diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -26,6 +26,7 @@ from transformers import (
|
|
26
26
|
CLIPVisionModelWithProjection,
|
27
27
|
)
|
28
28
|
|
29
|
+
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
29
30
|
from ...image_processor import PipelineImageInput, VaeImageProcessor
|
30
31
|
from ...loaders import (
|
31
32
|
FromSingleFileMixin,
|
@@ -36,8 +37,6 @@ from ...loaders import (
|
|
36
37
|
from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
37
38
|
from ...models.attention_processor import (
|
38
39
|
AttnProcessor2_0,
|
39
|
-
LoRAAttnProcessor2_0,
|
40
|
-
LoRAXFormersAttnProcessor,
|
41
40
|
XFormersAttnProcessor,
|
42
41
|
)
|
43
42
|
from ...models.lora import adjust_lora_scale_text_encoder
|
@@ -102,9 +101,21 @@ EXAMPLE_DOC_STRING = """
|
|
102
101
|
|
103
102
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
104
103
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
105
|
-
"""
|
106
|
-
|
107
|
-
|
104
|
+
r"""
|
105
|
+
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
106
|
+
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
107
|
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
108
|
+
|
109
|
+
Args:
|
110
|
+
noise_cfg (`torch.Tensor`):
|
111
|
+
The predicted noise tensor for the guided diffusion process.
|
112
|
+
noise_pred_text (`torch.Tensor`):
|
113
|
+
The predicted noise tensor for the text-guided diffusion process.
|
114
|
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
115
|
+
A rescale factor applied to the noise predictions.
|
116
|
+
|
117
|
+
Returns:
|
118
|
+
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
108
119
|
"""
|
109
120
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
110
121
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
@@ -131,124 +142,6 @@ def mask_pil_to_torch(mask, height, width):
|
|
131
142
|
return mask
|
132
143
|
|
133
144
|
|
134
|
-
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
|
135
|
-
"""
|
136
|
-
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
|
137
|
-
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
|
138
|
-
``image`` and ``1`` for the ``mask``.
|
139
|
-
|
140
|
-
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
|
141
|
-
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
|
142
|
-
|
143
|
-
Args:
|
144
|
-
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
|
145
|
-
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
|
146
|
-
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
|
147
|
-
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
|
148
|
-
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
|
149
|
-
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
|
150
|
-
|
151
|
-
|
152
|
-
Raises:
|
153
|
-
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
|
154
|
-
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
|
155
|
-
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
|
156
|
-
(ot the other way around).
|
157
|
-
|
158
|
-
Returns:
|
159
|
-
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
|
160
|
-
dimensions: ``batch x channels x height x width``.
|
161
|
-
"""
|
162
|
-
|
163
|
-
# checkpoint. TOD(Yiyi) - need to clean this up later
|
164
|
-
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
|
165
|
-
deprecate(
|
166
|
-
"prepare_mask_and_masked_image",
|
167
|
-
"0.30.0",
|
168
|
-
deprecation_message,
|
169
|
-
)
|
170
|
-
if image is None:
|
171
|
-
raise ValueError("`image` input cannot be undefined.")
|
172
|
-
|
173
|
-
if mask is None:
|
174
|
-
raise ValueError("`mask_image` input cannot be undefined.")
