diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -15,12 +15,11 @@
15
15
  import inspect
16
16
  from typing import Any, Callable, Dict, List, Optional, Union
17
17
 
18
- import numpy as np
19
18
  import torch
20
19
  from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
21
20
 
22
- from ...image_processor import PipelineImageInput, VaeImageProcessor
23
- from ...loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
21
+ from ...image_processor import PipelineImageInput
22
+ from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
24
23
  from ...models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel
25
24
  from ...models.lora import adjust_lora_scale_text_encoder
26
25
  from ...models.unets.unet_motion_model import MotionAdapter
@@ -34,7 +33,9 @@ from ...schedulers import (
34
33
  )
35
34
  from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
36
35
  from ...utils.torch_utils import randn_tensor
36
+ from ...video_processor import VideoProcessor
37
37
  from ..free_init_utils import FreeInitMixin
38
+ from ..free_noise_utils import AnimateDiffFreeNoiseMixin
38
39
  from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
39
40
  from .pipeline_output import AnimateDiffPipelineOutput
40
41
 
@@ -52,14 +53,21 @@ EXAMPLE_DOC_STRING = """
52
53
  >>> from io import BytesIO
53
54
  >>> from PIL import Image
54
55
 
55
- >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
56
- >>> pipe = AnimateDiffVideoToVideoPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter).to("cuda")
57
- >>> pipe.scheduler = DDIMScheduler(beta_schedule="linear", steps_offset=1, clip_sample=False, timespace_spacing="linspace")
56
+ >>> adapter = MotionAdapter.from_pretrained(
57
+ ... "guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16
58
+ ... )
59
+ >>> pipe = AnimateDiffVideoToVideoPipeline.from_pretrained(
60
+ ... "SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter
61
+ ... ).to("cuda")
62
+ >>> pipe.scheduler = DDIMScheduler(
63
+ ... beta_schedule="linear", steps_offset=1, clip_sample=False, timespace_spacing="linspace"
64
+ ... )
65
+
58
66
 
59
67
  >>> def load_video(file_path: str):
60
68
  ... images = []
61
- ...
62
- ... if file_path.startswith(('http://', 'https://')):
69
+
70
+ ... if file_path.startswith(("http://", "https://")):
63
71
  ... # If the file_path is a URL
64
72
  ... response = requests.get(file_path)
65
73
  ... response.raise_for_status()
@@ -68,43 +76,26 @@ EXAMPLE_DOC_STRING = """
68
76
  ... else:
69
77
  ... # Assuming it's a local file path
70
78
  ... vid = imageio.get_reader(file_path)
71
- ...
79
+
72
80
  ... for frame in vid:
73
81
  ... pil_image = Image.fromarray(frame)
74
82
  ... images.append(pil_image)
75
- ...
83
+
76
84
  ... return images
77
85
 
78
- >>> video = load_video("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif")
79
- >>> output = pipe(video=video, prompt="panda playing a guitar, on a boat, in the ocean, high quality", strength=0.5)
86
+
87
+ >>> video = load_video(
88
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/animatediff-vid2vid-input-1.gif"
89
+ ... )
90
+ >>> output = pipe(
91
+ ... video=video, prompt="panda playing a guitar, on a boat, in the ocean, high quality", strength=0.5
92
+ ... )
80
93
  >>> frames = output.frames[0]
81
94
  >>> export_to_gif(frames, "animation.gif")
82
95
  ```
83
96
  """
84
97
 
85
98
 
86
- # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
87
- def tensor2vid(video: torch.Tensor, processor, output_type="np"):
88
- batch_size, channels, num_frames, height, width = video.shape
89
- outputs = []
90
- for batch_idx in range(batch_size):
91
- batch_vid = video[batch_idx].permute(1, 0, 2, 3)
92
- batch_output = processor.postprocess(batch_vid, output_type)
93
-
94
- outputs.append(batch_output)
95
-
96
- if output_type == "np":
97
- outputs = np.stack(outputs)
98
-
99
- elif output_type == "pt":
100
- outputs = torch.stack(outputs)
101
-
102
- elif not output_type == "pil":
103
- raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
104
-
105
- return outputs
106
-
107
-
108
99
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
109
100
  def retrieve_latents(
110
101
  encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
@@ -125,9 +116,10 @@ def retrieve_timesteps(
125
116
  num_inference_steps: Optional[int] = None,
126
117
  device: Optional[Union[str, torch.device]] = None,
127
118
  timesteps: Optional[List[int]] = None,
119
+ sigmas: Optional[List[float]] = None,
128
120
  **kwargs,
129
121
  ):
130
- """
122
+ r"""
131
123
  Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
132
124
  custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
133
125
 
@@ -135,19 +127,23 @@ def retrieve_timesteps(
135
127
  scheduler (`SchedulerMixin`):
136
128
  The scheduler to get timesteps from.
