
|
+
|
35
|
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
36
|
+
methods the library implements for all schedulers such as loading and saving.
|
37
|
+
|
38
|
+
Args:
|
39
|
+
sigma_min (`float`, *optional*, defaults to 0.3):
|
40
|
+
Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1].
|
41
|
+
sigma_max (`float`, *optional*, defaults to 500):
|
42
|
+
Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1].
|
43
|
+
sigma_data (`float`, *optional*, defaults to 1.0):
|
44
|
+
The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1].
|
45
|
+
sigma_schedule (`str`, *optional*, defaults to `exponential`):
|
46
|
+
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
|
47
|
+
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
|
48
|
+
incorporated in this model: https://huggingface.co/stabilityai/cosxl.
|
49
|
+
num_train_timesteps (`int`, defaults to 1000):
|
50
|
+
The number of diffusion steps to train the model.
|
51
|
+
solver_order (`int`, defaults to 2):
|
52
|
+
The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`.
|
53
|
+
prediction_type (`str`, defaults to `v_prediction`, *optional*):
|
54
|
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
55
|
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
56
|
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
57
|
+
solver_type (`str`, defaults to `midpoint`):
|
58
|
+
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
|
59
|
+
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
|
60
|
+
lower_order_final (`bool`, defaults to `True`):
|
61
|
+
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
62
|
+
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
63
|
+
euler_at_final (`bool`, defaults to `False`):
|
64
|
+
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
|
65
|
+
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
|
66
|
+
steps, but sometimes may result in blurring.
|
67
|
+
final_sigmas_type (`str`, defaults to `"zero"`):
|
68
|
+
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
69
|
+
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
70
|
+
"""
|
71
|
+
|
72
|
+
_compatibles = []
|
73
|
+
order = 1
|
74
|
+
|
75
|
+
@register_to_config
|
76
|
+
def __init__(
|
77
|
+
self,
|
78
|
+
sigma_min: float = 0.3,
|
79
|
+
sigma_max: float = 500,
|
80
|
+
sigma_data: float = 1.0,
|
81
|
+
sigma_schedule: str = "exponential",
|
82
|
+
num_train_timesteps: int = 1000,
|
83
|
+
solver_order: int = 2,
|
84
|
+
prediction_type: str = "v_prediction",
|
85
|
+
rho: float = 7.0,
|
86
|
+
solver_type: str = "midpoint",
|
87
|
+
lower_order_final: bool = True,
|
88
|
+
euler_at_final: bool = False,
|
89
|
+
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
90
|
+
):
|
91
|
+
if solver_type not in ["midpoint", "heun"]:
|
92
|
+
if solver_type in ["logrho", "bh1", "bh2"]:
|
93
|
+
self.register_to_config(solver_type="midpoint")
|
94
|
+
else:
|
95
|
+
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
|
96
|
+
|
97
|
+
ramp = torch.linspace(0, 1, num_train_timesteps)
|
98
|
+
if sigma_schedule == "karras":
|
99
|
+
sigmas = self._compute_karras_sigmas(ramp)
|
100
|
+
elif sigma_schedule == "exponential":
|
101
|
+
sigmas = self._compute_exponential_sigmas(ramp)
|
102
|
+
|
103
|
+
self.timesteps = self.precondition_noise(sigmas)
|
104
|
+
|
105
|
+
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
106
|
+
|
107
|
+
# setable values
|
108
|
+
self.num_inference_steps = None
|
109
|
+
self.model_outputs = [None] * solver_order
|
110
|
+
self.lower_order_nums = 0
|
111
|
+
self._step_index = None
|
112
|
+
self._begin_index = None
|
113
|
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
114
|
+
|
115
|
+
@property
|
116
|
+
def init_noise_sigma(self):
|
117
|
+
# standard deviation of the initial noise distribution
|
118
|
+
return (self.config.sigma_max**2 + 1) ** 0.5
|
119
|
+
|
120
|
+
@property
|
121
|
+
def step_index(self):
|
122
|
+
"""
|
123
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
124
|
+
"""
|
125
|
+
return self._step_index
|
126
|
+
|
127
|
+
@property
|
128
|
+
def begin_index(self):
|
129
|
+
"""
|
130
|
+
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
131
|
+
"""
|
132
|
+
return self._begin_index
|
133
|
+
|
134
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
135
|
+
def set_begin_index(self, begin_index: int = 0):
|
136
|
+
"""
|
137
|
+
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
138
|
+
|
139
|
+
Args:
|
140
|
+
begin_index (`int`):
|
141
|
+
The begin index for the scheduler.
