diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -20,11 +20,11 @@ import numpy as np
|
|
20
20
|
import PIL.Image
|
21
21
|
import torch
|
22
22
|
from packaging import version
|
23
|
-
from transformers import CLIPTextModel, CLIPTokenizer,
|
23
|
+
from transformers import CLIPTextModel, CLIPTokenizer, DPTForDepthEstimation, DPTImageProcessor
|
24
24
|
|
25
25
|
from ...configuration_utils import FrozenDict
|
26
26
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
27
|
-
from ...loaders import
|
27
|
+
from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
28
28
|
from ...models import AutoencoderKL, UNet2DConditionModel
|
29
29
|
from ...models.lora import adjust_lora_scale_text_encoder
|
30
30
|
from ...schedulers import KarrasDiffusionSchedulers
|
@@ -74,7 +74,7 @@ def preprocess(image):
|
|
74
74
|
return image
|
75
75
|
|
76
76
|
|
77
|
-
class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin,
|
77
|
+
class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin):
|
78
78
|
r"""
|
79
79
|
Pipeline for text-guided depth-based image-to-image generation using Stable Diffusion.
|
80
80
|
|
@@ -83,8 +83,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
83
83
|
|
84
84
|
The pipeline also inherits the following loading methods:
|
85
85
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
86
|
-
- [`~loaders.
|
87
|
-
- [`~loaders.
|
86
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
87
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
88
88
|
|
89
89
|
Args:
|
90
90
|
vae ([`AutoencoderKL`]):
|
@@ -111,7 +111,7 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
111
111
|
unet: UNet2DConditionModel,
|
112
112
|
scheduler: KarrasDiffusionSchedulers,
|
113
113
|
depth_estimator: DPTForDepthEstimation,
|
114
|
-
feature_extractor:
|
114
|
+
feature_extractor: DPTImageProcessor,
|
115
115
|
):
|
116
116
|
super().__init__()
|
117
117
|
|
@@ -156,8 +156,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
156
156
|
num_images_per_prompt,
|
157
157
|
do_classifier_free_guidance,
|
158
158
|
negative_prompt=None,
|
159
|
-
prompt_embeds: Optional[torch.
|
160
|
-
negative_prompt_embeds: Optional[torch.
|
159
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
160
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
161
161
|
lora_scale: Optional[float] = None,
|
162
162
|
**kwargs,
|
163
163
|
):
|
@@ -189,8 +189,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
189
189
|
num_images_per_prompt,
|
190
190
|
do_classifier_free_guidance,
|
191
191
|
negative_prompt=None,
|
192
|
-
prompt_embeds: Optional[torch.
|
193
|
-
negative_prompt_embeds: Optional[torch.
|
192
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
193
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
194
194
|
lora_scale: Optional[float] = None,
|
195
195
|
clip_skip: Optional[int] = None,
|
196
196
|
):
|
@@ -210,10 +210,10 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
210
210
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
211
211
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
212
212
|
less than `1`).
|
213
|
-
prompt_embeds (`torch.
|
213
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
214
214
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
215
215
|
provided, text embeddings will be generated from `prompt` input argument.
|
216
|
-
negative_prompt_embeds (`torch.
|
216
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
217
217
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
218
218
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
219
219
|
argument.
|
@@ -225,7 +225,7 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
225
225
|
"""
|
226
226
|
# set lora scale so that monkey patched LoRA
|
227
227
|
# function of text encoder can correctly access it
|
228
|
-
if lora_scale is not None and isinstance(self,
|
228
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
229
229
|
self._lora_scale = lora_scale
|
230
230
|
|
231
231
|
# dynamically adjust the LoRA scale
|
@@ -357,9 +357,10 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
357
357
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
358
358
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
359
359
|
|
360
|
-
if
|
361
|
-
|
362
|
-
|
360
|
+
if self.text_encoder is not None:
|
361
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
362
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
363
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
363
364
|
|
364
365
|
return prompt_embeds, negative_prompt_embeds
|
365
366
|
|
@@ -493,6 +494,13 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
493
494
|
)
|
494
495
|
|
495
496
|
elif isinstance(generator, list):
|
497
|
+
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
|
498
|
+
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
|
499
|
+
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
|
500
|
+
raise ValueError(
|
501
|
+
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
|
502
|
+
)
|
503
|
+
|
496
504
|
init_latents = [
|
497
505
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
498
506
|
for i in range(batch_size)
|
@@ -545,11 +553,18 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
545
553
|
|
546
554
|
if depth_map is None:
|
547
555
|
pixel_values = self.feature_extractor(images=image, return_tensors="pt").pixel_values
|
548
|
-
pixel_values = pixel_values.to(device=device)
|
556
|
+
pixel_values = pixel_values.to(device=device, dtype=dtype)