|
175
|
-
|
176
|
-
if isinstance(image, torch.Tensor):
|
177
|
-
if not isinstance(mask, torch.Tensor):
|
178
|
-
mask = mask_pil_to_torch(mask, height, width)
|
179
|
-
|
180
|
-
if image.ndim == 3:
|
181
|
-
image = image.unsqueeze(0)
|
182
|
-
|
183
|
-
# Batch and add channel dim for single mask
|
184
|
-
if mask.ndim == 2:
|
185
|
-
mask = mask.unsqueeze(0).unsqueeze(0)
|
186
|
-
|
187
|
-
# Batch single mask or add channel dim
|
188
|
-
if mask.ndim == 3:
|
189
|
-
# Single batched mask, no channel dim or single mask not batched but channel dim
|
190
|
-
if mask.shape[0] == 1:
|
191
|
-
mask = mask.unsqueeze(0)
|
192
|
-
|
193
|
-
# Batched masks no channel dim
|
194
|
-
else:
|
195
|
-
mask = mask.unsqueeze(1)
|
196
|
-
|
197
|
-
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
|
198
|
-
# assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
|
199
|
-
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
|
200
|
-
|
201
|
-
# Check image is in [-1, 1]
|
202
|
-
# if image.min() < -1 or image.max() > 1:
|
203
|
-
# raise ValueError("Image should be in [-1, 1] range")
|
204
|
-
|
205
|
-
# Check mask is in [0, 1]
|
206
|
-
if mask.min() < 0 or mask.max() > 1:
|
207
|
-
raise ValueError("Mask should be in [0, 1] range")
|
208
|
-
|
209
|
-
# Binarize mask
|
210
|
-
mask[mask < 0.5] = 0
|
211
|
-
mask[mask >= 0.5] = 1
|
212
|
-
|
213
|
-
# Image as float32
|
214
|
-
image = image.to(dtype=torch.float32)
|
215
|
-
elif isinstance(mask, torch.Tensor):
|
216
|
-
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
|
217
|
-
else:
|
218
|
-
# preprocess image
|
219
|
-
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
220
|
-
image = [image]
|
221
|
-
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
222
|
-
# resize all images w.r.t passed height an width
|
223
|
-
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
|
224
|
-
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
225
|
-
image = np.concatenate(image, axis=0)
|
226
|
-
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
227
|
-
image = np.concatenate([i[None, :] for i in image], axis=0)
|
228
|
-
|
229
|
-
image = image.transpose(0, 3, 1, 2)
|
230
|
-
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
231
|
-
|
232
|
-
mask = mask_pil_to_torch(mask, height, width)
|
233
|
-
mask[mask < 0.5] = 0
|
234
|
-
mask[mask >= 0.5] = 1
|
235
|
-
|
236
|
-
if image.shape[1] == 4:
|
237
|
-
# images are in latent space and thus can't
|
238
|
-
# be masked set masked_image to None
|
239
|
-
# we assume that the checkpoint is not an inpainting
|
240
|
-
# checkpoint. TOD(Yiyi) - need to clean this up later
|
241
|
-
masked_image = None
|
242
|
-
else:
|
243
|
-
masked_image = image * (mask < 0.5)
|
244
|
-
|
245
|
-
# n.b. ensure backwards compatibility as old function does not return image
|
246
|
-
if return_image:
|
247
|
-
return mask, masked_image, image
|
248
|
-
|
249
|
-
return mask, masked_image
|
250
|
-
|
251
|
-
|
252
145
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
253
146
|
def retrieve_latents(
|
254
147
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
@@ -269,9 +162,10 @@ def retrieve_timesteps(
|
|
269
162
|
num_inference_steps: Optional[int] = None,
|
270
163
|
device: Optional[Union[str, torch.device]] = None,
|
271
164
|
timesteps: Optional[List[int]] = None,
|
165
|
+
sigmas: Optional[List[float]] = None,
|
272
166
|
**kwargs,
|
273
167
|
):
|
274
|
-
"""
|
168
|
+
r"""
|
275
169
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
276
170
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
277
171
|
|
@@ -279,19 +173,23 @@ def retrieve_timesteps(
|
|
279
173
|
scheduler (`SchedulerMixin`):
|
280
174
|
The scheduler to get timesteps from.
|
281
175
|
num_inference_steps (`int`):
|
282
|
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
283
|
-
|
176
|
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
177
|
+
must be `None`.
|
284
178
|
device (`str` or `torch.device`, *optional*):
|
285
179
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
286
180
|
timesteps (`List[int]`, *optional*):
|
287
|
-
|
288
|
-
|
289
|
-
|
181
|
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
182
|
+
`num_inference_steps` and `sigmas` must be `None`.
|
183
|
+
sigmas (`List[float]`, *optional*):
|
184
|
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
185
|
+
`num_inference_steps` and `timesteps` must be `None`.
|
290
186
|
|
291
187
|
Returns:
|
292
188
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
293
189
|
second element is the number of inference steps.
|
294
190
|
"""
|
191
|
+
if timesteps is not None and sigmas is not None:
|
192
|
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
295
193
|
if timesteps is not None:
|
296
194
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
297
195
|
if not accepts_timesteps:
|
@@ -302,6 +200,16 @@ def retrieve_timesteps(
|
|
302
200
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
303
201
|
timesteps = scheduler.timesteps
|
304
202
|
num_inference_steps = len(timesteps)
|
203
|
+
elif sigmas is not None:
|
204
|
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
205
|
+
if not accept_sigmas:
|
206
|
+
raise ValueError(
|
207
|
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
208
|
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
209
|
+
)
|
210
|
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
211
|
+
timesteps = scheduler.timesteps
|
212
|
+
num_inference_steps = len(timesteps)
|
305
213
|
else:
|
306
214
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
307
215
|
timesteps = scheduler.timesteps
|
@@ -377,11 +285,8 @@ class StableDiffusionXLInpaintPipeline(
|
|
377
285
|
_callback_tensor_inputs = [
|
378
286
|
"latents",
|
379
287
|
"prompt_embeds",
|
380
|
-
"negative_prompt_embeds",
|
381
288
|
"add_text_embeds",
|
382
289
|
"add_time_ids",
|
383
|
-
"negative_pooled_prompt_embeds",
|
384
|
-
"add_neg_time_ids",
|
385
290
|
"mask",
|
386
291
|
"masked_image_latents",
|
387
292
|
]
|
@@ -458,6 +363,9 @@ class StableDiffusionXLInpaintPipeline(
|
|
458
363
|
def prepare_ip_adapter_image_embeds(
|
459
364
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
460
365
|
):
|
366
|
+
image_embeds = []
|
367
|
+
if do_classifier_free_guidance:
|
368
|
+
negative_image_embeds = []
|
461
369
|
if ip_adapter_image_embeds is None:
|
462
370
|
if not isinstance(ip_adapter_image, list):
|
463
371
|
ip_adapter_image = [ip_adapter_image]
|
@@ -467,7 +375,6 @@ class StableDiffusionXLInpaintPipeline(
|
|
467
375
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
468
376
|
)
|
469
377
|
|
470
|
-
image_embeds = []
|
471
378
|
for single_ip_adapter_image, image_proj_layer in zip(
|
472
379
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
473
380
|
):
|
@@ -475,36 +382,28 @@ class StableDiffusionXLInpaintPipeline(
|
|
475
382
|
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
476
383
|
single_ip_adapter_image, device, 1, output_hidden_state
|
477
384
|
)
|
478
|
-
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
479
|
-
single_negative_image_embeds = torch.stack(
|
480
|
-
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
481
|
-
)
|
482
385
|
|
386
|
+
image_embeds.append(single_image_embeds[None, :])
|
483
387
|
if do_classifier_free_guidance:
|
484
|
-
|
485
|
-
single_image_embeds = single_image_embeds.to(device)
|
486
|
-
|
487
|
-
image_embeds.append(single_image_embeds)
|
388
|
+
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
488
389
|
else:
|
489
|
-
repeat_dims = [1]
|
490
|
-
image_embeds = []
|
491
390
|
for single_image_embeds in ip_adapter_image_embeds:
|
492
391
|
if do_classifier_free_guidance:
|
493
392
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
494
|
-
|
495
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
496
|
-
)
|
497
|
-
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
498
|
-
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
499
|
-
)
|
500
|
-
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
501
|
-
else:
|
502
|
-
single_image_embeds = single_image_embeds.repeat(
|
503
|
-
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
504
|
-
)
|
393
|
+
negative_image_embeds.append(single_negative_image_embeds)
|
505
394
|
image_embeds.append(single_image_embeds)
|
506
395
|
|
507
|
-
|
396
|
+
ip_adapter_image_embeds = []
|
397
|
+
for i, single_image_embeds in enumerate(image_embeds):
|
398
|
+
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
399
|
+
if do_classifier_free_guidance:
|
400
|
+
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
401
|
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
402
|
+
|
403
|
+
single_image_embeds = single_image_embeds.to(device=device)
|
404
|
+
ip_adapter_image_embeds.append(single_image_embeds)
|
405
|
+
|
406
|
+
return ip_adapter_image_embeds
|
508
407
|
|
509
408
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
510
409
|
def encode_prompt(
|
@@ -516,10 +415,10 @@ class StableDiffusionXLInpaintPipeline(
|
|
516
415
|
do_classifier_free_guidance: bool = True,
|
517
416
|
negative_prompt: Optional[str] = None,
|
518
417
|
negative_prompt_2: Optional[str] = None,
|
519
|
-
prompt_embeds: Optional[torch.
|
520
|
-
negative_prompt_embeds: Optional[torch.
|
521
|
-
pooled_prompt_embeds: Optional[torch.
|
522
|
-
negative_pooled_prompt_embeds: Optional[torch.
|
418
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
419
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
420
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
421
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
523
422
|
lora_scale: Optional[float] = None,
|
524
423
|
clip_skip: Optional[int] = None,
|
525
424
|
):
|
@@ -545,17 +444,17 @@ class StableDiffusionXLInpaintPipeline(
|
|
545
444
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
546
445
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
547
446
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
548
|
-
prompt_embeds (`torch.
|
447
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
549
448
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
550
449
|
provided, text embeddings will be generated from `prompt` input argument.
|
551
|
-
negative_prompt_embeds (`torch.
|
450
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
552
451
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
553
452
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
554
453
|
argument.
|
555
|
-
pooled_prompt_embeds (`torch.
|
454
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
556
455
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
557
456
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
558
|
-
negative_pooled_prompt_embeds (`torch.
|
457
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
559
458
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
560
459
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
561
460
|
input argument.
|
@@ -880,7 +779,12 @@ class StableDiffusionXLInpaintPipeline(
|
|
880
779
|
return_noise=False,
|
881
780
|
return_image_latents=False,
|
882
781
|
):
|
883
|
-
shape = (
|
782
|
+
shape = (
|
783
|
+
batch_size,
|
784
|
+
num_channels_latents,
|
785
|
+
int(height) // self.vae_scale_factor,
|
786
|
+
int(width) // self.vae_scale_factor,
|
787
|
+
)
|
884
788
|
if isinstance(generator, list) and len(generator) != batch_size:
|
885
789
|
raise ValueError(
|
886
790
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
@@ -1006,14 +910,16 @@ class StableDiffusionXLInpaintPipeline(
|
|
1006
910
|
if denoising_start is None:
|
1007
911
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
1008
912
|
t_start = max(num_inference_steps - init_timestep, 0)
|
1009
|
-
else:
|
1010
|
-
t_start = 0
|
1011
913
|
|
1012
|
-
|
914
|
+
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
915
|
+
if hasattr(self.scheduler, "set_begin_index"):
|
916
|
+
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
1013
917
|
|
1014
|
-
|
1015
|
-
|
1016
|
-
|
918
|
+
return timesteps, num_inference_steps - t_start
|
919
|
+
|
920
|
+
else:
|
921
|
+
# Strength is irrelevant if we directly request a timestep to start at;
|
922
|
+
# that is, strength is determined by the denoising_start instead.
|
1017
923
|
discrete_timestep_cutoff = int(
|
1018
924
|
round(
|
1019
925
|
self.scheduler.config.num_train_timesteps
|
@@ -1021,22 +927,23 @@ class StableDiffusionXLInpaintPipeline(
|
|
1021
927
|
)
|
1022
928
|
)
|
1023
929
|
|
1024
|
-
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
|
930
|
+
num_inference_steps = (self.scheduler.timesteps < discrete_timestep_cutoff).sum().item()
|
1025
931
|
if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
|
1026
932
|
# if the scheduler is a 2nd order scheduler we might have to do +1
|
1027
933
|
# because `num_inference_steps` might be even given that every timestep
|
1028
934
|
# (except the highest one) is duplicated. If `num_inference_steps` is even it would
|
1029
935
|
# mean that we cut the timesteps in the middle of the denoising step
|
1030
|
-
# (between 1st and 2nd
|
936
|
+
# (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
|
1031
937
|
# we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
|
1032
938
|
num_inference_steps = num_inference_steps + 1
|
1033
939
|
|
1034
940
|
# because t_n+1 >= t_n, we slice the timesteps starting from the end
|
1035
|
-
|
941
|
+
t_start = len(self.scheduler.timesteps) - num_inference_steps
|
942
|
+
timesteps = self.scheduler.timesteps[t_start:]
|
943
|
+
if hasattr(self.scheduler, "set_begin_index"):
|
944
|
+
self.scheduler.set_begin_index(t_start)
|
1036
945
|
return timesteps, num_inference_steps
|
1037
946
|
|
1038
|
-
return timesteps, num_inference_steps - t_start
|
1039
|
-
|
1040
947
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
|
1041
948
|
def _get_add_time_ids(
|
1042
949
|
self,
|
@@ -1098,8 +1005,6 @@ class StableDiffusionXLInpaintPipeline(
|
|
1098
1005
|
(
|
1099
1006
|
AttnProcessor2_0,
|
1100
1007
|
XFormersAttnProcessor,
|
1101
|
-
LoRAXFormersAttnProcessor,
|
1102
|
-
LoRAAttnProcessor2_0,
|
1103
1008
|
),
|
1104
1009
|
)
|
1105
1010
|
# if xformers or torch_2_0 is used attention block does not need
|
@@ -1110,20 +1015,22 @@ class StableDiffusionXLInpaintPipeline(
|
|
1110
1015
|
self.vae.decoder.mid_block.to(dtype)
|
1111
1016
|
|
1112
1017
|
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
1113
|
-
def get_guidance_scale_embedding(
|
1018
|
+
def get_guidance_scale_embedding(
|
1019
|
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
1020
|
+
) -> torch.Tensor:
|
1114
1021
|
"""
|
1115
1022
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
1116
1023
|
|
1117
1024
|
Args:
|
1118
|
-
|
1119
|
-
|
1025
|
+
w (`torch.Tensor`):
|
1026
|
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
1120
1027
|
embedding_dim (`int`, *optional*, defaults to 512):
|
1121
|
-
|
1122
|
-
dtype:
|
1123
|
-
|
1028
|
+
Dimension of the embeddings to generate.
|
1029
|
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
1030
|
+
Data type of the generated embeddings.
|
1124
1031
|
|
1125
1032
|
Returns:
|
1126
|
-
`torch.
|
1033
|
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
1127
1034
|
"""
|
1128
1035
|
assert len(w.shape) == 1
|
1129
1036
|
w = w * 1000.0
|
@@ -1185,13 +1092,14 @@ class StableDiffusionXLInpaintPipeline(
|
|
1185
1092
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
1186
1093
|
image: PipelineImageInput = None,
|
1187
1094
|
mask_image: PipelineImageInput = None,
|
1188
|
-
masked_image_latents: torch.
|
1095
|
+
masked_image_latents: torch.Tensor = None,
|
1189
1096
|
height: Optional[int] = None,
|
1190
1097
|
width: Optional[int] = None,
|
1191
1098
|
padding_mask_crop: Optional[int] = None,
|
1192
1099
|
strength: float = 0.9999,
|
1193
1100
|
num_inference_steps: int = 50,
|
1194
1101
|
timesteps: List[int] = None,
|
1102
|
+
sigmas: List[float] = None,
|
1195
1103
|
denoising_start: Optional[float] = None,
|
1196
1104
|
denoising_end: Optional[float] = None,
|
1197
1105
|
guidance_scale: float = 7.5,
|
@@ -1200,13 +1108,13 @@ class StableDiffusionXLInpaintPipeline(
|
|
1200
1108
|
num_images_per_prompt: Optional[int] = 1,
|
1201
1109
|
eta: float = 0.0,
|
1202
1110
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1203
|
-
latents: Optional[torch.