|
142
|
+
"""
|
143
|
+
self._begin_index = begin_index
|
144
|
+
|
145
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
|
146
|
+
def precondition_inputs(self, sample, sigma):
|
147
|
+
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
|
148
|
+
scaled_sample = sample * c_in
|
149
|
+
return scaled_sample
|
150
|
+
|
151
|
+
def precondition_noise(self, sigma):
|
152
|
+
if not isinstance(sigma, torch.Tensor):
|
153
|
+
sigma = torch.tensor([sigma])
|
154
|
+
|
155
|
+
return sigma.atan() / math.pi * 2
|
156
|
+
|
157
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
|
158
|
+
def precondition_outputs(self, sample, model_output, sigma):
|
159
|
+
sigma_data = self.config.sigma_data
|
160
|
+
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
|
161
|
+
|
162
|
+
if self.config.prediction_type == "epsilon":
|
163
|
+
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
164
|
+
elif self.config.prediction_type == "v_prediction":
|
165
|
+
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
|
166
|
+
else:
|
167
|
+
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
|
168
|
+
|
169
|
+
denoised = c_skip * sample + c_out * model_output
|
170
|
+
|
171
|
+
return denoised
|
172
|
+
|
173
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
|
174
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
|
175
|
+
"""
|
176
|
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
177
|
+
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
|
178
|
+
|
179
|
+
Args:
|
180
|
+
sample (`torch.Tensor`):
|
181
|
+
The input sample.
|
182
|
+
timestep (`int`, *optional*):
|
183
|
+
The current timestep in the diffusion chain.
|
184
|
+
|
185
|
+
Returns:
|
186
|
+
`torch.Tensor`:
|
187
|
+
A scaled input sample.
|
188
|
+
"""
|
189
|
+
if self.step_index is None:
|
190
|
+
self._init_step_index(timestep)
|
191
|
+
|
192
|
+
sigma = self.sigmas[self.step_index]
|
193
|
+
sample = self.precondition_inputs(sample, sigma)
|
194
|
+
|
195
|
+
self.is_scale_input_called = True
|
196
|
+
return sample
|
197
|
+
|
198
|
+
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
|
199
|
+
"""
|
200
|
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
201
|
+
|
202
|
+
Args:
|
203
|
+
num_inference_steps (`int`):
|
204
|
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
205
|
+
device (`str` or `torch.device`, *optional*):
|
206
|
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
207
|
+
"""
|
208
|
+
|
209
|
+
self.num_inference_steps = num_inference_steps
|
210
|
+
|
211
|
+
ramp = torch.linspace(0, 1, self.num_inference_steps)
|
212
|
+
if self.config.sigma_schedule == "karras":
|
213
|
+
sigmas = self._compute_karras_sigmas(ramp)
|
214
|
+
elif self.config.sigma_schedule == "exponential":
|
215
|
+
sigmas = self._compute_exponential_sigmas(ramp)
|
216
|
+
|
217
|
+
sigmas = sigmas.to(dtype=torch.float32, device=device)
|
218
|
+
self.timesteps = self.precondition_noise(sigmas)
|
219
|
+
|
220
|
+
if self.config.final_sigmas_type == "sigma_min":
|
221
|
+
sigma_last = self.config.sigma_min
|
222
|
+
elif self.config.final_sigmas_type == "zero":
|
223
|
+
sigma_last = 0
|
224
|
+
else:
|
225
|
+
raise ValueError(
|
226
|
+
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
227
|
+
)
|
228
|
+
|
229
|
+
self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])
|
230
|
+
|
231
|
+
self.model_outputs = [
|
232
|
+
None,
|
233
|
+
] * self.config.solver_order
|
234
|
+
self.lower_order_nums = 0
|
235
|
+
|
236
|
+
# add an index counter for schedulers that allow duplicated timesteps
|
237
|
+
self._step_index = None
|
238
|
+
self._begin_index = None
|
239
|
+
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
240
|
+
|
241
|
+
# if a noise sampler is used, reinitialise it
|
242
|
+
self.noise_sampler = None
|
243
|
+
|
244
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
|
245
|
+
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
246
|
+
"""Constructs the noise schedule of Karras et al. (2022)."""
