diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -27,6 +27,7 @@ from transformers import (
27
27
  CLIPVisionModelWithProjection,
28
28
  )
29
29
 
30
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
30
31
  from ...image_processor import PipelineImageInput, VaeImageProcessor
31
32
  from ...loaders import (
32
33
  FromSingleFileMixin,
@@ -34,11 +35,9 @@ from ...loaders import (
34
35
  StableDiffusionXLLoraLoaderMixin,
35
36
  TextualInversionLoaderMixin,
36
37
  )
37
- from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
38
+ from ...models import AutoencoderKL, ControlNetModel, ImageProjection, MultiControlNetModel, UNet2DConditionModel
38
39
  from ...models.attention_processor import (
39
40
  AttnProcessor2_0,
40
- LoRAAttnProcessor2_0,
41
- LoRAXFormersAttnProcessor,
42
41
  XFormersAttnProcessor,
43
42
  )
44
43
  from ...models.lora import adjust_lora_scale_text_encoder
@@ -55,7 +54,6 @@ from ...utils import (
55
54
  from ...utils.torch_utils import is_compiled_module, randn_tensor
56
55
  from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
57
56
  from ..stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
58
- from .multicontrolnet import MultiControlNetModel
59
57
 
60
58
 
61
59
  if is_invisible_watermark_available():
@@ -85,6 +83,7 @@ EXAMPLE_DOC_STRING = """
85
83
  >>> # !pip install transformers accelerate
86
84
  >>> from diffusers import StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
87
85
  >>> from diffusers.utils import load_image
86
+ >>> from PIL import Image
88
87
  >>> import numpy as np
89
88
  >>> import torch
90
89
 
@@ -137,9 +136,21 @@ EXAMPLE_DOC_STRING = """
137
136
 
138
137
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
139
138
  def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
140
- """
141
- Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
142
- Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
139
+ r"""
140
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
141
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
142
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
143
+
144
+ Args:
145
+ noise_cfg (`torch.Tensor`):
146
+ The predicted noise tensor for the guided diffusion process.
147
+ noise_pred_text (`torch.Tensor`):
148
+ The predicted noise tensor for the text-guided diffusion process.
149
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
150
+ A rescale factor applied to the noise predictions.
151
+
152
+ Returns:
153
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
143
154
  """
144
155
  std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
145
156
  std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
@@ -151,7 +162,12 @@ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
151
162
 
152
163
 
153
164
  class StableDiffusionXLControlNetInpaintPipeline(
154
- DiffusionPipeline, StableDiffusionMixin, StableDiffusionXLLoraLoaderMixin, FromSingleFileMixin, IPAdapterMixin
165
+ DiffusionPipeline,
166
+ StableDiffusionMixin,
167
+ StableDiffusionXLLoraLoaderMixin,
168
+ FromSingleFileMixin,
169
+ IPAdapterMixin,
170
+ TextualInversionLoaderMixin,
155
171
  ):
156
172
  r"""
157
173
  Pipeline for text-to-image generation using Stable Diffusion XL.
@@ -160,6 +176,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
160
176
  library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
161
177
 
162
178
  The pipeline also inherits the following loading methods:
179
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
163
180
  - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
164
181
  - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
165
182
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
@@ -191,8 +208,26 @@ class StableDiffusionXLControlNetInpaintPipeline(
191
208
  """
192
209
 
193
210
  model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
194
- _optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2"]
195
- _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
211
+
212
+ _optional_components = [
213
+ "tokenizer",
214
+ "tokenizer_2",
215
+ "text_encoder",
216
+ "text_encoder_2",
217
+ "image_encoder",
218
+ "feature_extractor",
219
+ ]
220
+ _callback_tensor_inputs = [
221
+ "latents",
222
+ "prompt_embeds",
223
+ "negative_prompt_embeds",
224
+ "add_text_embeds",
225
+ "add_time_ids",
226
+ "negative_pooled_prompt_embeds",
227
+ "add_neg_time_ids",
228
+ "mask",
229
+ "masked_image_latents",
230
+ ]
196
231
 
