diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,825 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI, Alibaba-PAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import inspect
17
+ import math
18
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ from PIL import Image
22
+ from transformers import T5EncoderModel, T5Tokenizer
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...loaders import CogVideoXLoraLoaderMixin
26
+ from ...models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
27
+ from ...models.embeddings import get_3d_rotary_pos_embed
28
+ from ...pipelines.pipeline_utils import DiffusionPipeline
29
+ from ...schedulers import KarrasDiffusionSchedulers
30
+ from ...utils import logging, replace_example_docstring
31
+ from ...utils.torch_utils import randn_tensor
32
+ from ...video_processor import VideoProcessor
33
+ from .pipeline_output import CogVideoXPipelineOutput
34
+
35
+
36
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
37
+
38
+
39
+ EXAMPLE_DOC_STRING = """
40
+ Examples:
41
+ ```python
42
+ >>> import torch
43
+ >>> from diffusers import CogVideoXFunControlPipeline, DDIMScheduler
44
+ >>> from diffusers.utils import export_to_video, load_video
45
+
46
+ >>> pipe = CogVideoXFunControlPipeline.from_pretrained(
47
+ ... "alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose", torch_dtype=torch.bfloat16
48
+ ... )
49
+ >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
50
+ >>> pipe.to("cuda")
51
+
52
+ >>> control_video = load_video(
53
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4"
54
+ ... )
55
+ >>> prompt = (
56
+ ... "An astronaut stands triumphantly at the peak of a towering mountain. Panorama of rugged peaks and "
57
+ ... "valleys. Very futuristic vibe and animated aesthetic. Highlights of purple and golden colors in "
58
+ ... "the scene. The sky is looks like an animated/cartoonish dream of galaxies, nebulae, stars, planets, "
59
+ ... "moons, but the remainder of the scene is mostly realistic."
60
+ ... )
61
+
62
+ >>> video = pipe(prompt=prompt, control_video=control_video).frames[0]
63
+ >>> export_to_video(video, "output.mp4", fps=8)
64
+ ```
65
+ """
66
+
67
+
68
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.get_resize_crop_region_for_grid
69
+ def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
70
+ tw = tgt_width
71
+ th = tgt_height
72
+ h, w = src
73
+ r = h / w
74
+ if r > (th / tw):
75
+ resize_height = th
76
+ resize_width = int(round(th / h * w))
77
+ else:
78
+ resize_width = tw
79
+ resize_height = int(round(tw / w * h))
80
+
81
+ crop_top = int(round((th - resize_height) / 2.0))
82
+ crop_left = int(round((tw - resize_width) / 2.0))
83
+
84
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
85
+
86
+
87
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
88
+ def retrieve_timesteps(
89
+ scheduler,
90
+ num_inference_steps: Optional[int] = None,
91
+ device: Optional[Union[str, torch.device]] = None,
92
+ timesteps: Optional[List[int]] = None,
93
+ sigmas: Optional[List[float]] = None,
94
+ **kwargs,
95
+ ):
96
+ r"""
97
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
98
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
99
+
100
+ Args:
101
+ scheduler (`SchedulerMixin`):
102
+ The scheduler to get timesteps from.
103
+ num_inference_steps (`int`):
104
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
105
+ must be `None`.
106
+ device (`str` or `torch.device`, *optional*):
107
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
108
+ timesteps (`List[int]`, *optional*):
109
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
110
+ `num_inference_steps` and `sigmas` must be `None`.
111
+ sigmas (`List[float]`, *optional*):
112
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
113
+ `num_inference_steps` and `timesteps` must be `None`.
114
+
115
+ Returns:
116
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
117
+ second element is the number of inference steps.
118
+ """
119
+ if timesteps is not None and sigmas is not None:
120
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
121
+ if timesteps is not None:
122
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
123
+ if not accepts_timesteps:
124
+ raise ValueError(
125
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
126
+ f" timestep schedules. Please check whether you are using the correct scheduler."
127
+ )
128
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
129
+ timesteps = scheduler.timesteps
130
+ num_inference_steps = len(timesteps)
131
+ elif sigmas is not None:
132
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
133
+ if not accept_sigmas:
134
+ raise ValueError(
135
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
136
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
137
+ )
138
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
139
+ timesteps = scheduler.timesteps
140
+ num_inference_steps = len(timesteps)
141
+ else:
142
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
143
+ timesteps = scheduler.timesteps
144
+ return timesteps, num_inference_steps
145
+
146
+
147
+ class CogVideoXFunControlPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin):
148
+ r"""
149
+ Pipeline for controlled text-to-video generation using CogVideoX Fun.
150
+
151
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
152
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
153
+
154
+ Args:
155
+ vae ([`AutoencoderKL`]):
156
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
157
+ text_encoder ([`T5EncoderModel`]):
158
+ Frozen text-encoder. CogVideoX uses
159
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
160
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
161
+ tokenizer (`T5Tokenizer`):
162
+ Tokenizer of class
163
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
164
+ transformer ([`CogVideoXTransformer3DModel`]):
165
+ A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
166
+ scheduler ([`SchedulerMixin`]):
167
+ A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
168
+ """
169
+
170
+ _optional_components = []
171
+ model_cpu_offload_seq = "text_encoder->vae->transformer->vae"
172
+
173
+ _callback_tensor_inputs = [
174
+ "latents",
175
+ "prompt_embeds",
176
+ "negative_prompt_embeds",
177
+ ]
178
+
179
+ def __init__(
180
+ self,
181
+ tokenizer: T5Tokenizer,
182
+ text_encoder: T5EncoderModel,
183
+ vae: AutoencoderKLCogVideoX,
184
+ transformer: CogVideoXTransformer3DModel,
185
+ scheduler: KarrasDiffusionSchedulers,
186
+ ):
187
+ super().__init__()
188
+
189
+ self.register_modules(
190
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
191
+ )
192
+ self.vae_scale_factor_spatial = (
193
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
194
+ )
195
+ self.vae_scale_factor_temporal = (
196
+ self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
197
+ )
198
+ self.vae_scaling_factor_image = (
199
+ self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7
200
+ )
201
+
202
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
203
+
204
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds
205
+ def _get_t5_prompt_embeds(
206
+ self,
207
+ prompt: Union[str, List[str]] = None,
208
+ num_videos_per_prompt: int = 1,
209
+ max_sequence_length: int = 226,
210
+ device: Optional[torch.device] = None,
211
+ dtype: Optional[torch.dtype] = None,
212
+ ):
213
+ device = device or self._execution_device
214
+ dtype = dtype or self.text_encoder.dtype
215
+
216
+ prompt = [prompt] if isinstance(prompt, str) else prompt
217
+ batch_size = len(prompt)
218
+
219
+ text_inputs = self.tokenizer(
220
+ prompt,
221
+ padding="max_length",
222
+ max_length=max_sequence_length,
223
+ truncation=True,
224
+ add_special_tokens=True,
225
+ return_tensors="pt",
226
+ )
227
+ text_input_ids = text_inputs.input_ids
228
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
229
+
230
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
231
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
232
+ logger.warning(
233
+ "The following part of your input was truncated because `max_sequence_length` is set to "
234
+ f" {max_sequence_length} tokens: {removed_text}"
235
+ )
236
+
237
+ prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
238
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
239
+
240
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
241
+ _, seq_len, _ = prompt_embeds.shape
242
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
243
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
244
+
245
+ return prompt_embeds
246
+
247
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt
248
+ def encode_prompt(
249
+ self,
250
+ prompt: Union[str, List[str]],
251
+ negative_prompt: Optional[Union[str, List[str]]] = None,
252
+ do_classifier_free_guidance: bool = True,
253
+ num_videos_per_prompt: int = 1,
254
+ prompt_embeds: Optional[torch.Tensor] = None,
255
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
256
+ max_sequence_length: int = 226,
257
+ device: Optional[torch.device] = None,
258
+ dtype: Optional[torch.dtype] = None,
259
+ ):
260
+ r"""
261
+ Encodes the prompt into text encoder hidden states.
262
+
263
+ Args:
264
+ prompt (`str` or `List[str]`, *optional*):
265
+ prompt to be encoded
266
+ negative_prompt (`str` or `List[str]`, *optional*):
267
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
268
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
269
+ less than `1`).
270
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
271
+ Whether to use classifier free guidance or not.
272
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
273
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
274
+ prompt_embeds (`torch.Tensor`, *optional*):
275
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
276
+ provided, text embeddings will be generated from `prompt` input argument.
277
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
278
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
279
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
280
+ argument.
281
+ device: (`torch.device`, *optional*):
282
+ torch device
283
+ dtype: (`torch.dtype`, *optional*):
284
+ torch dtype
285
+ """
286
+ device = device or self._execution_device
287
+
288
+ prompt = [prompt] if isinstance(prompt, str) else prompt
289
+ if prompt is not None:
290
+ batch_size = len(prompt)
291
+ else:
292
+ batch_size = prompt_embeds.shape[0]
293
+
294
+ if prompt_embeds is None:
295
+ prompt_embeds = self._get_t5_prompt_embeds(
296
+ prompt=prompt,
297
+ num_videos_per_prompt=num_videos_per_prompt,
298
+ max_sequence_length=max_sequence_length,
299
+ device=device,
300
+ dtype=dtype,
301
+ )
302
+
303
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
304
+ negative_prompt = negative_prompt or ""
305
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
306
+
307
+ if prompt is not None and type(prompt) is not type(negative_prompt):
308
+ raise TypeError(
309
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
310
+ f" {type(prompt)}."
311
+ )
312
+ elif batch_size != len(negative_prompt):
313
+ raise ValueError(
314
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
315
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
316
+ " the batch size of `prompt`."
317
+ )
318
+
319
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
320
+ prompt=negative_prompt,
321
+ num_videos_per_prompt=num_videos_per_prompt,
322
+ max_sequence_length=max_sequence_length,
323
+ device=device,
324
+ dtype=dtype,
325
+ )
326
+
327
+ return prompt_embeds, negative_prompt_embeds
328
+
329
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.prepare_latents
330
+ def prepare_latents(
331
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
332
+ ):
333
+ if isinstance(generator, list) and len(generator) != batch_size:
334
+ raise ValueError(
335
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
336
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
337
+ )
338
+
339
+ shape = (
340
+ batch_size,
341
+ (num_frames - 1) // self.vae_scale_factor_temporal + 1,
342
+ num_channels_latents,
343
+ height // self.vae_scale_factor_spatial,
344
+ width // self.vae_scale_factor_spatial,
345
+ )
346
+
347
+ if latents is None:
348
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
349
+ else:
350
+ latents = latents.to(device)
351
+
352
+ # scale the initial noise by the standard deviation required by the scheduler
353
+ latents = latents * self.scheduler.init_noise_sigma
354
+ return latents
355
+
356
+ # Adapted from https://github.com/aigc-apps/CogVideoX-Fun/blob/2a93e5c14e02b2b5921d533fd59fc8c0ed69fb24/cogvideox/pipeline/pipeline_cogvideox_control.py#L366
357
+ def prepare_control_latents(
358
+ self, mask: Optional[torch.Tensor] = None, masked_image: Optional[torch.Tensor] = None
359
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
360
+ if mask is not None:
361
+ masks = []
362
+ for i in range(mask.size(0)):
363
+ current_mask = mask[i].unsqueeze(0)
364
+ current_mask = self.vae.encode(current_mask)[0]
365
+ current_mask = current_mask.mode()
366
+ masks.append(current_mask)
367
+ mask = torch.cat(masks, dim=0)
368
+ mask = mask * self.vae.config.scaling_factor
369
+
370
+ if masked_image is not None:
371
+ mask_pixel_values = []
372
+ for i in range(masked_image.size(0)):
373
+ mask_pixel_value = masked_image[i].unsqueeze(0)
374
+ mask_pixel_value = self.vae.encode(mask_pixel_value)[0]
375
+ mask_pixel_value = mask_pixel_value.mode()
376
+ mask_pixel_values.append(mask_pixel_value)
377
+ masked_image_latents = torch.cat(mask_pixel_values, dim=0)
378
+ masked_image_latents = masked_image_latents * self.vae.config.scaling_factor
379
+ else:
380
+ masked_image_latents = None
381
+
382
+ return mask, masked_image_latents
383
+
384
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents
385
+ def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
386
+ latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
387
+ latents = 1 / self.vae_scaling_factor_image * latents
388
+
389
+ frames = self.vae.decode(latents).sample
390
+ return frames
391
+
392
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
393
+ def prepare_extra_step_kwargs(self, generator, eta):
394
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
395
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
396
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
397
+ # and should be between [0, 1]
398
+
399
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
400
+ extra_step_kwargs = {}
401
+ if accepts_eta:
402
+ extra_step_kwargs["eta"] = eta
403
+
404
+ # check if the scheduler accepts generator
405
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
406
+ if accepts_generator:
407
+ extra_step_kwargs["generator"] = generator
408
+ return extra_step_kwargs
409
+
410
+ def check_inputs(
411
+ self,
412
+ prompt,
413
+ height,
414
+ width,
415
+ negative_prompt,
416
+ callback_on_step_end_tensor_inputs,
417
+ prompt_embeds=None,
418
+ negative_prompt_embeds=None,
419
+ control_video=None,
420
+ control_video_latents=None,
421
+ ):
422
+ if height % 8 != 0 or width % 8 != 0:
423
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
424
+
425
+ if callback_on_step_end_tensor_inputs is not None and not all(
426
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
427
+ ):
428
+ raise ValueError(
429
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
430
+ )
431
+ if prompt is not None and prompt_embeds is not None:
432
+ raise ValueError(
433
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
434
+ " only forward one of the two."
435
+ )
436
+ elif prompt is None and prompt_embeds is None:
437
+ raise ValueError(
438
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
439
+ )
440
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
441
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
442
+
443
+ if prompt is not None and negative_prompt_embeds is not None:
444
+ raise ValueError(
445
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
446
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
447
+ )
448
+
449
+ if negative_prompt is not None and negative_prompt_embeds is not None:
450
+ raise ValueError(
451
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
452
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
453
+ )
454
+
455
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
456
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
457
+ raise ValueError(
458
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
459
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
460
+ f" {negative_prompt_embeds.shape}."
461
+ )
462
+
463
+ if control_video is not None and control_video_latents is not None:
464
+ raise ValueError(
465
+ "Cannot pass both `control_video` and `control_video_latents`. Please make sure to pass only one of these parameters."
466
+ )
467
+
468
+ def fuse_qkv_projections(self) -> None:
469
+ r"""Enables fused QKV projections."""
470
+ self.fusing_transformer = True
471
+ self.transformer.fuse_qkv_projections()
472
+
473
+ def unfuse_qkv_projections(self) -> None:
474
+ r"""Disable QKV projection fusion if enabled."""
475
+ if not self.fusing_transformer:
476
+ logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
477
+ else:
478
+ self.transformer.unfuse_qkv_projections()
479
+ self.fusing_transformer = False
480
+
481
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._prepare_rotary_positional_embeddings
482
+ def _prepare_rotary_positional_embeddings(
483
+ self,
484
+ height: int,
485
+ width: int,
486
+ num_frames: int,
487
+ device: torch.device,
488
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
489
+ grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
490
+ grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
491
+
492
+ p = self.transformer.config.patch_size
493
+ p_t = self.transformer.config.patch_size_t
494
+
495
+ base_size_width = self.transformer.config.sample_width // p
496
+ base_size_height = self.transformer.config.sample_height // p
497
+
498
+ if p_t is None:
499
+ # CogVideoX 1.0
500
+ grid_crops_coords = get_resize_crop_region_for_grid(
501
+ (grid_height, grid_width), base_size_width, base_size_height
502
+ )
503
+ freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
504
+ embed_dim=self.transformer.config.attention_head_dim,
505
+ crops_coords=grid_crops_coords,
506
+ grid_size=(grid_height, grid_width),
507
+ temporal_size=num_frames,
508
+ device=device,
509
+ )
510
+ else:
511
+ # CogVideoX 1.5
512
+ base_num_frames = (num_frames + p_t - 1) // p_t
513
+
514
+ freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
515
+ embed_dim=self.transformer.config.attention_head_dim,
516
+ crops_coords=None,
517
+ grid_size=(grid_height, grid_width),
518
+ temporal_size=base_num_frames,
519
+ grid_type="slice",
520
+ max_size=(base_size_height, base_size_width),
521
+ device=device,
522
+ )
523
+
524
+ return freqs_cos, freqs_sin
525
+
526
+ @property
527
+ def guidance_scale(self):
528
+ return self._guidance_scale
529
+
530
+ @property
531
+ def num_timesteps(self):
532
+ return self._num_timesteps
533
+
534
+ @property
535
+ def attention_kwargs(self):
536
+ return self._attention_kwargs
537
+
538
+ @property
539
+ def interrupt(self):
540
+ return self._interrupt
541
+
542
+ @torch.no_grad()
543
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
544
+ def __call__(
545
+ self,
546
+ prompt: Optional[Union[str, List[str]]] = None,
547
+ negative_prompt: Optional[Union[str, List[str]]] = None,
548
+ control_video: Optional[List[Image.Image]] = None,
549
+ height: Optional[int] = None,
550
+ width: Optional[int] = None,
551
+ num_inference_steps: int = 50,
552
+ timesteps: Optional[List[int]] = None,
553
+ guidance_scale: float = 6,
554
+ use_dynamic_cfg: bool = False,
555
+ num_videos_per_prompt: int = 1,
556
+ eta: float = 0.0,
557
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
558
+ latents: Optional[torch.Tensor] = None,
559
+ control_video_latents: Optional[torch.Tensor] = None,
560
+ prompt_embeds: Optional[torch.Tensor] = None,
561
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
562
+ output_type: str = "pil",
563
+ return_dict: bool = True,
564
+ attention_kwargs: Optional[Dict[str, Any]] = None,
565
+ callback_on_step_end: Optional[
566
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
567
+ ] = None,
568
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
569
+ max_sequence_length: int = 226,
570
+ ) -> Union[CogVideoXPipelineOutput, Tuple]:
571
+ """
572
+ Function invoked when calling the pipeline for generation.