|
247
|
+
sigma_min = sigma_min or self.config.sigma_min
|
248
|
+
sigma_max = sigma_max or self.config.sigma_max
|
249
|
+
|
250
|
+
rho = self.config.rho
|
251
|
+
min_inv_rho = sigma_min ** (1 / rho)
|
252
|
+
max_inv_rho = sigma_max ** (1 / rho)
|
253
|
+
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
254
|
+
return sigmas
|
255
|
+
|
256
|
+
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
|
257
|
+
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
|
258
|
+
"""Implementation closely follows k-diffusion.
|
259
|
+
|
260
|
+
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
|
261
|
+
"""
|
262
|
+
sigma_min = sigma_min or self.config.sigma_min
|
263
|
+
sigma_max = sigma_max or self.config.sigma_max
|
264
|
+
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
|
265
|
+
return sigmas
|
266
|
+
|
267
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
|
268
|
+
def _sigma_to_t(self, sigma, log_sigmas):
|
269
|
+
# get log sigma
|
270
|
+
log_sigma = np.log(np.maximum(sigma, 1e-10))
|
271
|
+
|
272
|
+
# get distribution
|
273
|
+
dists = log_sigma - log_sigmas[:, np.newaxis]
|
274
|
+
|
275
|
+
# get sigmas range
|
276
|
+
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
|
277
|
+
high_idx = low_idx + 1
|
278
|
+
|
279
|
+
low = log_sigmas[low_idx]
|
280
|
+
high = log_sigmas[high_idx]
|
281
|
+
|
282
|
+
# interpolate sigmas
|
283
|
+
w = (low - log_sigma) / (low - high)
|
284
|
+
w = np.clip(w, 0, 1)
|
285
|
+
|
286
|
+
# transform interpolation to time range
|
287
|
+
t = (1 - w) * low_idx + w * high_idx
|
288
|
+
t = t.reshape(sigma.shape)
|
289
|
+
return t
|
290
|
+
|
291
|
+
def _sigma_to_alpha_sigma_t(self, sigma):
|
292
|
+
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
|
293
|
+
sigma_t = sigma
|
294
|
+
|
295
|
+
return alpha_t, sigma_t
|
296
|
+
|
297
|
+
def convert_model_output(
|
298
|
+
self,
|
299
|
+
model_output: torch.Tensor,
|
300
|
+
sample: torch.Tensor = None,
|
301
|
+
) -> torch.Tensor:
|
302
|
+
"""
|
303
|
+
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
|
304
|
+
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
|
305
|
+
integral of the data prediction model.
|
306
|
+
|
307
|
+
<Tip>
|
308
|
+
|
309
|
+
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
|
310
|
+
prediction and data prediction models.
|
311
|
+
|
312
|
+
</Tip>
|
313
|
+
|
314
|
+
Args:
|
315
|
+
model_output (`torch.Tensor`):
|
316
|
+
The direct output from the learned diffusion model.
|
317
|
+
sample (`torch.Tensor`):
|
318
|
+
A current instance of a sample created by the diffusion process.
|
319
|
+
|
320
|
+
Returns:
|
321
|
+
`torch.Tensor`:
|
322
|
+
The converted model output.
|
323
|
+
"""
|
324
|
+
sigma = self.sigmas[self.step_index]
|
325
|
+
x0_pred = self.precondition_outputs(sample, model_output, sigma)
|
326
|
+
|
327
|
+
return x0_pred
|
328
|
+
|
329
|
+
def dpm_solver_first_order_update(
|
330
|
+
self,
|
331
|
+
model_output: torch.Tensor,
|
332
|
+
sample: torch.Tensor = None,
|
333
|
+
noise: Optional[torch.Tensor] = None,
|
334
|
+
) -> torch.Tensor:
|
335
|
+
"""
|
336
|
+
One step for the first-order DPMSolver (equivalent to DDIM).
|
337
|
+
|
338
|
+
Args:
|
339
|
+
model_output (`torch.Tensor`):
|
340
|
+
The direct output from the learned diffusion model.
|
341
|
+
sample (`torch.Tensor`):
|
342
|
+
A current instance of a sample created by the diffusion process.
|
343
|
+
|
344
|
+
Returns:
|
345
|
+
`torch.Tensor`:
|
346
|
+
The sample tensor at the previous timestep.