197
232
  def __init__(
198
233
  self,
@@ -202,7 +237,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
202
237
  tokenizer: CLIPTokenizer,
203
238
  tokenizer_2: CLIPTokenizer,
204
239
  unet: UNet2DConditionModel,
205
- controlnet: ControlNetModel,
240
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
206
241
  scheduler: KarrasDiffusionSchedulers,
207
242
  requires_aesthetics_score: bool = False,
208
243
  force_zeros_for_empty_prompt: bool = True,
@@ -255,10 +290,10 @@ class StableDiffusionXLControlNetInpaintPipeline(
255
290
  do_classifier_free_guidance: bool = True,
256
291
  negative_prompt: Optional[str] = None,
257
292
  negative_prompt_2: Optional[str] = None,
258
- prompt_embeds: Optional[torch.FloatTensor] = None,
259
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
260
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
261
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
293
+ prompt_embeds: Optional[torch.Tensor] = None,
294
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
295
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
296
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
262
297
  lora_scale: Optional[float] = None,
263
298
  clip_skip: Optional[int] = None,
264
299
  ):
@@ -284,17 +319,17 @@ class StableDiffusionXLControlNetInpaintPipeline(
284
319
  negative_prompt_2 (`str` or `List[str]`, *optional*):
285
320
  The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
286
321
  `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
287
- prompt_embeds (`torch.FloatTensor`, *optional*):
322
+ prompt_embeds (`torch.Tensor`, *optional*):
288
323
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
289
324
  provided, text embeddings will be generated from `prompt` input argument.
290
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
325
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
291
326
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
292
327
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
293
328
  argument.
294
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
329
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
295
330
  Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
296
331
  If not provided, pooled text embeddings will be generated from `prompt` input argument.
297
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
332
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
298
333
  Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
299
334
  weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
300
335
  input argument.
@@ -509,6 +544,9 @@ class StableDiffusionXLControlNetInpaintPipeline(
509
544
  def prepare_ip_adapter_image_embeds(
510
545
  self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
511
546
  ):
547
+ image_embeds = []
548
+ if do_classifier_free_guidance:
549
+ negative_image_embeds = []
512
550
  if ip_adapter_image_embeds is None:
513
551
  if not isinstance(ip_adapter_image, list):
514
552
  ip_adapter_image = [ip_adapter_image]
@@ -518,7 +556,6 @@ class StableDiffusionXLControlNetInpaintPipeline(
518
556
  f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
519
557
  )
520
558
 
521
- image_embeds = []
522
559
  for single_ip_adapter_image, image_proj_layer in zip(
523
560
  ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
524
561
  ):
@@ -526,36 +563,28 @@ class StableDiffusionXLControlNetInpaintPipeline(
526
563
  single_image_embeds, single_negative_image_embeds = self.encode_image(
527
564
  single_ip_adapter_image, device, 1, output_hidden_state
528
565
  )
529
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
530
- single_negative_image_embeds = torch.stack(
531
- [single_negative_image_embeds] * num_images_per_prompt, dim=0
532
- )
533
566
 
567
+ image_embeds.append(single_image_embeds[None, :])
534
568
  if do_classifier_free_guidance:
535
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
536
- single_image_embeds = single_image_embeds.to(device)
537
-
538
- image_embeds.append(single_image_embeds)
569
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
539
570
  else:
540
- repeat_dims = [1]
541
- image_embeds = []
542
571
  for single_image_embeds in ip_adapter_image_embeds:
543
572
  if do_classifier_free_guidance:
544
573
  single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
545
- single_image_embeds = single_image_embeds.repeat(
546
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
547
- )
548
- single_negative_image_embeds = single_negative_image_embeds.repeat(
549
- num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
550
- )
551
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
552
- else:
553
- single_image_embeds = single_image_embeds.repeat(
554
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
555
- )
574
+ negative_image_embeds.append(single_negative_image_embeds)
556
575
  image_embeds.append(single_image_embeds)
557
576
 