|
1204
|
-
prompt_embeds: Optional[torch.
|
1205
|
-
negative_prompt_embeds: Optional[torch.
|
1206
|
-
pooled_prompt_embeds: Optional[torch.
|
1207
|
-
negative_pooled_prompt_embeds: Optional[torch.
|
1111
|
+
latents: Optional[torch.Tensor] = None,
|
1112
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
1113
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
1114
|
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1115
|
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
1208
1116
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1209
|
-
ip_adapter_image_embeds: Optional[List[torch.
|
1117
|
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
1210
1118
|
output_type: Optional[str] = "pil",
|
1211
1119
|
return_dict: bool = True,
|
1212
1120
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
@@ -1220,7 +1128,9 @@ class StableDiffusionXLInpaintPipeline(
|
|
1220
1128
|
aesthetic_score: float = 6.0,
|
1221
1129
|
negative_aesthetic_score: float = 2.5,
|
1222
1130
|
clip_skip: Optional[int] = None,
|
1223
|
-
callback_on_step_end: Optional[
|
1131
|
+
callback_on_step_end: Optional[
|
1132
|
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
1133
|
+
] = None,
|
1224
1134
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1225
1135
|
**kwargs,
|
1226
1136
|
):
|
@@ -1253,11 +1163,12 @@ class StableDiffusionXLInpaintPipeline(
|
|
1253
1163
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1254
1164
|
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1255
1165
|
padding_mask_crop (`int`, *optional*, defaults to `None`):
|
1256
|
-
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1257
|
-
`padding_mask_crop` is not `None`, it will first find a rectangular region
|
1258
|
-
contains all masked area, and then expand that area based
|
1259
|
-
|
1260
|
-
|
1166
|
+
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
|
1167
|
+
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
|
1168
|
+
with the same aspect ration of the image and contains all masked area, and then expand that area based
|
1169
|
+
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
|
1170
|
+
resizing to the original image size for inpainting. This is useful when the masked area is small while
|
1171
|
+
the image is large and contain information irrelevant for inpainting, such as background.
|
1261
1172
|
strength (`float`, *optional*, defaults to 0.9999):
|
1262
1173
|
Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
|
1263
1174
|
between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
|
@@ -1273,6 +1184,10 @@ class StableDiffusionXLInpaintPipeline(
|
|
1273
1184
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1274
1185
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1275
1186
|
passed will be used. Must be in descending order.
|
1187
|
+
sigmas (`List[float]`, *optional*):
|
1188
|
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
1189
|
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
1190
|
+
will be used.
|
1276
1191
|
denoising_start (`float`, *optional*):
|
1277
1192
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1278
1193
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
|
@@ -1301,26 +1216,26 @@ class StableDiffusionXLInpaintPipeline(
|
|
1301
1216
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1302
1217
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1303
1218
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1304
|
-
prompt_embeds (`torch.
|
1219
|
+
prompt_embeds (`torch.Tensor`, *optional*):
|
1305
1220
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1306
1221
|
provided, text embeddings will be generated from `prompt` input argument.
|
1307
|
-
negative_prompt_embeds (`torch.
|
1222
|
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
1308
1223
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1309
1224
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1310
1225
|
argument.
|
1311
|
-
pooled_prompt_embeds (`torch.
|
1226
|
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1312
1227
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1313
1228
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1314
|
-
negative_pooled_prompt_embeds (`torch.
|
1229
|
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
1315
1230
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1316
1231
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1317
1232
|
input argument.
|
1318
1233
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1319
|
-
ip_adapter_image_embeds (`List[torch.
|
1320
|
-
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1321
|
-
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1322
|
-
if `do_classifier_free_guidance` is set to `True`.