|
347
|
+
"""
|
348
|
+
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
|
349
|
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
350
|
+
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
|
351
|
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
352
|
+
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
|
353
|
+
|
354
|
+
h = lambda_t - lambda_s
|
355
|
+
assert noise is not None
|
356
|
+
x_t = (
|
357
|
+
(sigma_t / sigma_s * torch.exp(-h)) * sample
|
358
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
|
359
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
360
|
+
)
|
361
|
+
|
362
|
+
return x_t
|
363
|
+
|
364
|
+
def multistep_dpm_solver_second_order_update(
|
365
|
+
self,
|
366
|
+
model_output_list: List[torch.Tensor],
|
367
|
+
sample: torch.Tensor = None,
|
368
|
+
noise: Optional[torch.Tensor] = None,
|
369
|
+
) -> torch.Tensor:
|
370
|
+
"""
|
371
|
+
One step for the second-order multistep DPMSolver.
|
372
|
+
|
373
|
+
Args:
|
374
|
+
model_output_list (`List[torch.Tensor]`):
|
375
|
+
The direct outputs from learned diffusion model at current and latter timesteps.
|
376
|
+
sample (`torch.Tensor`):
|
377
|
+
A current instance of a sample created by the diffusion process.
|
378
|
+
|
379
|
+
Returns:
|
380
|
+
`torch.Tensor`:
|
381
|
+
The sample tensor at the previous timestep.
|
382
|
+
"""
|
383
|
+
sigma_t, sigma_s0, sigma_s1 = (
|
384
|
+
self.sigmas[self.step_index + 1],
|
385
|
+
self.sigmas[self.step_index],
|
386
|
+
self.sigmas[self.step_index - 1],
|
387
|
+
)
|
388
|
+
|
389
|
+
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
390
|
+
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
391
|
+
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
|
392
|
+
|
393
|
+
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
394
|
+
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
395
|
+
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
|
396
|
+
|
397
|
+
m0, m1 = model_output_list[-1], model_output_list[-2]
|
398
|
+
|
399
|
+
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
|
400
|
+
r0 = h_0 / h
|
401
|
+
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
|
402
|
+
|
403
|
+
# sde-dpmsolver++
|
404
|
+
assert noise is not None
|
405
|
+
if self.config.solver_type == "midpoint":
|
406
|
+
x_t = (
|
407
|
+
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
408
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
409
|
+
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
|
410
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
411
|
+
)
|
412
|
+
elif self.config.solver_type == "heun":
|
413
|
+
x_t = (
|
414
|
+
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
|
415
|
+
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
|
416
|
+
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
|
417
|
+
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
|
418
|
+
)
|
419
|
+
|
420
|
+
return x_t
|
421
|
+
|
422
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
|
423
|
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
424
|
+
if schedule_timesteps is None:
|
425
|
+
schedule_timesteps = self.timesteps
|
426
|
+
|
427
|
+
index_candidates = (schedule_timesteps == timestep).nonzero()
|
428
|
+
|
429
|
+
if len(index_candidates) == 0:
|
430
|
+
step_index = len(self.timesteps) - 1
|
431
|
+
# The sigma index that is taken for the **very** first `step`
|
432
|
+
# is always the second index (or the last index if there is only 1)
|
433
|
+
# This way we can ensure we don't accidentally skip a sigma in
|
434
|
+
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
435
|
+
elif len(index_candidates) > 1:
|
436
|
+
step_index = index_candidates[1].item()
|
437
|
+
else:
|
438
|
+
step_index = index_candidates[0].item()
|
439
|
+
|
440
|
+
return step_index
|
441
|
+
|
442
|
+
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
443
|
+
def _init_step_index(self, timestep):
|
444
|
+
"""
|
445
|
+
Initialize the step_index counter for the scheduler.
|
446
|
+
"""
|
447
|
+
|
448
|
+
if self.begin_index is None:
|
449
|
+
if isinstance(timestep, torch.Tensor):
|
450
|
+
timestep = timestep.to(self.timesteps.device)
|
451
|
+
self._step_index = self.index_for_timestep(timestep)
|
452
|
+
else:
|
453
|
+
self._step_index = self._begin_index
|
454
|
+
|
455
|
+
def step(
|
456
|
+
self,
|
457
|
+
model_output: torch.Tensor,
|
458
|
+
timestep: Union[int, torch.Tensor],
|
459
|
+
sample: torch.Tensor,
|
460
|
+
generator=None,
|
461
|
+
return_dict: bool = True,
|
462
|
+
) -> Union[SchedulerOutput, Tuple]:
|
463
|
+
"""
|
464
|
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
465
|
+
the multistep DPMSolver.
|
466
|
+
|
467
|
+
Args:
|
468
|
+
model_output (`torch.Tensor`):
|
469
|
+
The direct output from learned diffusion model.
|
470
|
+
timestep (`int`):
|
471
|
+
The current discrete timestep in the diffusion chain.
|
472
|
+
sample (`torch.Tensor`):
|
473
|
+
A current instance of a sample created by the diffusion process.
|
474
|
+
generator (`torch.Generator`, *optional*):
|
475
|
+
A random number generator.
|
476
|
+
return_dict (`bool`):
|
477
|
+
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
478
|
+
|
479
|
+
Returns:
|
480
|
+
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
481
|
+
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
482
|
+
tuple is returned where the first element is the sample tensor.
|
483
|
+
|
484
|
+
"""
|
485
|
+
if self.num_inference_steps is None:
|
486
|
+
raise ValueError(
|
487
|
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
488
|
+
)
|
489
|
+
|
490
|
+
if self.step_index is None:
|
491
|
+
self._init_step_index(timestep)
|
492
|
+
|
493
|
+
# Improve numerical stability for small number of steps
|
494
|
+
lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
|
495
|
+
self.config.euler_at_final
|
496
|
+
or (self.config.lower_order_final and len(self.timesteps) < 15)
|
497
|
+
or self.config.final_sigmas_type == "zero"
|
498
|
+
)
|
499
|
+
lower_order_second = (
|
500
|
+
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
|
501
|
+
)
|
502
|
+
|
503
|
+
model_output = self.convert_model_output(model_output, sample=sample)
|
504
|
+
for i in range(self.config.solver_order - 1):
|
505
|
+
self.model_outputs[i] = self.model_outputs[i + 1]
|
506
|
+
self.model_outputs[-1] = model_output
|
507
|
+
|
508
|
+
if self.noise_sampler is None:
|
509
|
+
seed = None
|
510
|
+
if generator is not None:
|
511
|
+
seed = (
|
512
|
+
[g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed()
|
513
|
+
)
|
514
|
+
self.noise_sampler = BrownianTreeNoiseSampler(
|
515
|
+
model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed
|
516
|
+
)
|
517
|
+
noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to(
|
518
|
+
model_output.device
|
519
|
+
)
|
520
|
+
|
521
|
+
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
|
522
|
+
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
|
523
|
+
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
|
524
|
+
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
|
525
|
+
|
526
|
+
if self.lower_order_nums < self.config.solver_order:
|
527
|
+
self.lower_order_nums += 1
|
528
|
+
|
529
|
+
# upon completion increase step index by one
|
530
|
+
self._step_index += 1
|
531
|
+
|
532
|
+
if not return_dict:
|
533
|
+
return (prev_sample,)
|
534
|
+
|
535
|
+
return SchedulerOutput(prev_sample=prev_sample)
|
536
|
+
|
537
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
|
538
|
+
def add_noise(
|
539
|
+
self,
|
540
|
+
original_samples: torch.Tensor,
|
541
|
+
noise: torch.Tensor,
|
542
|
+
timesteps: torch.Tensor,
|
543
|
+
) -> torch.Tensor:
|
544
|
+
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
545
|
+
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
|
546
|
+
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
|
547
|
+
# mps does not support float64
|
548
|
+
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
|
549
|
+
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
|
550
|
+
else:
|
551
|
+
schedule_timesteps = self.timesteps.to(original_samples.device)
|
552
|
+
timesteps = timesteps.to(original_samples.device)
|
553
|
+
|
554
|
+
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
555
|
+
if self.begin_index is None:
|
556
|
+
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
|
557
|
+
elif self.step_index is not None:
|
558
|
+
# add_noise is called after first denoising step (for inpainting)
|
559
|
+
step_indices = [self.step_index] * timesteps.shape[0]
|
560
|
+
else:
|
561
|
+
# add noise is called before first denoising step to create initial latent(img2img)
|
562
|
+
step_indices = [self.begin_index] * timesteps.shape[0]
|
563
|
+
|
564
|
+
sigma = sigmas[step_indices].flatten()
|
565
|
+
while len(sigma.shape) < len(original_samples.shape):
|
566
|
+
sigma = sigma.unsqueeze(-1)
|
567
|
+
|
568
|
+
noisy_samples = original_samples + noise * sigma
|
569
|
+
return noisy_samples
|
570
|
+
|
571
|
+
def __len__(self):
|
572
|
+
return self.config.num_train_timesteps
|