558
- return image_embeds
577
+ ip_adapter_image_embeds = []
578
+ for i, single_image_embeds in enumerate(image_embeds):
579
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
580
+ if do_classifier_free_guidance:
581
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
582
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
583
+
584
+ single_image_embeds = single_image_embeds.to(device=device)
585
+ ip_adapter_image_embeds.append(single_image_embeds)
586
+
587
+ return ip_adapter_image_embeds
559
588
 
560
589
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
561
590
  def prepare_extra_step_kwargs(self, generator, eta):
@@ -880,7 +909,12 @@ class StableDiffusionXLControlNetInpaintPipeline(
880
909
  return_noise=False,
881
910
  return_image_latents=False,
882
911
  ):
883
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
912
+ shape = (
913
+ batch_size,
914
+ num_channels_latents,
915
+ int(height) // self.vae_scale_factor,
916
+ int(width) // self.vae_scale_factor,
917
+ )
884
918
  if isinstance(generator, list) and len(generator) != batch_size:
885
919
  raise ValueError(
886
920
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
@@ -1001,14 +1035,16 @@ class StableDiffusionXLControlNetInpaintPipeline(
1001
1035
  if denoising_start is None:
1002
1036
  init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
1003
1037
  t_start = max(num_inference_steps - init_timestep, 0)
1004
- else:
1005
- t_start = 0
1006
1038
 
1007
- timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
1039
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
1040
+ if hasattr(self.scheduler, "set_begin_index"):
1041
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
1008
1042
 
1009
- # Strength is irrelevant if we directly request a timestep to start at;
1010
- # that is, strength is determined by the denoising_start instead.
1011
- if denoising_start is not None:
1043
+ return timesteps, num_inference_steps - t_start
1044
+
1045
+ else:
1046
+ # Strength is irrelevant if we directly request a timestep to start at;
1047
+ # that is, strength is determined by the denoising_start instead.
1012
1048
  discrete_timestep_cutoff = int(
1013
1049
  round(
1014
1050
  self.scheduler.config.num_train_timesteps
@@ -1016,22 +1052,23 @@ class StableDiffusionXLControlNetInpaintPipeline(
1016
1052
  )
1017
1053
  )
1018
1054
 
1019
- num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
1055
+ num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item()
1020
1056
  if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
1021
1057
  # if the scheduler is a 2nd order scheduler we might have to do +1
1022
1058
  # because `num_inference_steps` might be even given that every timestep
1023
1059
  # (except the highest one) is duplicated. If `num_inference_steps` is even it would
1024
1060
  # mean that we cut the timesteps in the middle of the denoising step
1025
- # (between 1st and 2nd devirative) which leads to incorrect results. By adding 1
1061
+ # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
1026
1062
  # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
1027
1063
  num_inference_steps = num_inference_steps + 1
1028
1064
 
1029
1065
  # because t_n+1 >= t_n, we slice the timesteps starting from the end
1030
- timesteps = timesteps[-num_inference_steps:]
1066
+ t_start = len(self.scheduler.timesteps) - num_inference_steps
1067
+ timesteps = self.scheduler.timesteps[t_start:]
1068
+ if hasattr(self.scheduler, "set_begin_index"):
1069
+ self.scheduler.set_begin_index(t_start)
1031
1070
  return timesteps, num_inference_steps
1032
1071
 