137
129
  num_inference_steps (`int`):
138
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
139
- `timesteps` must be `None`.
130
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
131
+ must be `None`.
140
132
  device (`str` or `torch.device`, *optional*):
141
133
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
142
134
  timesteps (`List[int]`, *optional*):
143
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
144
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
145
- must be `None`.
135
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
136
+ `num_inference_steps` and `sigmas` must be `None`.
137
+ sigmas (`List[float]`, *optional*):
138
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
139
+ `num_inference_steps` and `timesteps` must be `None`.
146
140
 
147
141
  Returns:
148
142
  `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
149
143
  second element is the number of inference steps.
150
144
  """
145
+ if timesteps is not None and sigmas is not None:
146
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
151
147
  if timesteps is not None:
152
148
  accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
153
149
  if not accepts_timesteps:
@@ -158,6 +154,16 @@ def retrieve_timesteps(
158
154
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
159
155
  timesteps = scheduler.timesteps
160
156
  num_inference_steps = len(timesteps)
157
+ elif sigmas is not None:
158
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
159
+ if not accept_sigmas:
160
+ raise ValueError(
161
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
162
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
163
+ )
164
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
165
+ timesteps = scheduler.timesteps
166
+ num_inference_steps = len(timesteps)
161
167
  else:
162
168
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
163
169
  timesteps = scheduler.timesteps
@@ -169,8 +175,9 @@ class AnimateDiffVideoToVideoPipeline(
169
175
  StableDiffusionMixin,
170
176
  TextualInversionLoaderMixin,
171
177
  IPAdapterMixin,
172
- LoraLoaderMixin,
178
+ StableDiffusionLoraLoaderMixin,
173
179
  FreeInitMixin,
180
+ AnimateDiffFreeNoiseMixin,
174
181
  ):
175
182
  r"""
176
183
  Pipeline for video-to-video generation.
@@ -180,8 +187,8 @@ class AnimateDiffVideoToVideoPipeline(
180
187
 
181
188
  The pipeline also inherits the following loading methods:
182
189
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
183
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
184
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
190
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
191
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
185
192
  - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
186
193
 
187
194
  Args:
@@ -237,9 +244,8 @@ class AnimateDiffVideoToVideoPipeline(
237
244
  image_encoder=image_encoder,
238
245
  )
239
246
  self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
240
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
247
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
241
248
 
242
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt
243
249
  def encode_prompt(
244
250
  self,
245
251
  prompt,
@@ -247,8 +253,8 @@ class AnimateDiffVideoToVideoPipeline(
247
253
  num_images_per_prompt,
248
254
  do_classifier_free_guidance,
249
255
  negative_prompt=None,
250
- prompt_embeds: Optional[torch.FloatTensor] = None,
251
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
256
+ prompt_embeds: Optional[torch.Tensor] = None,
257
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
252
258
  lora_scale: Optional[float] = None,
253
259
  clip_skip: Optional[int] = None,
254
260
  ):
@@ -268,10 +274,10 @@ class AnimateDiffVideoToVideoPipeline(
268
274
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
269
275
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
270
276
  less than `1`).
271
- prompt_embeds (`torch.FloatTensor`, *optional*):
277
+ prompt_embeds (`torch.Tensor`, *optional*):
272
278
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
273
279
  provided, text embeddings will be generated from `prompt` input argument.
274
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
280
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
275
281
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
276
282
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
277
283
  argument.
