diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -20,11 +20,11 @@ import numpy as np
20
20
  import PIL.Image
21
21
  import torch
22
22
  from packaging import version
23
- from transformers import CLIPTextModel, CLIPTokenizer, DPTFeatureExtractor, DPTForDepthEstimation
23
+ from transformers import CLIPTextModel, CLIPTokenizer, DPTForDepthEstimation, DPTImageProcessor
24
24
 
25
25
  from ...configuration_utils import FrozenDict
26
26
  from ...image_processor import PipelineImageInput, VaeImageProcessor
27
- from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
27
+ from ...loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
28
28
  from ...models import AutoencoderKL, UNet2DConditionModel
29
29
  from ...models.lora import adjust_lora_scale_text_encoder
30
30
  from ...schedulers import KarrasDiffusionSchedulers
@@ -74,7 +74,7 @@ def preprocess(image):
74
74
  return image
75
75
 
76
76
 
77
- class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
77
+ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin):
78
78
  r"""
79
79
  Pipeline for text-guided depth-based image-to-image generation using Stable Diffusion.
80
80
 
@@ -83,8 +83,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
83
83
 
84
84
  The pipeline also inherits the following loading methods:
85
85
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
86
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
87
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
86
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
87
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
88
88
 
89
89
  Args:
90
90
  vae ([`AutoencoderKL`]):
@@ -111,7 +111,7 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
111
111
  unet: UNet2DConditionModel,
112
112
  scheduler: KarrasDiffusionSchedulers,
113
113
  depth_estimator: DPTForDepthEstimation,
114
- feature_extractor: DPTFeatureExtractor,
114
+ feature_extractor: DPTImageProcessor,
115
115
  ):
116
116
  super().__init__()
117
117
 
@@ -156,8 +156,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
156
156
  num_images_per_prompt,
157
157
  do_classifier_free_guidance,
158
158
  negative_prompt=None,
159
- prompt_embeds: Optional[torch.FloatTensor] = None,
160
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
159
+ prompt_embeds: Optional[torch.Tensor] = None,
160
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
161
161
  lora_scale: Optional[float] = None,
162
162
  **kwargs,
163
163
  ):
@@ -189,8 +189,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
189
189
  num_images_per_prompt,
190
190
  do_classifier_free_guidance,
191
191
  negative_prompt=None,
192
- prompt_embeds: Optional[torch.FloatTensor] = None,
193
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
192
+ prompt_embeds: Optional[torch.Tensor] = None,
193
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
194
194
  lora_scale: Optional[float] = None,
195
195
  clip_skip: Optional[int] = None,
196
196
  ):
@@ -210,10 +210,10 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
210
210
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
211
211
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
212
212
  less than `1`).
213
- prompt_embeds (`torch.FloatTensor`, *optional*):
213
+ prompt_embeds (`torch.Tensor`, *optional*):
214
214
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
215
215
  provided, text embeddings will be generated from `prompt` input argument.
216
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
216
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
217
217
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
218
218
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
219
219
  argument.
@@ -225,7 +225,7 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
225
225
  """
226
226
  # set lora scale so that monkey patched LoRA
227
227
  # function of text encoder can correctly access it
228
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
228
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
229
229
  self._lora_scale = lora_scale
230
230
 
231
231
  # dynamically adjust the LoRA scale
@@ -357,9 +357,10 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
357
357
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
358
358
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
359
359
 
360
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
361
- # Retrieve the original scale by scaling back the LoRA layers
362
- unscale_lora_layers(self.text_encoder, lora_scale)
360
+ if self.text_encoder is not None:
361
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
362
+ # Retrieve the original scale by scaling back the LoRA layers
363
+ unscale_lora_layers(self.text_encoder, lora_scale)
363
364
 
364
365
  return prompt_embeds, negative_prompt_embeds
365
366
 
@@ -493,6 +494,13 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
493
494
  )
494
495
 