1033
- return timesteps, num_inference_steps - t_start
1034
-
1035
1072
  def _get_add_time_ids(
1036
1073
  self,
1037
1074
  original_size,
@@ -1087,8 +1124,6 @@ class StableDiffusionXLControlNetInpaintPipeline(
1087
1124
  (
1088
1125
  AttnProcessor2_0,
1089
1126
  XFormersAttnProcessor,
1090
- LoRAXFormersAttnProcessor,
1091
- LoRAAttnProcessor2_0,
1092
1127
  ),
1093
1128
  )
1094
1129
  # if xformers or torch_2_0 is used attention block does not need
@@ -1121,6 +1156,10 @@ class StableDiffusionXLControlNetInpaintPipeline(
1121
1156
  def num_timesteps(self):
1122
1157
  return self._num_timesteps
1123
1158
 
1159
+ @property
1160
+ def interrupt(self):
1161
+ return self._interrupt
1162
+
1124
1163
  @torch.no_grad()
1125
1164
  @replace_example_docstring(EXAMPLE_DOC_STRING)
1126
1165
  def __call__(
@@ -1146,13 +1185,13 @@ class StableDiffusionXLControlNetInpaintPipeline(
1146
1185
  num_images_per_prompt: Optional[int] = 1,
1147
1186
  eta: float = 0.0,
1148
1187
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1149
- latents: Optional[torch.FloatTensor] = None,
1150
- prompt_embeds: Optional[torch.FloatTensor] = None,
1151
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
1188
+ latents: Optional[torch.Tensor] = None,
1189
+ prompt_embeds: Optional[torch.Tensor] = None,
1190
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
1152
1191
  ip_adapter_image: Optional[PipelineImageInput] = None,
1153
- ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
1154
- pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
1155
- negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
1192
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
1193
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
1194
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1156
1195
  output_type: Optional[str] = "pil",
1157
1196
  return_dict: bool = True,
1158
1197
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -1167,7 +1206,9 @@ class StableDiffusionXLControlNetInpaintPipeline(
1167
1206
  aesthetic_score: float = 6.0,
1168
1207
  negative_aesthetic_score: float = 2.5,
1169
1208
  clip_skip: Optional[int] = None,
1170
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
1209
+ callback_on_step_end: Optional[
1210
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
1211
+ ] = None,
1171
1212
  callback_on_step_end_tensor_inputs: List[str] = ["latents"],
1172
1213
  **kwargs,
1173
1214
  ):
@@ -1194,11 +1235,12 @@ class StableDiffusionXLControlNetInpaintPipeline(
1194
1235
  width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
1195
1236
  The width in pixels of the generated image.
1196
1237
  padding_mask_crop (`int`, *optional*, defaults to `None`):
1197
- The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to image and mask_image. If
1198
- `padding_mask_crop` is not `None`, it will first find a rectangular region with the same aspect ration of the image and
1199
- contains all masked area, and then expand that area based on `padding_mask_crop`. The image and mask_image will then be cropped based on
1200
- the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large
1201
- and contain information inreleant for inpainging, such as background.
1238
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
1239
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
1240
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
1241
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
1242
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
1243
+ the image is large and contain information irrelevant for inpainting, such as background.
1202
1244
  strength (`float`, *optional*, defaults to 0.9999):
1203
1245
  Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
1204
1246
  between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
@@ -1238,23 +1280,23 @@ class StableDiffusionXLControlNetInpaintPipeline(
1238
1280
  negative_prompt_2 (`str` or `List[str]`, *optional*):
1239
1281
  The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
1240
1282
  `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
1241
- prompt_embeds (`torch.FloatTensor`, *optional*):
1283
+ prompt_embeds (`torch.Tensor`, *optional*):
1242
1284
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1243
1285
  provided, text embeddings will be generated from `prompt` input argument.
1244
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
1286
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1245
1287
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1246
1288
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
1247
1289
  argument.
1248
1290
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1249
- ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
1250
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
1251
- Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
1252
- if `do_classifier_free_guidance` is set to `True`.
1253
- If not provided, embeddings are computed from the `ip_adapter_image` input argument.
1254
- pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
1291
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1292
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1293
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1294
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1295
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1296
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1255
1297
  Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
1256
1298
  If not provided, pooled text embeddings will be generated from `prompt` input argument.
1257
- negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
1299
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1258
1300
  Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1259
1301
  weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1260
1302
  input argument.
@@ -1266,7 +1308,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
1266
1308
  generator (`torch.Generator`, *optional*):
1267
1309
  One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1268
1310
  to make generation deterministic.
1269
- latents (`torch.FloatTensor`, *optional*):
1311
+ latents (`torch.Tensor`, *optional*):
1270
1312
  Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1271
1313
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1272
1314
  tensor will ge generated by sampling using the supplied random `generator`.
@@ -1305,15 +1347,15 @@ class StableDiffusionXLControlNetInpaintPipeline(
1305
1347
  clip_skip (`int`, *optional*):
1306
1348
  Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1307
1349
  the output of the pre-final layer will be used for computing the prompt embeddings.
1308
- callback_on_step_end (`Callable`, *optional*):
1309
- A function that calls at the end of each denoising steps during the inference. The function is called
1310
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
1311
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
1312
- `callback_on_step_end_tensor_inputs`.
1350
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1351
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1352
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1353
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1354
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1313
1355
  callback_on_step_end_tensor_inputs (`List`, *optional*):
1314
1356
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1315
1357
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1316
- `._callback_tensor_inputs` attribute of your pipeine class.
1358
+ `._callback_tensor_inputs` attribute of your pipeline class.
1317
1359
 