|
549
557
|
# The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16.
|
550
558
|
# So we use `torch.autocast` here for half precision inference.
|
551
|
-
|
552
|
-
|
559
|
+
if torch.backends.mps.is_available():
|
560
|
+
autocast_ctx = contextlib.nullcontext()
|
561
|
+
logger.warning(
|
562
|
+
"The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16, but autocast is not yet supported on MPS."
|
563
|
+
)
|
564
|
+
else:
|
565
|
+
autocast_ctx = torch.autocast(device.type, dtype=dtype)
|
566
|
+
|
567
|
+
with autocast_ctx:
|
553
568
|
depth_map = self.depth_estimator(pixel_values).predicted_depth
|
554
569
|
else:
|
555
570
|
depth_map = depth_map.to(device=device, dtype=dtype)
|
@@ -602,7 +617,7 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
602
617
|
self,
|
603
618
|
prompt: Union[str, List[str]] = None,
|
604
619
|
image: PipelineImageInput = None,
|
605
|
-
depth_map: Optional[torch.
|
620
|
+
depth_map: Optional[torch.Tensor] = None,
|
606
621
|
strength: float = 0.8,
|
607
622
|
num_inference_steps: Optional[int] = 50,
|
608
623
|
guidance_scale: Optional[float] = 7.5,
|
@@ -610,8 +625,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
610
625
|
num_images_per_prompt: Optional[int] = 1,
|
611
626
|
eta: Optional[float] = 0.0,
|
612
627
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
613
|
-
prompt_embeds: Optional[torch.
|
614
|
-
negative_prompt_embeds: Optional[torch.
|
628
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
629
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
615
630
|
output_type: Optional[str] = "pil",
|
616
631
|
return_dict: bool = True,
|
617
632
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -626,10 +641,10 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
626
641
|
Args:
|
627
642
|
prompt (`str` or `List[str]`, *optional*):
|
628
643
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
629
|
-
image (`torch.
|
644
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
630
645
|
`Image` or tensor representing an image batch to be used as the starting point. Can accept image
|
631
646
|
latents as `image` only if `depth_map` is not `None`.
|
632
|
-
depth_map (`torch.
|
647
|
+
depth_map (`torch.Tensor`, *optional*):
|
633
648
|
Depth prediction to be used as additional conditioning for the image generation process. If not
|
634
649
|
defined, it automatically predicts the depth with `self.depth_estimator`.
|
635
650
|
strength (`float`, *optional*, defaults to 0.8):
|
@@ -655,10 +670,10 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
655
670
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
656
671
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
657
672
|
generation deterministic.
|
658
|
-
prompt_embeds (`torch.
|
673
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
659
674
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
660
675
|
provided, text embeddings are generated from the `prompt` input argument.
|
661
|
-
negative_prompt_embeds (`torch.
|
676
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
662
677
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
663
678
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
664
679
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
@@ -700,8 +715,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
|
|
700
715
|
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
701
716
|
>>> init_image = Image.open(requests.get(url, stream=True).raw)
|
702
717
|
>>> prompt = "two tigers"
|
703
|
-
>>>
|
704
|
-
>>> image = pipe(prompt=prompt, image=init_image, negative_prompt=
|
718
|
+
>>> n_prompt = "bad, deformed, ugly, bad anotomy"
|
719
|
+
>>> image = pipe(prompt=prompt, image=init_image, negative_prompt=n_prompt, strength=0.7).images[0]
|
705
720
|
```
|
706
721
|
|
707
722
|
Returns:
|
@@ -207,7 +207,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
|
|
207
207
|
and not isinstance(image, list)
|
208
208
|
):
|
209
209
|
raise ValueError(
|
210
|
-
"`image` has to be of type `torch.