495
496
  elif isinstance(generator, list):
497
+ if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
498
+ image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
499
+ elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
500
+ raise ValueError(
501
+ f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
502
+ )
503
+
496
504
  init_latents = [
497
505
  retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
498
506
  for i in range(batch_size)
@@ -545,11 +553,18 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
545
553
 
546
554
  if depth_map is None:
547
555
  pixel_values = self.feature_extractor(images=image, return_tensors="pt").pixel_values
548
- pixel_values = pixel_values.to(device=device)
556
+ pixel_values = pixel_values.to(device=device, dtype=dtype)
549
557
  # The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16.
550
558
  # So we use `torch.autocast` here for half precision inference.
551
- context_manger = torch.autocast("cuda", dtype=dtype) if device.type == "cuda" else contextlib.nullcontext()
552
- with context_manger:
559
+ if torch.backends.mps.is_available():
560
+ autocast_ctx = contextlib.nullcontext()
561
+ logger.warning(
562
+ "The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16, but autocast is not yet supported on MPS."
563
+ )
564
+ else:
565
+ autocast_ctx = torch.autocast(device.type, dtype=dtype)
566
+
567
+ with autocast_ctx:
553
568
  depth_map = self.depth_estimator(pixel_values).predicted_depth
554
569
  else:
555
570
  depth_map = depth_map.to(device=device, dtype=dtype)
@@ -602,7 +617,7 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
602
617
  self,
603
618
  prompt: Union[str, List[str]] = None,
604
619
  image: PipelineImageInput = None,
605
- depth_map: Optional[torch.FloatTensor] = None,
620
+ depth_map: Optional[torch.Tensor] = None,
606
621
  strength: float = 0.8,
607
622
  num_inference_steps: Optional[int] = 50,
608
623
  guidance_scale: Optional[float] = 7.5,
@@ -610,8 +625,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
610
625
  num_images_per_prompt: Optional[int] = 1,
611
626
  eta: Optional[float] = 0.0,
612
627
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
613
- prompt_embeds: Optional[torch.FloatTensor] = None,
614
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
628
+ prompt_embeds: Optional[torch.Tensor] = None,
629
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
615
630
  output_type: Optional[str] = "pil",
616
631
  return_dict: bool = True,
617
632
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
@@ -626,10 +641,10 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
626
641
  Args:
627
642
  prompt (`str` or `List[str]`, *optional*):
628
643
  The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
629
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
644
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
630
645
  `Image` or tensor representing an image batch to be used as the starting point. Can accept image
631
646
  latents as `image` only if `depth_map` is not `None`.
632
- depth_map (`torch.FloatTensor`, *optional*):
647
+ depth_map (`torch.Tensor`, *optional*):
633
648
  Depth prediction to be used as additional conditioning for the image generation process. If not
634
649
  defined, it automatically predicts the depth with `self.depth_estimator`.
635
650
  strength (`float`, *optional*, defaults to 0.8):
@@ -655,10 +670,10 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
655
670
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
656
671
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
657
672
  generation deterministic.
658
- prompt_embeds (`torch.FloatTensor`, *optional*):
673
+ prompt_embeds (`torch.Tensor`, *optional*):
659
674
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
660
675
  provided, text embeddings are generated from the `prompt` input argument.
661
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
676
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
662
677
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
663
678
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
664
679
  output_type (`str`, *optional*, defaults to `"pil"`):
@@ -700,8 +715,8 @@ class StableDiffusionDepth2ImgPipeline(DiffusionPipeline, TextualInversionLoader
700
715
  >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
701
716
  >>> init_image = Image.open(requests.get(url, stream=True).raw)
702
717
  >>> prompt = "two tigers"
703
- >>> n_propmt = "bad, deformed, ugly, bad anotomy"
704
- >>> image = pipe(prompt=prompt, image=init_image, negative_prompt=n_propmt, strength=0.7).images[0]
718
+ >>> n_prompt = "bad, deformed, ugly, bad anotomy"
719
+ >>> image = pipe(prompt=prompt, image=init_image, negative_prompt=n_prompt, strength=0.7).images[0]
705
720
  ```
706
721
 
707
722
  Returns:
@@ -207,7 +207,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
207
207
  and not isinstance(image, list)
208
208
  ):
209
209
  raise ValueError(
210
- "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
210
+ "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
211
211
  f" {type(image)}"
212
212
  )
213
213
 
@@ -224,7 +224,12 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
224
224
 
225
225
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
226
226
  def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
227
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
227
+ shape = (
228
+ batch_size,
229
+ num_channels_latents,
230
+ int(height) // self.vae_scale_factor,
231
+ int(width) // self.vae_scale_factor,
232
+ )
228
233
  if isinstance(generator, list) and len(generator) != batch_size:
229
234
  raise ValueError(
230
235
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
@@ -243,7 +248,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
243
248
  @torch.no_grad()
244
249
  def __call__(
245
250
  self,
246
- image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor],
251
+ image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor],
247
252
  height: Optional[int] = None,
248
253
  width: Optional[int] = None,
249
254
  num_inference_steps: int = 50,
@@ -251,17 +256,17 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
251
256
  num_images_per_prompt: Optional[int] = 1,
252
257
  eta: float = 0.0,
253
258
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
254
- latents: Optional[torch.FloatTensor] = None,
259
+ latents: Optional[torch.Tensor] = None,
255
260
  output_type: Optional[str] = "pil",
256
261
  return_dict: bool = True,
257
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
262
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
258
263
  callback_steps: int = 1,
259
264
  ):
260
265
  r"""
261
266
  The call function to the pipeline for generation.
262
267
 
263
268
  Args:
264
- image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
269
+ image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
265
270
  Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
266
271
  [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
267
272
  height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
@@ -282,7 +287,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
282
287
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
283
288
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
284
289
  generation deterministic.
285
- latents (`torch.FloatTensor`, *optional*):
290
+ latents (`torch.Tensor`, *optional*):
286
291
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
287
292
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
288
293
  tensor is generated by sampling using the supplied random `generator`.
@@ -293,7 +298,7 @@ class StableDiffusionImageVariationPipeline(DiffusionPipeline, StableDiffusionMi
293
298
  plain tuple.
294
299
  callback (`Callable`, *optional*):
295
300
  A function that calls every `callback_steps` steps during inference. The function is called with the
296
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
301
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
297
302
  callback_steps (`int`, *optional*, defaults to 1):
298
303
  The frequency at which the `callback` function is called. If not specified, the callback is called at
299
304
  every step.
@@ -21,9 +21,10 @@ import torch
21
21
  from packaging import version
22
22
  from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
23
23
 
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
24
25
  from ...configuration_utils import FrozenDict
25
26
  from ...image_processor import PipelineImageInput, VaeImageProcessor
26
- from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
27
28
  from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
28
29
  from ...models.lora import adjust_lora_scale_text_encoder
29
30
  from ...schedulers import KarrasDiffusionSchedulers
@@ -115,9 +116,10 @@ def retrieve_timesteps(
115
116
  num_inference_steps: Optional[int] = None,
116
117
  device: Optional[Union[str, torch.device]] = None,
117
118
  timesteps: Optional[List[int]] = None,
119
+ sigmas: Optional[List[float]] = None,
118
120
  **kwargs,
119
121
  ):
120
- """
122
+ r"""
121
123
  Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
122
124
  custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
123
125
 
@@ -125,19 +127,23 @@ def retrieve_timesteps(
125
127
  scheduler (`SchedulerMixin`):
126
128
  The scheduler to get timesteps from.
127
129
  num_inference_steps (`int`):
128
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
129
- `timesteps` must be `None`.
130
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
131
+ must be `None`.
130
132
  device (`str` or `torch.device`, *optional*):
131
133
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
132
134
  timesteps (`List[int]`, *optional*):
133
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
134
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
135
- must be `None`.
135
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
136
+ `num_inference_steps` and `sigmas` must be `None`.
137
+ sigmas (`List[float]`, *optional*):
138
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
139
+ `num_inference_steps` and `timesteps` must be `None`.
136
140
 
137
141
  Returns:
138
142