1318
1360
  Examples:
1319
1361
 
@@ -1339,6 +1381,9 @@ class StableDiffusionXLControlNetInpaintPipeline(
1339
1381
  "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1340
1382
  )
1341
1383
 
1384
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1385
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1386
+
1342
1387
  controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1343
1388
 
1344
1389
  # align format for control guidance
@@ -1397,6 +1442,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
1397
1442
  self._guidance_scale = guidance_scale
1398
1443
  self._clip_skip = clip_skip
1399
1444
  self._cross_attention_kwargs = cross_attention_kwargs
1445
+ self._interrupt = False
1400
1446
 
1401
1447
  # 2. Define call parameters
1402
1448
  if prompt is not None and isinstance(prompt, str):
@@ -1601,10 +1647,7 @@ class StableDiffusionXLControlNetInpaintPipeline(
1601
1647
  1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1602
1648
  for s, e in zip(control_guidance_start, control_guidance_end)
1603
1649
  ]
1604
- if isinstance(self.controlnet, MultiControlNetModel):
1605
- controlnet_keep.append(keeps)
1606
- else:
1607
- controlnet_keep.append(keeps[0])
1650
+ controlnet_keep.append(keeps if isinstance(controlnet, MultiControlNetModel) else keeps[0])
1608
1651
 
1609
1652
  # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1610
1653
  height, width = latents.shape[-2:]
@@ -1668,6 +1711,9 @@ class StableDiffusionXLControlNetInpaintPipeline(
1668
1711
 
1669
1712
  with self.progress_bar(total=num_inference_steps) as progress_bar:
1670
1713
  for i, t in enumerate(timesteps):
1714
+ if self.interrupt:
1715
+ continue
1716
+
1671
1717
  # expand the latents if we are doing classifier free guidance
1672
1718
  latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1673
1719
 
@@ -1715,13 +1761,13 @@ class StableDiffusionXLControlNetInpaintPipeline(
1715
1761
  )
1716
1762
 
1717
1763
  if guess_mode and self.do_classifier_free_guidance:
1718
- # Infered ControlNet only for the conditional batch.
1764
+ # Inferred ControlNet only for the conditional batch.
1719
1765
  # To apply the output of ControlNet to both the unconditional and conditional batches,
1720
1766
  # add 0 to the unconditional batch to keep it unchanged.
1721
1767
  down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1722
1768
  mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1723
1769
 
1724
- if ip_adapter_image is not None:
1770
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1725
1771
  added_cond_kwargs["image_embeds"] = image_embeds
1726
1772
 
1727
1773
  if num_channels_unet == 9: