diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,596 @@
|
|
1
|
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
from typing import Callable, Dict, List, Optional, Tuple, Union
|
16
|
+
|
17
|
+
import torch
|
18
|
+
import torch.nn as nn
|
19
|
+
|
20
|
+
from ..models.attention import BasicTransformerBlock, FreeNoiseTransformerBlock
|
21
|
+
from ..models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
22
|
+
from ..models.transformers.transformer_2d import Transformer2DModel
|
23
|
+
from ..models.unets.unet_motion_model import (
|
24
|
+
AnimateDiffTransformer3D,
|
25
|
+
CrossAttnDownBlockMotion,
|
26
|
+
DownBlockMotion,
|
27
|
+
UpBlockMotion,
|
28
|
+
)
|
29
|
+
from ..pipelines.pipeline_utils import DiffusionPipeline
|
30
|
+
from ..utils import logging
|
31
|
+
from ..utils.torch_utils import randn_tensor
|
32
|
+
|
33
|
+
|
34
|
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35
|
+
|
36
|
+
|
37
|
+
class SplitInferenceModule(nn.Module):
|
38
|
+
r"""
|
39
|
+
A wrapper module class that splits inputs along a specified dimension before performing a forward pass.
|
40
|
+
|
41
|
+
This module is useful when you need to perform inference on large tensors in a memory-efficient way by breaking
|
42
|
+
them into smaller chunks, processing each chunk separately, and then reassembling the results.
|
43
|
+
|
44
|
+
Args:
|
45
|
+
module (`nn.Module`):
|
46
|
+
The underlying PyTorch module that will be applied to each chunk of split inputs.
|
47
|
+
split_size (`int`, defaults to `1`):
|
48
|
+
The size of each chunk after splitting the input tensor.
|
49
|
+
split_dim (`int`, defaults to `0`):
|
50
|
+
The dimension along which the input tensors are split.
|
51
|
+
input_kwargs_to_split (`List[str]`, defaults to `["hidden_states"]`):
|
52
|
+
A list of keyword arguments (strings) that represent the input tensors to be split.
|
53
|
+
|
54
|
+
Workflow:
|
55
|
+
1. The keyword arguments specified in `input_kwargs_to_split` are split into smaller chunks using
|
56
|
+
`torch.split()` along the dimension `split_dim` and with a chunk size of `split_size`.
|
57
|
+
2. The `module` is invoked once for each split with both the split inputs and any unchanged arguments
|
58
|
+
that were passed.
|
59
|
+
3. The output tensors from each split are concatenated back together along `split_dim` before returning.
|
60
|
+
|
61
|
+
Example:
|
62
|
+
```python
|
63
|
+
>>> import torch
|
64
|
+
>>> import torch.nn as nn
|
65
|
+
|
66
|
+
>>> model = nn.Linear(1000, 1000)
|
67
|
+
>>> split_module = SplitInferenceModule(model, split_size=2, split_dim=0, input_kwargs_to_split=["input"])
|
68
|
+
|
69
|
+
>>> input_tensor = torch.randn(42, 1000)
|
70
|
+
>>> # Will split the tensor into 21 slices of shape [2, 1000].
|
71
|
+
>>> output = split_module(input=input_tensor)
|
72
|
+
```
|
73
|
+
|
74
|
+
It is also possible to nest `SplitInferenceModule` across different split dimensions for more complex
|
75
|
+
multi-dimensional splitting.
|
76
|
+
"""
|
77
|
+
|
78
|
+
def __init__(
|
79
|
+
self,
|
80
|
+
module: nn.Module,
|
81
|
+
split_size: int = 1,
|
82
|
+
split_dim: int = 0,
|
83
|
+
input_kwargs_to_split: List[str] = ["hidden_states"],
|
84
|
+
) -> None:
|
85
|
+
super().__init__()
|
86
|
+
|
87
|
+
self.module = module
|
88
|
+
self.split_size = split_size
|
89
|
+
self.split_dim = split_dim
|
90
|
+
self.input_kwargs_to_split = set(input_kwargs_to_split)
|
91
|
+
|
92
|
+
def forward(self, *args, **kwargs) -> Union[torch.Tensor, Tuple[torch.Tensor]]:
|
93
|
+
r"""Forward method for the `SplitInferenceModule`.
|
94
|
+
|
95
|
+
This method processes the input by splitting specified keyword arguments along a given dimension, running the
|
96
|
+
underlying module on each split, and then concatenating the results. The splitting is controlled by the
|
97
|
+
`split_size` and `split_dim` parameters specified during initialization.
|
98
|
+
|
99
|
+
Args:
|
100
|
+
*args (`Any`):
|
101
|
+
Positional arguments that are passed directly to the `module` without modification.
|
102
|
+
**kwargs (`Dict[str, torch.Tensor]`):
|
103
|
+
Keyword arguments passed to the underlying `module`. Only keyword arguments whose names match the
|
104
|
+
entries in `input_kwargs_to_split` and are of type `torch.Tensor` will be split. The remaining keyword
|
105
|
+
arguments are passed unchanged.
|
106
|
+
|
107
|
+
Returns:
|
108
|
+
`Union[torch.Tensor, Tuple[torch.Tensor]]`:
|
109
|
+
The outputs obtained from `SplitInferenceModule` are the same as if the underlying module was inferred
|
110
|
+
without it.
|
111
|
+
- If the underlying module returns a single tensor, the result will be a single concatenated tensor
|
112
|
+
along the same `split_dim` after processing all splits.
|
113
|
+
- If the underlying module returns a tuple of tensors, each element of the tuple will be concatenated
|
114
|
+
along the `split_dim` across all splits, and the final result will be a tuple of concatenated tensors.
|
115
|
+
"""
|
116
|
+
split_inputs = {}
|
117
|
+
|
118
|
+
# 1. Split inputs that were specified during initialization and also present in passed kwargs
|
119
|
+
for key in list(kwargs.keys()):
|
120
|
+
if key not in self.input_kwargs_to_split or not torch.is_tensor(kwargs[key]):
|
121
|
+
continue
|
122
|
+
split_inputs[key] = torch.split(kwargs[key], self.split_size, self.split_dim)
|
123
|
+
kwargs.pop(key)
|
124
|
+
|
125
|
+
# 2. Invoke forward pass across each split
|
126
|
+
results = []
|
127
|
+
for split_input in zip(*split_inputs.values()):
|
128
|
+
inputs = dict(zip(split_inputs.keys(), split_input))
|
129
|
+
inputs.update(kwargs)
|
130
|
+
|
131
|
+
intermediate_tensor_or_tensor_tuple = self.module(*args, **inputs)
|
132
|
+
results.append(intermediate_tensor_or_tensor_tuple)
|
133
|
+
|
134
|
+
# 3. Concatenate split restuls to obtain final outputs
|
135
|
+
if isinstance(results[0], torch.Tensor):
|
136
|
+
return torch.cat(results, dim=self.split_dim)
|
137
|
+
elif isinstance(results[0], tuple):
|
138
|
+
return tuple([torch.cat(x, dim=self.split_dim) for x in zip(*results)])
|
139
|
+
else:
|
140
|
+
raise ValueError(
|
141
|
+
"In order to use the SplitInferenceModule, it is necessary for the underlying `module` to either return a torch.Tensor or a tuple of torch.Tensor's."
|
142
|
+
)
|
143
|
+
|
144
|
+
|
145
|
+
class AnimateDiffFreeNoiseMixin:
|
146
|
+
r"""Mixin class for [FreeNoise](https://arxiv.org/abs/2310.15169)."""
|
147
|
+
|
148
|
+
def _enable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]):
|
149
|
+
r"""Helper function to enable FreeNoise in transformer blocks."""
|
150
|
+
|
151
|
+
for motion_module in block.motion_modules:
|
152
|
+
num_transformer_blocks = len(motion_module.transformer_blocks)
|
153
|
+
|
154
|
+
for i in range(num_transformer_blocks):
|
155
|
+
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock):
|
156
|
+
motion_module.transformer_blocks[i].set_free_noise_properties(
|
157
|
+
self._free_noise_context_length,
|
158
|
+
self._free_noise_context_stride,
|
159
|
+
self._free_noise_weighting_scheme,
|
160
|
+
)
|
161
|
+
else:
|
162
|
+
assert isinstance(motion_module.transformer_blocks[i], BasicTransformerBlock)
|
163
|
+
basic_transfomer_block = motion_module.transformer_blocks[i]
|
164
|
+
|
165
|
+
motion_module.transformer_blocks[i] = FreeNoiseTransformerBlock(
|
166
|
+
dim=basic_transfomer_block.dim,
|
167
|
+
num_attention_heads=basic_transfomer_block.num_attention_heads,
|
168
|
+
attention_head_dim=basic_transfomer_block.attention_head_dim,
|
169
|
+
dropout=basic_transfomer_block.dropout,
|
170
|
+
cross_attention_dim=basic_transfomer_block.cross_attention_dim,
|
171
|
+
activation_fn=basic_transfomer_block.activation_fn,
|
172
|
+
attention_bias=basic_transfomer_block.attention_bias,
|
173
|
+
only_cross_attention=basic_transfomer_block.only_cross_attention,
|
174
|
+
double_self_attention=basic_transfomer_block.double_self_attention,
|
175
|
+
positional_embeddings=basic_transfomer_block.positional_embeddings,
|
176
|
+
num_positional_embeddings=basic_transfomer_block.num_positional_embeddings,
|
177
|
+
context_length=self._free_noise_context_length,
|
178
|
+
context_stride=self._free_noise_context_stride,
|
179
|
+
weighting_scheme=self._free_noise_weighting_scheme,
|
180
|
+
).to(device=self.device, dtype=self.dtype)
|
181
|
+
|
182
|
+
motion_module.transformer_blocks[i].load_state_dict(
|
183
|
+
basic_transfomer_block.state_dict(), strict=True
|
184
|
+
)
|
185
|
+
motion_module.transformer_blocks[i].set_chunk_feed_forward(
|
186
|
+
basic_transfomer_block._chunk_size, basic_transfomer_block._chunk_dim
|
187
|
+
)
|
188
|
+
|
189
|
+
def _disable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]):
|
190
|
+
r"""Helper function to disable FreeNoise in transformer blocks."""
