diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,572 @@
1
+ # Copyright 2024 TSAIL Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver and https://github.com/NVlabs/edm
16
+
17
+ import math
18
+ from typing import List, Optional, Tuple, Union
19
+
20
+ import numpy as np
21
+ import torch
22
+
23
+ from ..configuration_utils import ConfigMixin, register_to_config
24
+ from .scheduling_dpmsolver_sde import BrownianTreeNoiseSampler
25
+ from .scheduling_utils import SchedulerMixin, SchedulerOutput
26
+
27
+
28
+ class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
29
+ """
30
+ Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021).
31
+ This scheduler was used in Stable Audio Open [1].
32
+
33
+ [1] Evans, Parker, et al. "Stable Audio Open" https://arxiv.org/abs/2407.14358
34
+
35
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
36
+ methods the library implements for all schedulers such as loading and saving.
37
+
38
+ Args:
39
+ sigma_min (`float`, *optional*, defaults to 0.3):
40
+ Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1].
41
+ sigma_max (`float`, *optional*, defaults to 500):
42
+ Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1].
43
+ sigma_data (`float`, *optional*, defaults to 1.0):
44
+ The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1].
45
+ sigma_schedule (`str`, *optional*, defaults to `exponential`):
46
+ Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
47
+ (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
48
+ incorporated in this model: https://huggingface.co/stabilityai/cosxl.
49
+ num_train_timesteps (`int`, defaults to 1000):
50
+ The number of diffusion steps to train the model.
51
+ solver_order (`int`, defaults to 2):
52
+ The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`.
53
+ prediction_type (`str`, defaults to `v_prediction`, *optional*):
54
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
55
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
56
+ Video](https://imagen.research.google/video/paper.pdf) paper).
57
+ solver_type (`str`, defaults to `midpoint`):
58
+ Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
59
+ sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
60
+ lower_order_final (`bool`, defaults to `True`):
61
+ Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
62
+ stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
63
+ euler_at_final (`bool`, defaults to `False`):
64
+ Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
65
+ richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
66
+ steps, but sometimes may result in blurring.
67
+ final_sigmas_type (`str`, defaults to `"zero"`):
68
+ The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
69
+ sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
70
+ """
71
+
72
+ _compatibles = []
73
+ order = 1
74
+
75
+ @register_to_config
76
+ def __init__(
77
+ self,
78
+ sigma_min: float = 0.3,
79
+ sigma_max: float = 500,
80
+ sigma_data: float = 1.0,
81
+ sigma_schedule: str = "exponential",
82
+ num_train_timesteps: int = 1000,
83
+ solver_order: int = 2,
84
+ prediction_type: str = "v_prediction",
85
+ rho: float = 7.0,
86
+ solver_type: str = "midpoint",
87
+ lower_order_final: bool = True,
88
+ euler_at_final: bool = False,
89
+ final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
90
+ ):
91
+ if solver_type not in ["midpoint", "heun"]:
92
+ if solver_type in ["logrho", "bh1", "bh2"]:
93
+ self.register_to_config(solver_type="midpoint")
94
+ else:
95
+ raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
96
+
97
+ ramp = torch.linspace(0, 1, num_train_timesteps)
98
+ if sigma_schedule == "karras":
99
+ sigmas = self._compute_karras_sigmas(ramp)
100
+ elif sigma_schedule == "exponential":
101
+ sigmas = self._compute_exponential_sigmas(ramp)
102
+
103
+ self.timesteps = self.precondition_noise(sigmas)
104
+
105
+ self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
106
+
107
+ # setable values
108
+ self.num_inference_steps = None
109
+ self.model_outputs = [None] * solver_order
110
+ self.lower_order_nums = 0
111
+ self._step_index = None
112
+ self._begin_index = None
113
+ self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
114
+
115
+ @property
116
+ def init_noise_sigma(self):
117
+ # standard deviation of the initial noise distribution
118
+ return (self.config.sigma_max**2 + 1) ** 0.5
119
+
120
+ @property
121
+ def step_index(self):
122
+ """
123
+ The index counter for current timestep. It will increase 1 after each scheduler step.
124
+ """
125
+ return self._step_index
126
+
127
+ @property
128
+ def begin_index(self):
129
+ """
130
+ The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
131
+ """
132
+ return self._begin_index
133
+
134
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
135
+ def set_begin_index(self, begin_index: int = 0):
136
+ """
137
+ Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
138
+
139
+ Args:
140
+ begin_index (`int`):
141
+ The begin index for the scheduler.
142
+ """
143
+ self._begin_index = begin_index
144
+
145
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
146
+ def precondition_inputs(self, sample, sigma):
147
+ c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
148
+ scaled_sample = sample * c_in
149
+ return scaled_sample
150
+
151
+ def precondition_noise(self, sigma):
152
+ if not isinstance(sigma, torch.Tensor):
153
+ sigma = torch.tensor([sigma])
154
+
155
+ return sigma.atan() / math.pi * 2
156
+
157
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
158
+ def precondition_outputs(self, sample, model_output, sigma):
159
+ sigma_data = self.config.sigma_data
160
+ c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
161
+
162
+ if self.config.prediction_type == "epsilon":
163
+ c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
164
+ elif self.config.prediction_type == "v_prediction":
165
+ c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
166
+ else:
167
+ raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
168
+
169
+ denoised = c_skip * sample + c_out * model_output
170
+
171
+ return denoised
172
+
173
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
174
+ def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
175
+ """
176
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
177
+ current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
178
+
179
+ Args:
180
+ sample (`torch.Tensor`):
181
+ The input sample.
182
+ timestep (`int`, *optional*):
183
+ The current timestep in the diffusion chain.
184
+
185
+ Returns:
186
+ `torch.Tensor`:
187
+ A scaled input sample.
188
+ """
189
+ if self.step_index is None:
190
+ self._init_step_index(timestep)
191
+
192
+ sigma = self.sigmas[self.step_index]
193
+ sample = self.precondition_inputs(sample, sigma)
194
+
195
+ self.is_scale_input_called = True
196
+ return sample
197
+
198
+ def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
199
+ """
200
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
201
+
202
+ Args:
203
+ num_inference_steps (`int`):
204
+ The number of diffusion steps used when generating samples with a pre-trained model.
205
+ device (`str` or `torch.device`, *optional*):
206
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
207
+ """
208
+
209
+ self.num_inference_steps = num_inference_steps
210
+
211
+ ramp = torch.linspace(0, 1, self.num_inference_steps)
212
+ if self.config.sigma_schedule == "karras":
213
+ sigmas = self._compute_karras_sigmas(ramp)
214
+ elif self.config.sigma_schedule == "exponential":
215
+ sigmas = self._compute_exponential_sigmas(ramp)
216
+
217
+ sigmas = sigmas.to(dtype=torch.float32, device=device)
218
+ self.timesteps = self.precondition_noise(sigmas)
219
+
220
+ if self.config.final_sigmas_type == "sigma_min":
221
+ sigma_last = self.config.sigma_min
222
+ elif self.config.final_sigmas_type == "zero":
223
+ sigma_last = 0
224
+ else:
225
+ raise ValueError(
226
+ f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
227
+ )
228
+
229
+ self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])
230
+
231
+ self.model_outputs = [
232
+ None,
233
+ ] * self.config.solver_order
234
+ self.lower_order_nums = 0
235
+
236
+ # add an index counter for schedulers that allow duplicated timesteps
237
+ self._step_index = None
238
+ self._begin_index = None
239
+ self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
240
+
241
+ # if a noise sampler is used, reinitialise it
242
+ self.noise_sampler = None
243
+
244
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
245
+ def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
246
+ """Constructs the noise schedule of Karras et al. (2022)."""
247
+ sigma_min = sigma_min or self.config.sigma_min
248
+ sigma_max = sigma_max or self.config.sigma_max
249
+
250
+ rho = self.config.rho
251
+ min_inv_rho = sigma_min ** (1 / rho)
252
+ max_inv_rho = sigma_max ** (1 / rho)
253
+ sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
254
+ return sigmas
255
+
256
+ # Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
257
+ def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
258
+ """Implementation closely follows k-diffusion.
259
+
260
+ https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
261
+ """
262
+ sigma_min = sigma_min or self.config.sigma_min
263
+ sigma_max = sigma_max or self.config.sigma_max
264
+ sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
265
+ return sigmas
266
+
267
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
268
+ def _sigma_to_t(self, sigma, log_sigmas):
269
+ # get log sigma
270
+ log_sigma = np.log(np.maximum(sigma, 1e-10))
271
+
272
+ # get distribution
273
+ dists = log_sigma - log_sigmas[:, np.newaxis]
274
+
275
+ # get sigmas range
276
+ low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
277
+ high_idx = low_idx + 1
278
+
279
+ low = log_sigmas[low_idx]
280
+ high = log_sigmas[high_idx]
281
+
282
+ # interpolate sigmas
283
+ w = (low - log_sigma) / (low - high)
284
+ w = np.clip(w, 0, 1)
285
+
286
+ # transform interpolation to time range
287
+ t = (1 - w) * low_idx + w * high_idx
288
+ t = t.reshape(sigma.shape)
289
+ return t
290
+
291
+ def _sigma_to_alpha_sigma_t(self, sigma):
292
+ alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
293
+ sigma_t = sigma
294
+
295
+ return alpha_t, sigma_t
296
+
297
+ def convert_model_output(
298
+ self,
299
+ model_output: torch.Tensor,
300
+ sample: torch.Tensor = None,
301
+ ) -> torch.Tensor:
302
+ """
303
+ Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
304
+ designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
305
+ integral of the data prediction model.
306
+
307
+ <Tip>
308
+
309
+ The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
310
+ prediction and data prediction models.
311
+
312
+ </Tip>
313
+
314
+ Args:
315
+ model_output (`torch.Tensor`):
316
+ The direct output from the learned diffusion model.
317
+ sample (`torch.Tensor`):
318
+ A current instance of a sample created by the diffusion process.
319
+
320
+ Returns:
321
+ `torch.Tensor`:
322
+ The converted model output.
323
+ """
324
+ sigma = self.sigmas[self.step_index]
325
+ x0_pred = self.precondition_outputs(sample, model_output, sigma)
326
+
327
+ return x0_pred
328
+
329
+ def dpm_solver_first_order_update(
330
+ self,
331
+ model_output: torch.Tensor,
332
+ sample: torch.Tensor = None,
333
+ noise: Optional[torch.Tensor] = None,
334
+ ) -> torch.Tensor:
335
+ """
336
+ One step for the first-order DPMSolver (equivalent to DDIM).
337
+
338
+ Args:
339
+ model_output (`torch.Tensor`):
340
+ The direct output from the learned diffusion model.
341
+ sample (`torch.Tensor`):
342
+ A current instance of a sample created by the diffusion process.
343
+
344
+ Returns:
345
+ `torch.Tensor`:
346
+ The sample tensor at the previous timestep.
347
+ """
348
+ sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
349
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
350
+ alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
351
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
352
+ lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
353
+
354
+ h = lambda_t - lambda_s
355
+ assert noise is not None
356
+ x_t = (
357
+ (sigma_t / sigma_s * torch.exp(-h)) * sample
358
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
359
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
360
+ )
361
+
362
+ return x_t
363
+
364
+ def multistep_dpm_solver_second_order_update(
365
+ self,
366
+ model_output_list: List[torch.Tensor],
367
+ sample: torch.Tensor = None,
368
+ noise: Optional[torch.Tensor] = None,
369
+ ) -> torch.Tensor:
370
+ """
371
+ One step for the second-order multistep DPMSolver.
372
+
373
+ Args:
374
+ model_output_list (`List[torch.Tensor]`):
375
+ The direct outputs from learned diffusion model at current and latter timesteps.
376
+ sample (`torch.Tensor`):
377
+ A current instance of a sample created by the diffusion process.
378
+
379
+ Returns:
380
+ `torch.Tensor`:
381
+ The sample tensor at the previous timestep.
382
+ """
383
+ sigma_t, sigma_s0, sigma_s1 = (
384
+ self.sigmas[self.step_index + 1],
385
+ self.sigmas[self.step_index],
386
+ self.sigmas[self.step_index - 1],
387
+ )
388
+
389
+ alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
390
+ alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
391
+ alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
392
+
393
+ lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
394
+ lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
395
+ lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
396
+
397
+ m0, m1 = model_output_list[-1], model_output_list[-2]
398
+
399
+ h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
400
+ r0 = h_0 / h
401
+ D0, D1 = m0, (1.0 / r0) * (m0 - m1)
402
+
403
+ # sde-dpmsolver++
404
+ assert noise is not None
405
+ if self.config.solver_type == "midpoint":
406
+ x_t = (
407
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
408
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
409
+ + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
410
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
411
+ )
412
+ elif self.config.solver_type == "heun":
413
+ x_t = (
414
+ (sigma_t / sigma_s0 * torch.exp(-h)) * sample
415
+ + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
416
+ + (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
417
+ + sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
418
+ )
419
+
420
+ return x_t
421
+
422
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
423
+ def index_for_timestep(self, timestep, schedule_timesteps=None):
424
+ if schedule_timesteps is None:
425
+ schedule_timesteps = self.timesteps
426
+
427
+ index_candidates = (schedule_timesteps == timestep).nonzero()
428
+
429
+ if len(index_candidates) == 0:
430
+ step_index = len(self.timesteps) - 1
431
+ # The sigma index that is taken for the **very** first `step`
432
+ # is always the second index (or the last index if there is only 1)
433
+ # This way we can ensure we don't accidentally skip a sigma in
434
+ # case we start in the middle of the denoising schedule (e.g. for image-to-image)
435
+ elif len(index_candidates) > 1:
436
+ step_index = index_candidates[1].item()
437
+ else:
438
+ step_index = index_candidates[0].item()
439
+
440
+ return step_index
441
+
442
+ # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
443
+ def _init_step_index(self, timestep):
444
+ """
445
+ Initialize the step_index counter for the scheduler.
446
+ """
447
+
448
+ if self.begin_index is None:
449
+ if isinstance(timestep, torch.Tensor):
450
+ timestep = timestep.to(self.timesteps.device)
451
+ self._step_index = self.index_for_timestep(timestep)
452
+ else:
453
+ self._step_index = self._begin_index
454
+
455
+ def step(
456
+ self,
457
+ model_output: torch.Tensor,
458
+ timestep: Union[int, torch.Tensor],
459
+ sample: torch.Tensor,
460
+ generator=None,
461
+ return_dict: bool = True,
462
+ ) -> Union[SchedulerOutput, Tuple]:
463
+ """
464
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
465
+ the multistep DPMSolver.
466
+
467
+ Args:
468
+ model_output (`torch.Tensor`):
469
+ The direct output from learned diffusion model.
470
+ timestep (`int`):
471
+ The current discrete timestep in the diffusion chain.
472
+ sample (`torch.Tensor`):
473
+ A current instance of a sample created by the diffusion process.
474
+ generator (`torch.Generator`, *optional*):
475
+ A random number generator.
476
+ return_dict (`bool`):
477
+ Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
478
+
479
+ Returns:
480
+ [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
481
+ If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
482
+ tuple is returned where the first element is the sample tensor.
483
+
484
+ """
485
+ if self.num_inference_steps is None:
486
+ raise ValueError(
487
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
488
+ )
489
+
490
+ if self.step_index is None:
491
+ self._init_step_index(timestep)
492
+
493
+ # Improve numerical stability for small number of steps
494
+ lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
495
+ self.config.euler_at_final
496
+ or (self.config.lower_order_final and len(self.timesteps) < 15)
497
+ or self.config.final_sigmas_type == "zero"
498
+ )
499
+ lower_order_second = (
500
+ (self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
501
+ )
502
+
503
+ model_output = self.convert_model_output(model_output, sample=sample)
504
+ for i in range(self.config.solver_order - 1):
505
+ self.model_outputs[i] = self.model_outputs[i + 1]
506
+ self.model_outputs[-1] = model_output
507
+
508
+ if self.noise_sampler is None:
509
+ seed = None
510
+ if generator is not None:
511
+ seed = (
512
+ [g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed()
513
+ )
514
+ self.noise_sampler = BrownianTreeNoiseSampler(
515
+ model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed
516
+ )
517
+ noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to(
518
+ model_output.device
519
+ )
520
+
521
+ if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
522
+ prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
523
+ elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
524
+ prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
525
+
526
+ if self.lower_order_nums < self.config.solver_order:
527
+ self.lower_order_nums += 1
528
+
529
+ # upon completion increase step index by one
530
+ self._step_index += 1
531
+
532
+ if not return_dict:
533
+ return (prev_sample,)
534
+
535
+ return SchedulerOutput(prev_sample=prev_sample)
536
+
537
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
538
+ def add_noise(
539
+ self,
540
+ original_samples: torch.Tensor,
541
+ noise: torch.Tensor,
542
+ timesteps: torch.Tensor,
543
+ ) -> torch.Tensor:
544
+ # Make sure sigmas and timesteps have the same device and dtype as original_samples
545
+ sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
546
+ if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
547
+ # mps does not support float64
548
+ schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
549
+ timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
550
+ else:
551
+ schedule_timesteps = self.timesteps.to(original_samples.device)
552
+ timesteps = timesteps.to(original_samples.device)
553
+
554
+ # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
555
+ if self.begin_index is None:
556
+ step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
557
+ elif self.step_index is not None:
558
+ # add_noise is called after first denoising step (for inpainting)
559
+ step_indices = [self.step_index] * timesteps.shape[0]
560
+ else:
561
+ # add noise is called before first denoising step to create initial latent(img2img)
562
+ step_indices = [self.begin_index] * timesteps.shape[0]
563
+
564
+ sigma = sigmas[step_indices].flatten()
565
+ while len(sigma.shape) < len(original_samples.shape):
566
+ sigma = sigma.unsqueeze(-1)
567
+
568
+ noisy_samples = original_samples + noise * sigma
569
+ return noisy_samples
570
+
571
+ def __len__(self):
572
+ return self.config.num_train_timesteps