|
1323
|
-
|
1234
|
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
1235
|
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1236
|
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1237
|
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1238
|
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1324
1239
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1325
1240
|
The number of images to generate per prompt.
|
1326
1241
|
eta (`float`, *optional*, defaults to 0.0):
|
@@ -1329,7 +1244,7 @@ class StableDiffusionXLInpaintPipeline(
|
|
1329
1244
|
generator (`torch.Generator`, *optional*):
|
1330
1245
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1331
1246
|
to make generation deterministic.
|
1332
|
-
latents (`torch.
|
1247
|
+
latents (`torch.Tensor`, *optional*):
|
1333
1248
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1334
1249
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1335
1250
|
tensor will ge generated by sampling using the supplied random `generator`.
|
@@ -1383,11 +1298,11 @@ class StableDiffusionXLInpaintPipeline(
|
|
1383
1298
|
clip_skip (`int`, *optional*):
|
1384
1299
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1385
1300
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1386
|
-
callback_on_step_end (`Callable`, *optional*):
|
1387
|
-
A function
|
1388
|
-
with the following arguments: `callback_on_step_end(self:
|
1389
|
-
callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1390
|
-
`callback_on_step_end_tensor_inputs`.
|
1301
|
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1302
|
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1303
|
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1304
|
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1305
|
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1391
1306
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1392
1307
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1393
1308
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
@@ -1417,6 +1332,9 @@ class StableDiffusionXLInpaintPipeline(
|
|
1417
1332
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1418
1333
|
)
|
1419
1334
|
|
1335
|
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1336
|
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1337
|
+
|
1420
1338
|
# 0. Default height and width to unet
|
1421
1339
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1422
1340
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
@@ -1490,7 +1408,9 @@ class StableDiffusionXLInpaintPipeline(
|
|
1490
1408
|
def denoising_value_valid(dnv):
|
1491
1409
|
return isinstance(dnv, float) and 0 < dnv < 1
|
1492
1410
|
|
1493
|
-
timesteps, num_inference_steps = retrieve_timesteps(
|
1411
|
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1412
|
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1413
|
+
)
|
1494
1414
|
timesteps, num_inference_steps = self.get_timesteps(
|
1495
1415
|
num_inference_steps,
|
1496
1416
|
strength,
|
@@ -1718,7 +1638,12 @@ class StableDiffusionXLInpaintPipeline(
|
|
1718
1638
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1719
1639
|
|
1720
1640
|
# compute the previous noisy sample x_t -> x_t-1
|
1641
|
+
latents_dtype = latents.dtype
|
1721
1642
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1643
|
+
if latents.dtype != latents_dtype:
|
1644
|
+
if torch.backends.mps.is_available():
|
1645
|
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1646
|
+
latents = latents.to(latents_dtype)
|
1722
1647
|
|
1723
1648
|
if num_channels_unet == 4:
|
1724
1649
|
init_latents_proper = image_latents
|
@@ -1743,13 +1668,8 @@ class StableDiffusionXLInpaintPipeline(
|
|
1743
1668
|
|
1744
1669
|
latents = callback_outputs.pop("latents", latents)
|
1745
1670
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1746
|
-
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1747
1671
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1748
|
-
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1749
|
-
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1750
|
-
)
|
1751
1672
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1752
|
-
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
|
1753
1673
|
mask = callback_outputs.pop("mask", mask)
|
1754
1674
|
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
|
1755
1675
|
|
@@ -1770,6 +1690,10 @@ class StableDiffusionXLInpaintPipeline(
|
|
1770
1690
|
if needs_upcasting:
|
1771
1691
|
self.upcast_vae()
|
1772
1692
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1693
|
+
elif latents.dtype != self.vae.dtype:
|
1694
|
+
if torch.backends.mps.is_available():
|
1695
|
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1696
|
+
self.vae = self.vae.to(latents.dtype)
|
1773
1697
|
|
1774
1698
|
# unscale/denormalize the latents
|
1775
1699
|
# denormalize with the mean and std if available and not None
|