|
191
|
+
|
192
|
+
for motion_module in block.motion_modules:
|
193
|
+
num_transformer_blocks = len(motion_module.transformer_blocks)
|
194
|
+
|
195
|
+
for i in range(num_transformer_blocks):
|
196
|
+
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock):
|
197
|
+
free_noise_transfomer_block = motion_module.transformer_blocks[i]
|
198
|
+
|
199
|
+
motion_module.transformer_blocks[i] = BasicTransformerBlock(
|
200
|
+
dim=free_noise_transfomer_block.dim,
|
201
|
+
num_attention_heads=free_noise_transfomer_block.num_attention_heads,
|
202
|
+
attention_head_dim=free_noise_transfomer_block.attention_head_dim,
|
203
|
+
dropout=free_noise_transfomer_block.dropout,
|
204
|
+
cross_attention_dim=free_noise_transfomer_block.cross_attention_dim,
|
205
|
+
activation_fn=free_noise_transfomer_block.activation_fn,
|
206
|
+
attention_bias=free_noise_transfomer_block.attention_bias,
|
207
|
+
only_cross_attention=free_noise_transfomer_block.only_cross_attention,
|
208
|
+
double_self_attention=free_noise_transfomer_block.double_self_attention,
|
209
|
+
positional_embeddings=free_noise_transfomer_block.positional_embeddings,
|
210
|
+
num_positional_embeddings=free_noise_transfomer_block.num_positional_embeddings,
|
211
|
+
).to(device=self.device, dtype=self.dtype)
|
212
|
+
|
213
|
+
motion_module.transformer_blocks[i].load_state_dict(
|
214
|
+
free_noise_transfomer_block.state_dict(), strict=True
|
215
|
+
)
|
216
|
+
motion_module.transformer_blocks[i].set_chunk_feed_forward(
|
217
|
+
free_noise_transfomer_block._chunk_size, free_noise_transfomer_block._chunk_dim
|
218
|
+
)
|
219
|
+
|
220
|
+
def _check_inputs_free_noise(
|
221
|
+
self,
|
222
|
+
prompt,
|
223
|
+
negative_prompt,
|
224
|
+
prompt_embeds,
|
225
|
+
negative_prompt_embeds,
|
226
|
+
num_frames,
|
227
|
+
) -> None:
|
228
|
+
if not isinstance(prompt, (str, dict)):
|
229
|
+
raise ValueError(f"Expected `prompt` to have type `str` or `dict` but found {type(prompt)=}")
|
230
|
+
|
231
|
+
if negative_prompt is not None:
|
232
|
+
if not isinstance(negative_prompt, (str, dict)):
|
233
|
+
raise ValueError(
|
234
|
+
f"Expected `negative_prompt` to have type `str` or `dict` but found {type(negative_prompt)=}"
|
235
|
+
)
|
236
|
+
|
237
|
+
if prompt_embeds is not None or negative_prompt_embeds is not None:
|
238
|
+
raise ValueError("`prompt_embeds` and `negative_prompt_embeds` is not supported in FreeNoise yet.")
|
239
|
+
|
240
|
+
frame_indices = [isinstance(x, int) for x in prompt.keys()]
|
241
|
+
frame_prompts = [isinstance(x, str) for x in prompt.values()]
|
242
|
+
min_frame = min(list(prompt.keys()))
|
243
|
+
max_frame = max(list(prompt.keys()))
|
244
|
+
|
245
|
+
if not all(frame_indices):
|
246
|
+
raise ValueError("Expected integer keys in `prompt` dict for FreeNoise.")