|
210
|
+
"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
211
211
|
f" {type(image)}"
|
212
212
|
)
|
213
213
|
|
@@ -224,7 +224,12 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
|
|
224
224
|
|
225
225
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
226
226
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
227
|
-
shape = (
|
227
|
+
shape = (
|
228
|
+
batch_size,
|
229
|
+
num_channels_latents,
|
230
|
+
int(height) // self.vae_scale_factor,
|
231
|
+
int(width) // self.vae_scale_factor,
|
232
|
+
)
|
228
233
|
if isinstance(generator, list) and len(generator) != batch_size:
|
229
234
|
raise ValueError(
|
230
235
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -243,7 +248,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
|
|
243
248
|
@torch.no_grad()
|
244
249
|
def __call__(
|
245
250
|
self,
|
246
|
-
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.
|
251
|
+
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor],
|
247
252
|
height: Optional[int] = None,
|
248
253
|
width: Optional[int] = None,
|
249
254
|
num_inference_steps: int = 50,
|
@@ -251,17 +256,17 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
|
|
251
256
|
num_images_per_prompt: Optional[int] = 1,
|
252
257
|
eta: float = 0.0,
|
253
258
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
254
|
-
latents: Optional[torch.
|
259
|
+
latents: Optional[torch.Tensor] = None,
|
255
260
|
output_type: Optional[str] = "pil",
|
256
261
|
return_dict: bool = True,
|
257
|
-
callback: Optional[Callable[[int, int, torch.
|
262
|
+
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
258
263
|
callback_steps: int = 1,
|
259
264
|
):
|
260
265
|
r"""
|
261
266
|
The call function to the pipeline for generation.
|
262
267
|
|
263
268
|
Args:
|
264
|
-
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.
|
269
|
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
|
265
270
|
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
|
266
271
|
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
|
267
272
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
@@ -282,7 +287,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
|
|
282
287
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
283
288
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
284
289
|
generation deterministic.
|
285
|
-
latents (`torch.
|
290
|
+
latents (`torch.Tensor`, *optional*):
|
286
291
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
287
292
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
288
293
|
tensor is generated by sampling using the supplied random `generator`.
|
@@ -293,7 +298,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
|
|
293
298
|
plain tuple.
|
294
299
|
callback (`Callable`, *optional*):
|
295
300
|
A function that calls every `callback_steps` steps during inference. The function is called with the
|
296
|
-
following arguments: `callback(step: int, timestep: int, latents: torch.
|
301
|
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
297
302
|
callback_steps (`int`, *optional*, defaults to 1):
|
298
303
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
299
304
|
every step.
|
@@ -21,9 +21,10 @@ import torch
|
|
21
21
|
from packaging import version
|
22
22
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
23
23
|
|
24
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
24
25
|
from ...configuration_utils import FrozenDict
|
25
26
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
26
|
-
from ...loaders import FromSingleFileMixin, IPAdapterMixin,
|
27
|
+
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
|
27
28
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
28
29
|
from ...models.lora import adjust_lora_scale_text_encoder
|
29
30
|
from ...schedulers import KarrasDiffusionSchedulers
|
@@ -115,9 +116,10 @@ def retrieve_timesteps(
|
|
115
116
|
num_inference_steps: Optional[int] = None,
|
116
117
|
device: Optional[Union[str, torch.device]] = None,
|
117
118
|
timesteps: Optional[List[int]] = None,
|
119
|
+
sigmas: Optional[List[float]] = None,
|
118
120
|
**kwargs,
|
119
121
|
):
|
120
|
-
"""
|
122
|
+
r"""
|
121
123
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
122
124
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
123
125
|
|
@@ -125,19 +127,23 @@ def retrieve_timesteps(
|
|
125
127
|
scheduler (`SchedulerMixin`):
|
126
128
|
The scheduler to get timesteps from.
|
127
129
|
num_inference_steps (`int`):
|
128
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
129
|
-
|
130
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
131
|
+
must be `None`.
|
130
132
|
device (`str` or `torch.device`, *optional*):
|
131
133
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
132
134
|
timesteps (`List[int]`, *optional*):
|
133
|
-
|
134
|
-
|
135
|
-
|
135
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
136
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
137
|
+
sigmas (`List[float]`, *optional*):
|
138
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
139
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
136
140
|
|
137
141
|
Returns:
|
138
142
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
139
143
|
second element is the number of inference steps.
|
140
144
|
"""
|
145
|
+
if timesteps is not None and sigmas is not None:
|
146
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
141
147
|
if timesteps is not None:
|
142
148
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
143
149
|
if not accepts_timesteps:
|
@@ -148,6 +154,16 @@ def retrieve_timesteps(
|
|
148
154
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
149
155
|
timesteps = scheduler.timesteps
|
150
156
|
num_inference_steps = len(timesteps)
|
157
|
+
elif sigmas is not None:
|
158
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
159
|
+
if not accept_sigmas:
|
160
|
+
raise ValueError(
|
161
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
162
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
163
|
+
)
|
164
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
165
|
+
timesteps = scheduler.timesteps
|
166
|
+
num_inference_steps = len(timesteps)
|
151
167
|
else:
|
152
168
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
153
169
|
timesteps = scheduler.timesteps
|
@@ -159,7 +175,7 @@ class StableDiffusionImg2ImgPipeline(
|
|
159
175
|
StableDiffusionMixin,
|
160
176
|
TextualInversionLoaderMixin,
|
161
177
|
IPAdapterMixin,
|
162
|
-
|
178
|
+
StableDiffusionLoraLoaderMixin,
|
163
179
|
FromSingleFileMixin,
|
164
180
|
):
|
165
181
|
r"""
|
@@ -170,8 +186,8 @@ class StableDiffusionImg2ImgPipeline(
|
|
170
186
|
|
171
187
|
The pipeline also inherits the following loading methods:
|
172
188
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
173
|
-
- [`~loaders.
|
174
|
-
- [`~loaders.
|
189
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
190
|
+
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
175
191
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
176
192
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
177
193
|
|
@@ -300,8 +316,8 @@ class StableDiffusionImg2ImgPipeline(
|
|
300
316
|
num_images_per_prompt,
|
301
317
|
do_classifier_free_guidance,
|
302
318
|
negative_prompt=None,
|
303
|
-
prompt_embeds: Optional[torch.
|
304
|
-
negative_prompt_embeds: Optional[torch.
|
319
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
320
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
305
321
|
lora_scale: Optional[float] = None,
|
306
322
|
**kwargs,
|
307
323
|
):
|
@@ -333,8 +349,8 @@ class StableDiffusionImg2ImgPipeline(
|
|
333
349
|
num_images_per_prompt,
|
334
350
|
do_classifier_free_guidance,
|
335
351
|
negative_prompt=None,
|
336
|
-
prompt_embeds: Optional[torch.
|
337
|
-
negative_prompt_embeds: Optional[torch.
|
352
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
353
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
338
354
|
lora_scale: Optional[float] = None,
|
339
355
|
clip_skip: Optional[int] = None,
|
340
356
|
):
|
@@ -354,10 +370,10 @@ class StableDiffusionImg2ImgPipeline(
|
|
354
370
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
355
371
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
356
372
|
less than `1`).
|
357
|
-
prompt_embeds (`torch.
|
373
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
358
374
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
359
375
|
provided, text embeddings will be generated from `prompt` input argument.
|
360
|
-
negative_prompt_embeds (`torch.
|
376
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
361
377
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
362
378
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
363
379
|
argument.