  `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
139
143
  second element is the number of inference steps.
140
144
  """
145
+ if timesteps is not None and sigmas is not None:
146
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
141
147
  if timesteps is not None:
142
148
  accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
143
149
  if not accepts_timesteps:
@@ -148,6 +154,16 @@ def retrieve_timesteps(
148
154
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
149
155
  timesteps = scheduler.timesteps
150
156
  num_inference_steps = len(timesteps)
157
+ elif sigmas is not None:
158
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
159
+ if not accept_sigmas:
160
+ raise ValueError(
161
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
162
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
163
+ )
164
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
165
+ timesteps = scheduler.timesteps
166
+ num_inference_steps = len(timesteps)
151
167
  else:
152
168
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
153
169
  timesteps = scheduler.timesteps
@@ -159,7 +175,7 @@ class StableDiffusionImg2ImgPipeline(
159
175
  StableDiffusionMixin,
160
176
  TextualInversionLoaderMixin,
161
177
  IPAdapterMixin,
162
- LoraLoaderMixin,
178
+ StableDiffusionLoraLoaderMixin,
163
179
  FromSingleFileMixin,
164
180
  ):
165
181
  r"""
@@ -170,8 +186,8 @@ class StableDiffusionImg2ImgPipeline(
170
186
 
171
187
  The pipeline also inherits the following loading methods:
172
188
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
173
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
174
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
189
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
190
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
175
191
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
176
192
  - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
177
193
 
@@ -300,8 +316,8 @@ class StableDiffusionImg2ImgPipeline(
300
316
  num_images_per_prompt,
301
317
  do_classifier_free_guidance,
302
318
  negative_prompt=None,
303
- prompt_embeds: Optional[torch.FloatTensor] = None,
304
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
319
+ prompt_embeds: Optional[torch.Tensor] = None,
320
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
305
321
  lora_scale: Optional[float] = None,
306
322
  **kwargs,
307
323
  ):
@@ -333,8 +349,8 @@ class StableDiffusionImg2ImgPipeline(
333
349
  num_images_per_prompt,
334
350
  do_classifier_free_guidance,
335
351
  negative_prompt=None,
336
- prompt_embeds: Optional[torch.FloatTensor] = None,
337
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
352
+ prompt_embeds: Optional[torch.Tensor] = None,
353
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
338
354
  lora_scale: Optional[float] = None,
339
355
  clip_skip: Optional[int] = None,
340
356
  ):
@@ -354,10 +370,10 @@ class StableDiffusionImg2ImgPipeline(
354
370
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
355
371
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
356
372
  less than `1`).
357
- prompt_embeds (`torch.FloatTensor`, *optional*):
373
+ prompt_embeds (`torch.Tensor`, *optional*):
358
374
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
359
375
  provided, text embeddings will be generated from `prompt` input argument.
360
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
376
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
361
377
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
362
378
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
363
379
  argument.
@@ -369,7 +385,7 @@ class StableDiffusionImg2ImgPipeline(
369
385
  """
370
386
  # set lora scale so that monkey patched LoRA
371
387
  # function of text encoder can correctly access it
372
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
388
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
373
389
  self._lora_scale = lora_scale
374
390
 
375
391
  # dynamically adjust the LoRA scale
@@ -501,9 +517,10 @@ class StableDiffusionImg2ImgPipeline(
501
517
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
502
518
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
503
519
 
504
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
505
- # Retrieve the original scale by scaling back the LoRA layers
506
- unscale_lora_layers(self.text_encoder, lora_scale)
520
+ if self.text_encoder is not None:
521
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
522
+ # Retrieve the original scale by scaling back the LoRA layers
523
+ unscale_lora_layers(self.text_encoder, lora_scale)
507
524
 
508
525
  return prompt_embeds, negative_prompt_embeds
509
526
 
@@ -536,6 +553,9 @@ class StableDiffusionImg2ImgPipeline(
536
553
  def prepare_ip_adapter_image_embeds(
537
554
  self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
538
555
  ):
556
+ image_embeds = []
557
+ if do_classifier_free_guidance:
558
+ negative_image_embeds = []
539
559
  if ip_adapter_image_embeds is None:
540
560
  if not isinstance(ip_adapter_image, list):
541
561
  ip_adapter_image = [ip_adapter_image]
@@ -545,7 +565,6 @@ class StableDiffusionImg2ImgPipeline(
545
565
  f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
546
566
  )
547
567
 
548
- image_embeds = []
549
568
  for single_ip_adapter_image, image_proj_layer in zip(
550
569
  ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
551
570
  ):
@@ -553,36 +572,28 @@ class StableDiffusionImg2ImgPipeline(
553
572
  single_image_embeds, single_negative_image_embeds = self.encode_image(
554
573
  single_ip_adapter_image, device, 1, output_hidden_state
555
574
  )
556
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
557
- single_negative_image_embeds = torch.stack(
558
- [single_negative_image_embeds] * num_images_per_prompt, dim=0
559
- )
560
575
 
576
+ image_embeds.append(single_image_embeds[None, :])
561
577
  if do_classifier_free_guidance:
562
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
563
- single_image_embeds = single_image_embeds.to(device)
564
-
565
- image_embeds.append(single_image_embeds)
578
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
566
579
  else:
567
- repeat_dims = [1]
568
- image_embeds = []
569
580
  for single_image_embeds in ip_adapter_image_embeds:
570
581
  if do_classifier_free_guidance:
571
582
  single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
572
- single_image_embeds = single_image_embeds.repeat(
573
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
574
- )
575
- single_negative_image_embeds = single_negative_image_embeds.repeat(
576
- num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
577
- )
578
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
579
- else:
580
- single_image_embeds = single_image_embeds.repeat(
581
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
582
- )
583
+ negative_image_embeds.append(single_negative_image_embeds)
583
584
  image_embeds.append(single_image_embeds)
584
585
 
585
- return image_embeds
586
+ ip_adapter_image_embeds = []
587
+ for i, single_image_embeds in enumerate(image_embeds):
588
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
589
+ if do_classifier_free_guidance:
590
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
591
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
592
+
593
+ single_image_embeds = single_image_embeds.to(device=device)
594
+ ip_adapter_image_embeds.append(single_image_embeds)
595
+
596
+ return ip_adapter_image_embeds
586
597
 
587
598
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
588
599
  def run_safety_checker(self, image, device, dtype):
@@ -729,6 +740,13 @@ class StableDiffusionImg2ImgPipeline(
729
740
  )
730
741
 
731
742
  elif isinstance(generator, list):
743
+ if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
744
+ image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
745
+ elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
746
+ raise ValueError(
747
+ f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
748
+ )
749
+
732
750
  init_latents = [
733
751
  retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
734
752
  for i in range(batch_size)
@@ -767,20 +785,22 @@ class StableDiffusionImg2ImgPipeline(
767
785
  return latents
768
786
 
769
787
  # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
770
- def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
788
+ def get_guidance_scale_embedding(
789
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
790
+ ) -> torch.Tensor:
771
791
  """
772
792
  See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
773
793
 
774
794
  Args:
775
- timesteps (`torch.Tensor`):
776
- generate embedding vectors at these timesteps
795
+ w (`torch.Tensor`):
796
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
777
797
  embedding_dim (`int`, *optional*, defaults to 512):
778
- dimension of the embeddings to generate
779
- dtype:
780
- data type of the generated embeddings
798
+ Dimension of the embeddings to generate.
799
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
800
+ Data type of the generated embeddings.
781
801
 
782
802
  Returns:
783
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
803
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
784
804
  """
785
805
  assert len(w.shape) == 1
786
806
  w = w * 1000.0
@@ -831,20 +851,23 @@ class StableDiffusionImg2ImgPipeline(
831
851
  strength: float = 0.8,
832
852
  num_inference_steps: Optional[int] = 50,
833
853
  timesteps: List[int] = None,
854
+ sigmas: List[float] = None,
834
855
  guidance_scale: Optional[float] = 7.5,
835
856
  negative_prompt: Optional[Union[str, List[str]]] = None,
836
857
  num_images_per_prompt: Optional[int] = 1,
837
858
  eta: Optional[float] = 0.0,
838
859
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
839
- prompt_embeds: Optional[torch.FloatTensor] = None,
840
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
860
+ prompt_embeds: Optional[torch.Tensor] = None,
861
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
841
862
  ip_adapter_image: Optional[PipelineImageInput] = None,
842
- ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
863
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
843
864
  output_type: Optional[str] = "pil",
844
865
  return_dict: bool = True,
845
866
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
846
867
  clip_skip: int = None,
847
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
868
+ callback_on_step_end: Optional[
869
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
870
+ ] = None,
848
871
  callback_on_step_end_tensor_inputs: List[str] = ["latents"],
849
872
  **kwargs,
850
873
  ):
@@ -854,7 +877,7 @@ class StableDiffusionImg2ImgPipeline(
854
877
  Args:
855
878
  prompt (`str` or `List[str]`, *optional*):
856
879
  The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
857
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
880
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
858
881
  `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
859
882
  numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
860
883
  or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
@@ -873,6 +896,10 @@ class StableDiffusionImg2ImgPipeline(
873
896
  Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
874
897
  in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
875
898
  passed will be used. Must be in descending order.
899
+ sigmas (`List[float]`, *optional*):
900
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
901
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
902
+ will be used.
876
903
  guidance_scale (`float`, *optional*, defaults to 7.5):
877
904
  A higher guidance scale value encourages the model to generate images closely linked to the text
878
905
  `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
@@ -887,18 +914,18 @@ class StableDiffusionImg2ImgPipeline(
887
914
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
888
915
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
889
916
  generation deterministic.
890
- prompt_embeds (`torch.FloatTensor`, *optional*):
917
+ prompt_embeds (`torch.Tensor`, *optional*):
891
918
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
892
919
  provided, text embeddings are generated from the `prompt` input argument.
893
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
920
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
894
921
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
895
922
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
896
923
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
897
- ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
898
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
899
- Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
900
- if `do_classifier_free_guidance` is set to `True`.
901
- If not provided, embeddings are computed from the `ip_adapter_image` input argument.
924
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
925
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
926
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
927
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
928
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
902
929
  output_type (`str`, *optional*, defaults to `"pil"`):
903
930
  The output format of the generated image. Choose between `PIL.Image` or `np.array`.
904
931
  return_dict (`bool`, *optional*, defaults to `True`):
@@ -910,11 +937,11 @@ class StableDiffusionImg2ImgPipeline(
910
937
  clip_skip (`int`, *optional*):
911
938
  Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
912
939
  the output of the pre-final layer will be used for computing the prompt embeddings.
913
- callback_on_step_end (`Callable`, *optional*):
914
- A function that calls at the end of each denoising steps during the inference. The function is called
915
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
916
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
917
- `callback_on_step_end_tensor_inputs`.
940
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
941
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
942
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
943
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
944
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
918
945
  callback_on_step_end_tensor_inputs (`List`, *optional*):
919
946
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
920
947
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
@@ -945,6 +972,9 @@ class StableDiffusionImg2ImgPipeline(
945
972
  "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
946
973
  )
947
974
 
975
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
976
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
977
+
948
978
  # 1. Check inputs. Raise error if not correct
949
979
  self.check_inputs(
950
980
  prompt,
@@ -1007,7 +1037,9 @@ class StableDiffusionImg2ImgPipeline(
1007
1037
  image = self.image_processor.preprocess(image)
1008
1038
 
1009
1039
  # 5. set timesteps
1010
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1040
+ timesteps, num_inference_steps = retrieve_timesteps(
1041
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1042
+ )
1011
1043
  timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
1012
1044
  latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1013
1045