|
247
|
+
if not all(frame_prompts):
|
248
|
+
raise ValueError("Expected str values in `prompt` dict for FreeNoise.")
|
249
|
+
if min_frame != 0:
|
250
|
+
raise ValueError("The minimum frame index in `prompt` dict must be 0 as a starting prompt is necessary.")
|
251
|
+
if max_frame >= num_frames:
|
252
|
+
raise ValueError(
|
253
|
+
f"The maximum frame index in `prompt` dict must be lesser than {num_frames=} and follow 0-based indexing."
|
254
|
+
)
|
255
|
+
|
256
|
+
def _encode_prompt_free_noise(
|
257
|
+
self,
|
258
|
+
prompt: Union[str, Dict[int, str]],
|
259
|
+
num_frames: int,
|
260
|
+
device: torch.device,
|
261
|
+
num_videos_per_prompt: int,
|
262
|
+
do_classifier_free_guidance: bool,
|
263
|
+
negative_prompt: Optional[Union[str, Dict[int, str]]] = None,
|
264
|
+
prompt_embeds: Optional[torch.Tensor] = None,
|
265
|
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
266
|
+
lora_scale: Optional[float] = None,
|
267
|
+
clip_skip: Optional[int] = None,
|
268
|
+
) -> torch.Tensor:
|
269
|
+
if negative_prompt is None:
|
270
|
+
negative_prompt = ""
|
271
|
+
|
272
|
+
# Ensure that we have a dictionary of prompts
|
273
|
+
if isinstance(prompt, str):
|
274
|
+
prompt = {0: prompt}
|
275
|
+
if isinstance(negative_prompt, str):
|
276
|
+
negative_prompt = {0: negative_prompt}
|
277
|
+
|
278
|
+
self._check_inputs_free_noise(prompt, negative_prompt, prompt_embeds, negative_prompt_embeds, num_frames)
|
279
|
+
|
280
|
+
# Sort the prompts based on frame indices
|
281
|
+
prompt = dict(sorted(prompt.items()))
|
282
|
+
negative_prompt = dict(sorted(negative_prompt.items()))
|
283
|
+
|
284
|
+
# Ensure that we have a prompt for the last frame index
|
285
|
+
prompt[num_frames - 1] = prompt[list(prompt.keys())[-1]]
|
286
|
+
negative_prompt[num_frames - 1] = negative_prompt[list(negative_prompt.keys())[-1]]
|
287
|
+
|
288
|
+
frame_indices = list(prompt.keys())
|
289
|
+
frame_prompts = list(prompt.values())
|
290
|
+
frame_negative_indices = list(negative_prompt.keys())
|
291
|
+
frame_negative_prompts = list(negative_prompt.values())
|
292
|
+
|
293
|
+
# Generate and interpolate positive prompts
|
294
|
+
prompt_embeds, _ = self.encode_prompt(
|
295
|
+
prompt=frame_prompts,
|
296
|
+
device=device,
|
297
|
+
num_images_per_prompt=num_videos_per_prompt,
|
298
|
+
do_classifier_free_guidance=False,
|
299
|
+
negative_prompt=None,
|
300
|
+
prompt_embeds=None,
|
301
|
+
negative_prompt_embeds=None,
|
302
|
+
lora_scale=lora_scale,
|
303
|
+
clip_skip=clip_skip,
|
304
|
+
)
|
305
|
+
|
306
|
+
shape = (num_frames, *prompt_embeds.shape[1:])
|
307
|
+
prompt_interpolation_embeds = prompt_embeds.new_zeros(shape)
|
308
|
+
|
309
|
+
for i in range(len(frame_indices) - 1):
|
310
|
+
start_frame = frame_indices[i]
|
311
|
+
end_frame = frame_indices[i + 1]
|
312
|
+
start_tensor = prompt_embeds[i].unsqueeze(0)
|
313
|
+
end_tensor = prompt_embeds[i + 1].unsqueeze(0)
|
314
|
+
|
315
|
+
prompt_interpolation_embeds[start_frame : end_frame + 1] = self._free_noise_prompt_interpolation_callback(
|
316
|
+
start_frame, end_frame, start_tensor, end_tensor
|
317
|
+
)
|
318
|
+
|
319
|
+
# Generate and interpolate negative prompts
|
320
|
+
negative_prompt_embeds = None
|
321
|
+
negative_prompt_interpolation_embeds = None
|
322
|
+
|
323
|
+
if do_classifier_free_guidance:
|
324
|
+
_, negative_prompt_embeds = self.encode_prompt(
|
325
|
+
prompt=[""] * len(frame_negative_prompts),
|
326
|
+
device=device,
|
327
|
+
num_images_per_prompt=num_videos_per_prompt,
|
328
|
+
do_classifier_free_guidance=True,
|
329
|
+
negative_prompt=frame_negative_prompts,
|
330
|
+
prompt_embeds=None,
|
331
|
+
negative_prompt_embeds=None,
|
332
|
+
lora_scale=lora_scale,
|
333
|
+
clip_skip=clip_skip,
|
334
|
+
)
|
335
|
+
|
336
|
+
negative_prompt_interpolation_embeds = negative_prompt_embeds.new_zeros(shape)
|
337
|
+
|
338
|
+
for i in range(len(frame_negative_indices) - 1):
|
339
|
+
start_frame = frame_negative_indices[i]
|
340
|
+
end_frame = frame_negative_indices[i + 1]
|
341
|
+
start_tensor = negative_prompt_embeds[i].unsqueeze(0)
|
342
|
+
end_tensor = negative_prompt_embeds[i + 1].unsqueeze(0)
|
343
|
+
|
344
|
+
negative_prompt_interpolation_embeds[
|
345
|
+
start_frame : end_frame + 1
|
346
|
+
] = self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor)
|
347
|
+
|
348
|
+
prompt_embeds = prompt_interpolation_embeds
|
349
|
+
negative_prompt_embeds = negative_prompt_interpolation_embeds
|
350
|
+
|
351
|
+
if do_classifier_free_guidance:
|
352
|
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
353
|
+
|
354
|
+
return prompt_embeds, negative_prompt_embeds
|
355
|
+
|
356
|
+
def _prepare_latents_free_noise(
|
357
|
+
self,
|
358
|
+
batch_size: int,
|
359
|
+
num_channels_latents: int,
|
360
|
+
num_frames: int,
|
361
|
+
height: int,
|
362
|
+
width: int,
|
363
|
+
dtype: torch.dtype,
|
364
|
+
device: torch.device,
|
365
|
+
generator: Optional[torch.Generator] = None,
|
366
|
+
latents: Optional[torch.Tensor] = None,
|
367
|
+
):
|
368
|
+
if isinstance(generator, list) and len(generator) != batch_size:
|
369
|
+
raise ValueError(
|
370
|
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
371
|
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
372
|
+
)
|
373
|
+
|
374
|
+
context_num_frames = (
|
375
|
+
self._free_noise_context_length if self._free_noise_context_length == "repeat_context" else num_frames
|
376
|
+
)
|
377
|
+
|
378
|
+
shape = (
|
379
|
+
batch_size,
|
380
|
+
num_channels_latents,
|
381
|
+
context_num_frames,
|
382
|
+
height // self.vae_scale_factor,
|
383
|
+
width // self.vae_scale_factor,
|
384
|
+
)
|
385
|
+
|
386
|
+
if latents is None:
|
387
|
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
388
|
+
if self._free_noise_noise_type == "random":
|
389
|
+
return latents
|
390
|
+
else:
|
391
|
+
if latents.size(2) == num_frames:
|
392
|
+
return latents
|
393
|
+
elif latents.size(2) != self._free_noise_context_length:
|
394
|
+
raise ValueError(
|
395
|
+
f"You have passed `latents` as a parameter to FreeNoise. The expected number of frames is either {num_frames} or {self._free_noise_context_length}, but found {latents.size(2)}"
|
396
|
+
)
|
397
|
+
latents = latents.to(device)
|
398
|
+
|
399
|
+
if self._free_noise_noise_type == "shuffle_context":
|
400
|
+
for i in range(self._free_noise_context_length, num_frames, self._free_noise_context_stride):
|
401
|
+
# ensure window is within bounds
|
402
|
+
window_start = max(0, i - self._free_noise_context_length)
|
403
|
+
window_end = min(num_frames, window_start + self._free_noise_context_stride)
|
404
|
+
window_length = window_end - window_start
|
405
|
+
|
406
|
+
if window_length == 0:
|
407
|
+
break
|
408
|
+
|
409
|
+
indices = torch.LongTensor(list(range(window_start, window_end)))
|
410
|
+
shuffled_indices = indices[torch.randperm(window_length, generator=generator)]
|
411
|
+
|
412
|
+
current_start = i
|
413
|
+
current_end = min(num_frames, current_start + window_length)
|
414
|
+
if current_end == current_start + window_length:
|
415
|
+
# batch of frames perfectly fits the window
|
416
|
+
latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices]
|
417
|
+
else:
|
418
|
+
# handle the case where the last batch of frames does not fit perfectly with the window
|
419
|
+
prefix_length = current_end - current_start
|
420
|
+
shuffled_indices = shuffled_indices[:prefix_length]
|
421
|
+
latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices]
|
422
|
+
|
423
|
+
elif self._free_noise_noise_type == "repeat_context":
|
424
|
+
num_repeats = (num_frames + self._free_noise_context_length - 1) // self._free_noise_context_length
|
425
|
+
latents = torch.cat([latents] * num_repeats, dim=2)
|
426
|
+
|
427
|
+
latents = latents[:, :, :num_frames]
|
428
|
+
return latents
|
429
|
+
|
430
|
+
def _lerp(
|
431
|
+
self, start_index: int, end_index: int, start_tensor: torch.Tensor, end_tensor: torch.Tensor
|
432
|
+
) -> torch.Tensor:
|
433
|
+
num_indices = end_index - start_index + 1
|
434
|
+
interpolated_tensors = []
|
435
|
+
|
436
|
+
for i in range(num_indices):
|
437
|
+
alpha = i / (num_indices - 1)
|
438
|
+
interpolated_tensor = (1 - alpha) * start_tensor + alpha * end_tensor
|
439
|
+
interpolated_tensors.append(interpolated_tensor)
|
440
|
+
|
441
|
+
interpolated_tensors = torch.cat(interpolated_tensors)
|
442
|
+
return interpolated_tensors
|
443
|
+
|
444
|
+
def enable_free_noise(
|
445
|
+
self,
|
446
|
+
context_length: Optional[int] = 16,
|
447
|
+
context_stride: int = 4,
|
448
|
+
weighting_scheme: str = "pyramid",
|
449
|
+
noise_type: str = "shuffle_context",
|
450
|
+
prompt_interpolation_callback: Optional[
|
451
|
+
Callable[[DiffusionPipeline, int, int, torch.Tensor, torch.Tensor], torch.Tensor]
|
452
|
+
] = None,
|
453
|
+
) -> None:
|
454
|
+
r"""
|
455
|
+
Enable long video generation using FreeNoise.
|
456
|
+
|
457
|
+
Args:
|
458
|
+
context_length (`int`, defaults to `16`, *optional*):
|
459
|
+
The number of video frames to process at once. It's recommended to set this to the maximum frames the
|
460
|
+
Motion Adapter was trained with (usually 16/24/32). If `None`, the default value from the motion
|
461
|
+
adapter config is used.
|
462
|
+
context_stride (`int`, *optional*):
|
463
|
+
Long videos are generated by processing many frames. FreeNoise processes these frames in sliding
|
464
|
+
windows of size `context_length`. Context stride allows you to specify how many frames to skip between
|
465
|
+
each window. For example, a context length of 16 and context stride of 4 would process 24 frames as:
|
466
|
+
[0, 15], [4, 19], [8, 23] (0-based indexing)
|
467
|
+
weighting_scheme (`str`, defaults to `pyramid`):
|
468
|
+
Weighting scheme for averaging latents after accumulation in FreeNoise blocks. The following weighting
|
469
|
+
schemes are supported currently:
|
470
|
+
- "flat"
|
471
|
+
Performs weighting averaging with a flat weight pattern: [1, 1, 1, 1, 1].
|
472
|
+
- "pyramid"
|
473
|
+
Performs weighted averaging with a pyramid like weight pattern: [1, 2, 3, 2, 1].
|
474
|
+
- "delayed_reverse_sawtooth"
|
475
|
+
Performs weighted averaging with low weights for earlier frames and high-to-low weights for
|
476
|
+
later frames: [0.01, 0.01, 3, 2, 1].
|
477
|
+
noise_type (`str`, defaults to "shuffle_context"):
|
478
|
+
Must be one of ["shuffle_context", "repeat_context", "random"].
|
479
|
+
- "shuffle_context"
|
480
|
+
Shuffles a fixed batch of `context_length` latents to create a final latent of size
|
481
|
+
`num_frames`. This is usually the best setting for most generation scenarious. However, there
|
482
|
+
might be visible repetition noticeable in the kinds of motion/animation generated.
|
483
|
+
- "repeated_context"
|
484
|
+
Repeats a fixed batch of `context_length` latents to create a final latent of size
|
485
|
+
`num_frames`.
|
486
|
+
- "random"
|
487
|
+
The final latents are random without any repetition.
|
488
|
+
"""
|
489
|
+
|
490
|
+
allowed_weighting_scheme = ["flat", "pyramid", "delayed_reverse_sawtooth"]
|
491
|
+
allowed_noise_type = ["shuffle_context", "repeat_context", "random"]
|
492
|
+
|
493
|
+
if context_length > self.motion_adapter.config.motion_max_seq_length:
|
494
|
+
logger.warning(
|
495
|
+
f"You have set {context_length=} which is greater than {self.motion_adapter.config.motion_max_seq_length=}. This can lead to bad generation results."
|
496
|
+
)
|
497
|
+
if weighting_scheme not in allowed_weighting_scheme:
|
498
|
+
raise ValueError(
|
499
|
+
f"The parameter `weighting_scheme` must be one of {allowed_weighting_scheme}, but got {weighting_scheme=}"
|
500
|
+
)
|
501
|
+
if noise_type not in allowed_noise_type:
|
502
|
+
raise ValueError(f"The parameter `noise_type` must be one of {allowed_noise_type}, but got {noise_type=}")
|
503
|
+
|
504
|
+
self._free_noise_context_length = context_length or self.motion_adapter.config.motion_max_seq_length
|
505
|
+
self._free_noise_context_stride = context_stride
|
506
|
+
self._free_noise_weighting_scheme = weighting_scheme
|
507
|
+
self._free_noise_noise_type = noise_type
|
508
|
+
self._free_noise_prompt_interpolation_callback = prompt_interpolation_callback or self._lerp
|
509
|
+
|
510
|
+
if hasattr(self.unet.mid_block, "motion_modules"):
|
511
|
+
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
|
512
|
+
else:
|
513
|
+
blocks = [*self.unet.down_blocks, *self.unet.up_blocks]
|
514
|
+
|
515
|
+
for block in blocks:
|
516
|
+
self._enable_free_noise_in_block(block)
|
517
|
+
|
518
|
+
def disable_free_noise(self) -> None:
|
519
|
+
r"""Disable the FreeNoise sampling mechanism."""
|
520
|
+
self._free_noise_context_length = None
|
521
|
+
|
522
|
+
if hasattr(self.unet.mid_block, "motion_modules"):
|
523
|
+
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
|
524
|
+
else:
|
525
|
+
blocks = [*self.unet.down_blocks, *self.unet.up_blocks]
|
526
|
+
|
527
|
+
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
|
528
|
+
for block in blocks:
|
529
|
+
self._disable_free_noise_in_block(block)
|
530
|
+
|
531
|
+
def _enable_split_inference_motion_modules_(
|
532
|
+
self, motion_modules: List[AnimateDiffTransformer3D], spatial_split_size: int
|
533
|
+
) -> None:
|
534
|
+
for motion_module in motion_modules:
|
535
|
+
motion_module.proj_in = SplitInferenceModule(motion_module.proj_in, spatial_split_size, 0, ["input"])
|
536
|
+
|
537
|
+
for i in range(len(motion_module.transformer_blocks)):
|
538
|
+
motion_module.transformer_blocks[i] = SplitInferenceModule(
|
539
|
+
motion_module.transformer_blocks[i],
|
540
|
+
spatial_split_size,
|
541
|
+
0,
|
542
|
+
["hidden_states", "encoder_hidden_states"],
|
543
|
+
)
|
544
|
+
|
545
|
+
motion_module.proj_out = SplitInferenceModule(motion_module.proj_out, spatial_split_size, 0, ["input"])
|
546
|
+
|
547
|
+
def _enable_split_inference_attentions_(
|
548
|
+
self, attentions: List[Transformer2DModel], temporal_split_size: int
|
549
|
+
) -> None:
|
550
|
+
for i in range(len(attentions)):
|
551
|
+
attentions[i] = SplitInferenceModule(
|
552
|
+
attentions[i], temporal_split_size, 0, ["hidden_states", "encoder_hidden_states"]
|
553
|
+
)
|
554
|
+
|
555
|
+
def _enable_split_inference_resnets_(self, resnets: List[ResnetBlock2D], temporal_split_size: int) -> None:
|
556
|
+
for i in range(len(resnets)):
|
557
|
+
resnets[i] = SplitInferenceModule(resnets[i], temporal_split_size, 0, ["input_tensor", "temb"])
|
558
|
+
|
559
|
+
def _enable_split_inference_samplers_(
|
560
|
+
self, samplers: Union[List[Downsample2D], List[Upsample2D]], temporal_split_size: int
|
561
|
+
) -> None:
|
562
|
+
for i in range(len(samplers)):
|
563
|
+
samplers[i] = SplitInferenceModule(samplers[i], temporal_split_size, 0, ["hidden_states"])
|
564
|
+
|
565
|
+
def enable_free_noise_split_inference(self, spatial_split_size: int = 256, temporal_split_size: int = 16) -> None:
|
566
|
+
r"""
|
567
|
+
Enable FreeNoise memory optimizations by utilizing
|
568
|
+
[`~diffusers.pipelines.free_noise_utils.SplitInferenceModule`] across different intermediate modeling blocks.
|
569
|
+
|
570
|
+
Args:
|
571
|
+
spatial_split_size (`int`, defaults to `256`):
|
572
|
+
The split size across spatial dimensions for internal blocks. This is used in facilitating split
|
573
|
+
inference across the effective batch dimension (`[B x H x W, F, C]`) of intermediate tensors in motion
|
574
|
+
modeling blocks.
|
575
|
+
temporal_split_size (`int`, defaults to `16`):
|
576
|
+
The split size across temporal dimensions for internal blocks. This is used in facilitating split
|
577
|
+
inference across the effective batch dimension (`[B x F, H x W, C]`) of intermediate tensors in spatial
|
578
|
+
attention, resnets, downsampling and upsampling blocks.
|
579
|
+
"""
|
580
|
+
# TODO(aryan): Discuss on what's the best way to provide more control to users
|
581
|
+
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
|
582
|
+
for block in blocks:
|
583
|
+
if getattr(block, "motion_modules", None) is not None:
|
584
|
+
self._enable_split_inference_motion_modules_(block.motion_modules, spatial_split_size)
|
585
|
+
if getattr(block, "attentions", None) is not None:
|
586
|
+
self._enable_split_inference_attentions_(block.attentions, temporal_split_size)
|
587
|
+
if getattr(block, "resnets", None) is not None:
|
588
|
+
self._enable_split_inference_resnets_(block.resnets, temporal_split_size)
|
589
|
+
if getattr(block, "downsamplers", None) is not None:
|
590
|
+
self._enable_split_inference_samplers_(block.downsamplers, temporal_split_size)
|
591
|
+
if getattr(block, "upsamplers", None) is not None:
|
592
|
+
self._enable_split_inference_samplers_(block.upsamplers, temporal_split_size)
|
593
|
+
|
594
|
+
@property
|
595
|
+
def free_noise_enabled(self):
|
596
|
+
return hasattr(self, "_free_noise_context_length") and self._free_noise_context_length is not None
|
@@ -0,0 +1,48 @@
|
|
1
|
+
from typing import TYPE_CHECKING
|
2
|
+
|
3
|
+
from ...utils import (
|
4
|
+
DIFFUSERS_SLOW_IMPORT,
|
5
|
+
OptionalDependencyNotAvailable,
|
6
|
+
_LazyModule,
|
7
|
+
get_objects_from_module,
|
8
|
+
is_torch_available,
|
9
|
+
is_transformers_available,
|
10
|
+
)
|
11
|
+
|
12
|
+
|
13
|
+
_dummy_objects = {}
|
14
|
+
_import_structure = {}
|
15
|
+
|
16
|
+
|
17
|
+
try:
|
18
|
+
if not (is_transformers_available() and is_torch_available()):
|
19
|
+
raise OptionalDependencyNotAvailable()
|
20
|
+
except OptionalDependencyNotAvailable:
|
21
|
+
from ...utils import dummy_torch_and_transformers_objects # noqa F403
|
22
|
+
|
23
|
+
_dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects))
|
24
|
+
else:
|
25
|
+
_import_structure["pipeline_hunyuan_video"] = ["HunyuanVideoPipeline"]
|
26
|
+
|
27
|
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
28
|
+
try:
|
29
|
+
if not (is_transformers_available() and is_torch_available()):
|
30
|
+
raise OptionalDependencyNotAvailable()
|
31
|
+
|
32
|
+
except OptionalDependencyNotAvailable:
|
33
|
+
from ...utils.dummy_torch_and_transformers_objects import *
|
34
|
+
else:
|
35
|
+
from .pipeline_hunyuan_video import HunyuanVideoPipeline
|
36
|
+
|
37
|
+
else:
|
38
|
+
import sys
|
39
|
+
|
40
|
+
sys.modules[__name__] = _LazyModule(
|
41
|
+
__name__,
|
42
|
+
globals()["__file__"],
|
43
|
+
_import_structure,
|
44
|
+
module_spec=__spec__,
|
45
|
+
)
|
46
|
+
|
47
|
+
for name, value in _dummy_objects.items():
|
48
|
+
setattr(sys.modules[__name__], name, value)
|