|
@@ -369,7 +385,7 @@ class StableDiffusionImg2ImgPipeline(
|
|
369
385
|
"""
|
370
386
|
# set lora scale so that monkey patched LoRA
|
371
387
|
# function of text encoder can correctly access it
|
372
|
-
if lora_scale is not None and isinstance(self,
|
388
|
+
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
373
389
|
self._lora_scale = lora_scale
|
374
390
|
|
375
391
|
# dynamically adjust the LoRA scale
|
@@ -501,9 +517,10 @@ class StableDiffusionImg2ImgPipeline(
|
|
501
517
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
502
518
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
503
519
|
|
504
|
-
if
|
505
|
-
|
506
|
-
|
520
|
+
if self.text_encoder is not None:
|
521
|
+
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
522
|
+
# Retrieve the original scale by scaling back the LoRA layers
|
523
|
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
507
524
|
|
508
525
|
return prompt_embeds, negative_prompt_embeds
|
509
526
|
|
@@ -536,6 +553,9 @@ class StableDiffusionImg2ImgPipeline(
|
|
536
553
|
def prepare_ip_adapter_image_embeds(
|
537
554
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
538
555
|
):
|
556
|
+
image_embeds = []
|
557
|
+
if do_classifier_free_guidance:
|
558
|
+
negative_image_embeds = []
|
539
559
|
if ip_adapter_image_embeds is None:
|
540
560
|
if not isinstance(ip_adapter_image, list):
|
541
561
|
ip_adapter_image = [ip_adapter_image]
|
@@ -545,7 +565,6 @@ class StableDiffusionImg2ImgPipeline(
|
|
545
565
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
546
566
|
)
|
547
567
|
|
548
|
-
image_embeds = []
|
549
568
|
for single_ip_adapter_image, image_proj_layer in zip(
|
550
569
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
551
570
|
):
|
@@ -553,36 +572,28 @@ class StableDiffusionImg2ImgPipeline(
|
|
553
572
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
554
573
|
single_ip_adapter_image, device, 1, output_hidden_state
|
555
574
|
)
|
556
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
557
|
-
single_negative_image_embeds = torch.stack(
|
558
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
559
|
-
)
|
560
575
|
|
576
|
+
image_embeds.append(single_image_embeds[None, :])
|
561
577
|
if do_classifier_free_guidance:
|
562
|
-
|
563
|
-
single_image_embeds = single_image_embeds.to(device)
|
564
|
-
|
565
|
-
image_embeds.append(single_image_embeds)
|
578
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
566
579
|
else:
|
567
|
-
repeat_dims = [1]
|
568
|
-
image_embeds = []
|
569
580
|
for single_image_embeds in ip_adapter_image_embeds:
|
570
581
|
if do_classifier_free_guidance:
|
571
582
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
572
|
-
|
573
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
574
|
-
)
|
575
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
576
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
577
|
-
)
|
578
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
579
|
-
else:
|
580
|
-
single_image_embeds = single_image_embeds.repeat(
|
581
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
582
|
-
)
|
583
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
583
584
|
image_embeds.append(single_image_embeds)
|
584
585
|
|
585
|
-
|
586
|
+
ip_adapter_image_embeds = []
|
587
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
588
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
589
|
+
if do_classifier_free_guidance:
|
590
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
591
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
592
|
+
|
593
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
594
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
595
|
+
|
596
|
+
return ip_adapter_image_embeds
|
586
597
|
|
587
598
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
588
599
|
def run_safety_checker(self, image, device, dtype):
|
@@ -729,6 +740,13 @@ class StableDiffusionImg2ImgPipeline(
|
|
729
740
|
)
|
730
741
|
|
731
742
|
elif isinstance(generator, list):
|
743
|
+
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
|
744
|
+
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
|
745
|
+
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
|
746
|
+
raise ValueError(
|
747
|
+
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
|
748
|
+
)
|
749
|
+
|
732
750
|
init_latents = [
|
733
751
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
734
752
|
for i in range(batch_size)
|
@@ -767,20 +785,22 @@ class StableDiffusionImg2ImgPipeline(
|
|
767
785
|
return latents
|
768
786
|
|
769
787
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
770
|
-
def get_guidance_scale_embedding(
|
788
|
+
def get_guidance_scale_embedding(
|
789
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
790
|
+
) -> torch.Tensor:
|
771
791
|
"""
|
772
792
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
773
793
|
|
774
794
|
Args:
|
775
|
-
|
776
|
-
|
795
|
+
w (`torch.Tensor`):
|
796
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
777
797
|
embedding_dim (`int`, *optional*, defaults to 512):
|
778
|
-
|
779
|
-
dtype:
|
780
|
-
|
798
|
+
Dimension of the embeddings to generate.
|
799
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
800
|
+
Data type of the generated embeddings.
|
781
801
|
|
782
802
|
Returns:
|
783
|
-
`torch.