573
+
574
+ Args:
575
+ prompt (`str` or `List[str]`, *optional*):
576
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
577
+ instead.
578
+ negative_prompt (`str` or `List[str]`, *optional*):
579
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
580
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
581
+ less than `1`).
582
+ control_video (`List[PIL.Image.Image]`):
583
+ The control video to condition the generation on. Must be a list of images/frames of the video. If not
584
+ provided, `control_video_latents` must be provided.
585
+ height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
586
+ The height in pixels of the generated image. This is set to 480 by default for the best results.
587
+ width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
588
+ The width in pixels of the generated image. This is set to 720 by default for the best results.
589
+ num_inference_steps (`int`, *optional*, defaults to 50):
590
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
591
+ expense of slower inference.
592
+ timesteps (`List[int]`, *optional*):
593
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
594
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
595
+ passed will be used. Must be in descending order.
596
+ guidance_scale (`float`, *optional*, defaults to 6.0):
597
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
598
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
599
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
600
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
601
+ usually at the expense of lower image quality.
602
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
603
+ The number of videos to generate per prompt.
604
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
605
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
606
+ to make generation deterministic.
607
+ latents (`torch.Tensor`, *optional*):
608
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
609
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
610
+ tensor will ge generated by sampling using the supplied random `generator`.
611
+ control_video_latents (`torch.Tensor`, *optional*):
612
+ Pre-generated control latents, sampled from a Gaussian distribution, to be used as inputs for
613
+ controlled video generation. If not provided, `control_video` must be provided.
614
+ prompt_embeds (`torch.Tensor`, *optional*):
615
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
616
+ provided, text embeddings will be generated from `prompt` input argument.
617
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
618
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
619
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
620
+ argument.
621
+ output_type (`str`, *optional*, defaults to `"pil"`):
622
+ The output format of the generate image. Choose between
623
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
624
+ return_dict (`bool`, *optional*, defaults to `True`):
625
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
626
+ of a plain tuple.
627
+ attention_kwargs (`dict`, *optional*):
628
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
629
+ `self.processor` in
630
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
631
+ callback_on_step_end (`Callable`, *optional*):
632
+ A function that calls at the end of each denoising steps during the inference. The function is called
633
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
634
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
635
+ `callback_on_step_end_tensor_inputs`.
636
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
637
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
638
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
639
+ `._callback_tensor_inputs` attribute of your pipeline class.
640
+ max_sequence_length (`int`, defaults to `226`):
641
+ Maximum sequence length in encoded prompt. Must be consistent with
642
+ `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
643
+
644
+ Examples:
645
+
646
+ Returns:
647
+ [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`:
648
+ [`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
649
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
650
+ """
651
+
652
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
653
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
654
+
655
+ if control_video is not None and isinstance(control_video[0], Image.Image):
656
+ control_video = [control_video]
657
+
658
+ height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial
659
+ width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial
660
+ num_frames = len(control_video[0]) if control_video is not None else control_video_latents.size(2)
661
+
662
+ num_videos_per_prompt = 1
663
+
664
+ # 1. Check inputs. Raise error if not correct
665
+ self.check_inputs(
666
+ prompt,
667
+ height,
668
+ width,
669
+ negative_prompt,
670
+ callback_on_step_end_tensor_inputs,
671
+ prompt_embeds,
672
+ negative_prompt_embeds,
673
+ control_video,
674
+ control_video_latents,
675
+ )
676
+ self._guidance_scale = guidance_scale
677
+ self._attention_kwargs = attention_kwargs
678
+ self._interrupt = False
679
+
680
+ # 2. Default call parameters
681
+ if prompt is not None and isinstance(prompt, str):
682
+ batch_size = 1
683
+ elif prompt is not None and isinstance(prompt, list):
684
+ batch_size = len(prompt)
685
+ else:
686
+ batch_size = prompt_embeds.shape[0]
687
+
688
+ device = self._execution_device
689
+
690
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
691
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
692
+ # corresponds to doing no classifier free guidance.
693
+ do_classifier_free_guidance = guidance_scale > 1.0
694
+
695
+ # 3. Encode input prompt
696
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
697
+ prompt,
698
+ negative_prompt,
699
+ do_classifier_free_guidance,
700
+ num_videos_per_prompt=num_videos_per_prompt,
701
+ prompt_embeds=prompt_embeds,
702
+ negative_prompt_embeds=negative_prompt_embeds,
703
+ max_sequence_length=max_sequence_length,
704
+ device=device,
705
+ )
706
+ if do_classifier_free_guidance:
707
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
708
+
709
+ # 4. Prepare timesteps
710
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
711
+ self._num_timesteps = len(timesteps)
712
+
713
+ # 5. Prepare latents
714
+ latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
715
+
716
+ # For CogVideoX 1.5, the latent frames should be padded to make it divisible by patch_size_t
717
+ patch_size_t = self.transformer.config.patch_size_t
718
+ if patch_size_t is not None and latent_frames % patch_size_t != 0:
719
+ raise ValueError(
720
+ f"The number of latent frames must be divisible by `{patch_size_t=}` but the given video "
721
+ f"contains {latent_frames=}, which is not divisible."
722
+ )
723
+
724
+ latent_channels = self.transformer.config.in_channels // 2
725
+ latents = self.prepare_latents(
726
+ batch_size * num_videos_per_prompt,
727
+ latent_channels,
728
+ num_frames,
729
+ height,
730
+ width,
731
+ prompt_embeds.dtype,
732
+ device,
733
+ generator,
734
+ latents,
735
+ )
736
+
737
+ if control_video_latents is None:
738
+ control_video = self.video_processor.preprocess_video(control_video, height=height, width=width)
739
+ control_video = control_video.to(device=device, dtype=prompt_embeds.dtype)
740
+
741
+ _, control_video_latents = self.prepare_control_latents(None, control_video)
742
+ control_video_latents = control_video_latents.permute(0, 2, 1, 3, 4)
743
+
744
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
745
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
746
+
747
+ # 7. Create rotary embeds if required
748
+ image_rotary_emb = (
749
+ self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
750
+ if self.transformer.config.use_rotary_positional_embeddings
751
+ else None
752
+ )
753
+
754
+ # 8. Denoising loop
755
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
756
+
757
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
758
+ # for DPM-solver++
759
+ old_pred_original_sample = None
760
+ for i, t in enumerate(timesteps):
761
+ if self.interrupt:
762
+ continue
763
+
764
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
765
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
766
+
767
+ latent_control_input = (
768
+ torch.cat([control_video_latents] * 2) if do_classifier_free_guidance else control_video_latents
769
+ )
770
+ latent_model_input = torch.cat([latent_model_input, latent_control_input], dim=2)
771
+
772
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
773
+ timestep = t.expand(latent_model_input.shape[0])
774
+
775
+ # predict noise model_output
776
+ noise_pred = self.transformer(
777
+ hidden_states=latent_model_input,
778
+ encoder_hidden_states=prompt_embeds,
779
+ timestep=timestep,
780
+ image_rotary_emb=image_rotary_emb,
781
+ attention_kwargs=attention_kwargs,
782
+ return_dict=False,
783
+ )[0]
784
+ noise_pred = noise_pred.float()
785
+
786
+ # perform guidance
787
+ if use_dynamic_cfg:
788
+ self._guidance_scale = 1 + guidance_scale * (
789
+ (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
790
+ )
791
+ if do_classifier_free_guidance:
792
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
793
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
794
+
795
+ # compute the previous noisy sample x_t -> x_t-1
796
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
797
+ latents = latents.to(prompt_embeds.dtype)
798
+
799
+ # call the callback, if provided
800
+ if callback_on_step_end is not None:
801
+ callback_kwargs = {}
802
+ for k in callback_on_step_end_tensor_inputs:
803
+ callback_kwargs[k] = locals()[k]
804
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
805
+
806
+ latents = callback_outputs.pop("latents", latents)
807
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
808
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
809
+
810
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
811
+ progress_bar.update()
812
+
813
+ if not output_type == "latent":
814
+ video = self.decode_latents(latents)
815
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
816
+ else:
817
+ video = latents
818
+
819
+ # Offload all models
820
+ self.maybe_free_model_hooks()
821
+
822
+ if not return_dict:
823
+ return (video,)
824
+
825
+ return CogVideoXPipelineOutput(frames=video)