|
803
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
784
804
|
"""
|
785
805
|
assert len(w.shape) == 1
|
786
806
|
w = w * 1000.0
|
@@ -831,20 +851,23 @@ class StableDiffusionImg2ImgPipeline(
|
|
831
851
|
strength: float = 0.8,
|
832
852
|
num_inference_steps: Optional[int] = 50,
|
833
853
|
timesteps: List[int] = None,
|
854
|
+
sigmas: List[float] = None,
|
834
855
|
guidance_scale: Optional[float] = 7.5,
|
835
856
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
836
857
|
num_images_per_prompt: Optional[int] = 1,
|
837
858
|
eta: Optional[float] = 0.0,
|
838
859
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
839
|
-
prompt_embeds: Optional[torch.
|
840
|
-
negative_prompt_embeds: Optional[torch.
|
860
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
861
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
841
862
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
842
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
863
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
843
864
|
output_type: Optional[str] = "pil",
|
844
865
|
return_dict: bool = True,
|
845
866
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
846
867
|
clip_skip: int = None,
|
847
|
-
callback_on_step_end: Optional[
|
868
|
+
callback_on_step_end: Optional[
|
869
|
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
870
|
+
] = None,
|
848
871
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
849
872
|
**kwargs,
|
850
873
|
):
|
@@ -854,7 +877,7 @@ class StableDiffusionImg2ImgPipeline(
|
|
854
877
|
Args:
|
855
878
|
prompt (`str` or `List[str]`, *optional*):
|
856
879
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
857
|
-
image (`torch.
|
880
|
+
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
858
881
|
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
|
859
882
|
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
|
860
883
|
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
|
@@ -873,6 +896,10 @@ class StableDiffusionImg2ImgPipeline(
|
|
873
896
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
874
897
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
875
898
|
passed will be used. Must be in descending order.
|
899
|
+
sigmas (`List[float]`, *optional*):
|
900
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
901
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
902
|
+
will be used.
|
876
903
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
877
904
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
878
905
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
@@ -887,18 +914,18 @@ class StableDiffusionImg2ImgPipeline(
|
|
887
914
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
888
915
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
889
916
|
generation deterministic.
|
890
|
-
prompt_embeds (`torch.
|
917
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
891
918
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
892
919
|
provided, text embeddings are generated from the `prompt` input argument.
|
893
|
-
negative_prompt_embeds (`torch.
|
920
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
894
921
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
895
922
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
896
923
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
897
|
-
ip_adapter_image_embeds (`List[torch.
|
898
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
899
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
900
|
-
if `do_classifier_free_guidance` is set to `True`.
|
901
|
-
|
924
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
925
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
926
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
927
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
928
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
902
929
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
903
930
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
904
931
|
return_dict (`bool`, *optional*, defaults to `True`):
|
@@ -910,11 +937,11 @@ class StableDiffusionImg2ImgPipeline(
|
|
910
937
|
clip_skip (`int`, *optional*):
|
911
938
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
912
939
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
913
|
-
callback_on_step_end (`Callable`, *optional*):
|
914
|
-
A function
|
915
|
-
with the following arguments: `callback_on_step_end(self:
|
916
|
-
callback_kwargs: Dict)`. `callback_kwargs` will include a
|
917
|
-
`callback_on_step_end_tensor_inputs`.
|
940
|
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
941
|
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
942
|
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
943
|
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
944
|
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
918
945
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
919
946
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
920
947
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
@@ -945,6 +972,9 @@ class StableDiffusionImg2ImgPipeline(
|
|
945
972
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
946
973
|
)
|
947
974
|
|
975
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
976
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
977
|
+
|
948
978
|
# 1. Check inputs. Raise error if not correct
|
949
979
|
self.check_inputs(
|
950
980
|
prompt,
|
@@ -1007,7 +1037,9 @@ class StableDiffusionImg2ImgPipeline(
|
|
1007
1037
|
image = self.image_processor.preprocess(image)
|
1008
1038
|
|
1009
1039
|
# 5. set timesteps
|
1010
|
-
timesteps, num_inference_steps = retrieve_timesteps(
|
1040
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1041
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1042
|
+
)
|
1011
1043
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
1012
1044
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
1013
1045
|
|