@@ -283,7 +289,7 @@ class AnimateDiffVideoToVideoPipeline(
283
289
  """
284
290
  # set lora scale so that monkey patched LoRA
285
291
  # function of text encoder can correctly access it
286
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
292
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
287
293
  self._lora_scale = lora_scale
288
294
 
289
295
  # dynamically adjust the LoRA scale
@@ -292,7 +298,7 @@ class AnimateDiffVideoToVideoPipeline(
292
298
  else:
293
299
  scale_lora_layers(self.text_encoder, lora_scale)
294
300
 
295
- if prompt is not None and isinstance(prompt, str):
301
+ if prompt is not None and isinstance(prompt, (str, dict)):
296
302
  batch_size = 1
297
303
  elif prompt is not None and isinstance(prompt, list):
298
304
  batch_size = len(prompt)
@@ -415,9 +421,10 @@ class AnimateDiffVideoToVideoPipeline(
415
421
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
416
422
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
417
423
 
418
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
419
- # Retrieve the original scale by scaling back the LoRA layers
420
- unscale_lora_layers(self.text_encoder, lora_scale)
424
+ if self.text_encoder is not None:
425
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
426
+ # Retrieve the original scale by scaling back the LoRA layers
427
+ unscale_lora_layers(self.text_encoder, lora_scale)
421
428
 
422
429
  return prompt_embeds, negative_prompt_embeds
423
430
 
@@ -450,6 +457,9 @@ class AnimateDiffVideoToVideoPipeline(
450
457
  def prepare_ip_adapter_image_embeds(
451
458
  self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
452
459
  ):
460
+ image_embeds = []
461
+ if do_classifier_free_guidance:
462
+ negative_image_embeds = []
453
463
  if ip_adapter_image_embeds is None:
454
464
  if not isinstance(ip_adapter_image, list):
455
465
  ip_adapter_image = [ip_adapter_image]
@@ -459,7 +469,6 @@ class AnimateDiffVideoToVideoPipeline(
459
469
  f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
460
470
  )
461
471
 
462
- image_embeds = []
463
472
  for single_ip_adapter_image, image_proj_layer in zip(
464
473
  ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
465
474
  ):
@@ -467,46 +476,52 @@ class AnimateDiffVideoToVideoPipeline(
467
476
  single_image_embeds, single_negative_image_embeds = self.encode_image(
468
477
  single_ip_adapter_image, device, 1, output_hidden_state
469
478
  )
470
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
471
- single_negative_image_embeds = torch.stack(
472
- [single_negative_image_embeds] * num_images_per_prompt, dim=0
473
- )
474
479
 
480
+ image_embeds.append(single_image_embeds[None, :])
475
481
  if do_classifier_free_guidance:
476
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
477
- single_image_embeds = single_image_embeds.to(device)
478
-
479
- image_embeds.append(single_image_embeds)
482
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
480
483
  else:
481
- repeat_dims = [1]
482
- image_embeds = []
483
484
  for single_image_embeds in ip_adapter_image_embeds:
484
485
  if do_classifier_free_guidance:
485
486
  single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
486
- single_image_embeds = single_image_embeds.repeat(
487
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
488
- )
489
- single_negative_image_embeds = single_negative_image_embeds.repeat(
490
- num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
491
- )
492
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
493
- else:
494
- single_image_embeds = single_image_embeds.repeat(
495
- num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
496
- )
487
+ negative_image_embeds.append(single_negative_image_embeds)
497
488
  image_embeds.append(single_image_embeds)
498
489
 
499
- return image_embeds
490
+ ip_adapter_image_embeds = []
491
+ for i, single_image_embeds in enumerate(image_embeds):
492
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
493
+ if do_classifier_free_guidance:
494
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
495
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
496
+
497
+ single_image_embeds = single_image_embeds.to(device=device)
498
+ ip_adapter_image_embeds.append(single_image_embeds)
500
499
 
501
- # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
502
- def decode_latents(self, latents):
500
+ return ip_adapter_image_embeds
501
+
502
+ def encode_video(self, video, generator, decode_chunk_size: int = 16) -> torch.Tensor:
503
+ latents = []
504
+ for i in range(0, len(video), decode_chunk_size):
505
+ batch_video = video[i : i + decode_chunk_size]
506
+ batch_video = retrieve_latents(self.vae.encode(batch_video), generator=generator)
507
+ latents.append(batch_video)
508
+ return torch.cat(latents)
509
+
510
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
511
+ def decode_latents(self, latents, decode_chunk_size: int = 16):
503
512
  latents = 1 / self.vae.config.scaling_factor * latents
504
513
 
505
514
  batch_size, channels, num_frames, height, width = latents.shape
506
515
  latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
507
516
 
508
- image = self.vae.decode(latents).sample
509
- video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
517
+ video = []
518
+ for i in range(0, latents.shape[0], decode_chunk_size):
519
+ batch_latents = latents[i : i + decode_chunk_size]
520
+ batch_latents = self.vae.decode(batch_latents).sample
521
+ video.append(batch_latents)
522
+
523
+ video = torch.cat(video)
524
+ video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
510
525
  # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
511
526
  video = video.float()
512
527
  return video
@@ -566,8 +581,8 @@ class AnimateDiffVideoToVideoPipeline(
566
581
  raise ValueError(
567
582
  "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
568
583
  )
569
- elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
570
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
584
+ elif prompt is not None and not isinstance(prompt, (str, list, dict)):
585
+ raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}")
571
586
 
572
587
  if negative_prompt is not None and negative_prompt_embeds is not None:
573
588
  raise ValueError(
@@ -612,31 +627,20 @@ class AnimateDiffVideoToVideoPipeline(
612
627
 
613
628
  def prepare_latents(
614
629
  self,
615
- video,
616
- height,
617
- width,
618
- num_channels_latents,
619
- batch_size,
620
- timestep,
621
- dtype,
622
- device,
623
- generator,
624
- latents=None,
625
- ):
626
- # video must be a list of list of images
627
- # the outer list denotes having multiple videos as input, whereas inner list means the frames of the video
628
- # as a list of images
629
- if not isinstance(video[0], list):
630
- video = [video]
631
- if latents is None:
632
- video = torch.cat(
633
- [self.image_processor.preprocess(vid, height=height, width=width).unsqueeze(0) for vid in video], dim=0
634
- )
635
- video = video.to(device=device, dtype=dtype)
636
- num_frames = video.shape[1]
637
- else:
638
- num_frames = latents.shape[2]
639
-
630
+ video: Optional[torch.Tensor] = None,
631
+ height: int = 64,
632
+ width: int = 64,
633
+ num_channels_latents: int = 4,
634
+ batch_size: int = 1,
635
+ timestep: Optional[int] = None,
636
+ dtype: Optional[torch.dtype] = None,
637
+ device: Optional[torch.device] = None,
638
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
639
+ latents: Optional[torch.Tensor] = None,
640
+ decode_chunk_size: int = 16,
641
+ add_noise: bool = False,
642
+ ) -> torch.Tensor:
643
+ num_frames = video.shape[1] if latents is None else latents.shape[2]
640
644
  shape = (
641
645
  batch_size,
642
646
  num_channels_latents,
@@ -658,20 +662,12 @@ class AnimateDiffVideoToVideoPipeline(
658
662
  self.vae.to(dtype=torch.float32)
659
663
 
660
664
  if isinstance(generator, list):
661
- if len(generator) != batch_size:
662
- raise ValueError(
663
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
664
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
665
- )
666
-
667
665
  init_latents = [
668
- retrieve_latents(self.vae.encode(video[i]), generator=generator[i]).unsqueeze(0)
666
+ self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0)
669
667
  for i in range(batch_size)
670
668
  ]
671
669
  else:
672
- init_latents = [
673
- retrieve_latents(self.vae.encode(vid), generator=generator).unsqueeze(0) for vid in video
674
- ]
670
+ init_latents = [self.encode_video(vid, generator, decode_chunk_size).unsqueeze(0) for vid in video]
675
671
 
676
672
  init_latents = torch.cat(init_latents, dim=0)
677
673
 
@@ -702,8 +698,13 @@ class AnimateDiffVideoToVideoPipeline(
702
698
  if shape != latents.shape:
703
699
  # [B, C, F, H, W]
704
700
  raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}")
701
+
705
702
  latents = latents.to(device, dtype=dtype)
706
703
 
704
+ if add_noise:
705
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
706
+ latents = self.scheduler.add_noise(latents, noise, timestep)
707
+
707
708
  return latents
708
709
 
709
710
  @property
@@ -729,6 +730,10 @@ class AnimateDiffVideoToVideoPipeline(
729
730
  def num_timesteps(self):
730
731
  return self._num_timesteps
731
732
 
733
+ @property
734
+ def interrupt(self):
735
+ return self._interrupt
736
+
732
737
  @torch.no_grad()
733
738
  def __call__(
734
739
  self,
@@ -737,24 +742,27 @@ class AnimateDiffVideoToVideoPipeline(
737
742
  height: Optional[int] = None,
738
743
  width: Optional[int] = None,
739
744
  num_inference_steps: int = 50,
745
+ enforce_inference_steps: bool = False,
740
746
  timesteps: Optional[List[int]] = None,
747
+ sigmas: Optional[List[float]] = None,
741
748
  guidance_scale: float = 7.5,
742
749
  strength: float = 0.8,
743
750
  negative_prompt: Optional[Union[str, List[str]]] = None,
744
751
  num_videos_per_prompt: Optional[int] = 1,
745
752
  eta: float = 0.0,
746
753
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
747
- latents: Optional[torch.FloatTensor] = None,
748
- prompt_embeds: Optional[torch.FloatTensor] = None,
749
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
754
+ latents: Optional[torch.Tensor] = None,
755
+ prompt_embeds: Optional[torch.Tensor] = None,
756
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
750
757
  ip_adapter_image: Optional[PipelineImageInput] = None,
751
- ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
758
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
752
759
  output_type: Optional[str] = "pil",
753
760
  return_dict: bool = True,
754
761
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
755
762
  clip_skip: Optional[int] = None,
756
763
  callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
757
764
  callback_on_step_end_tensor_inputs: List[str] = ["latents"],
765
+ decode_chunk_size: int = 16,
758
766
  ):
759
767
  r"""
760
768
  The call function to the pipeline for generation.
@@ -771,6 +779,14 @@ class AnimateDiffVideoToVideoPipeline(
771
779
  num_inference_steps (`int`, *optional*, defaults to 50):
772
780
  The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
773
781
  expense of slower inference.
782
+ timesteps (`List[int]`, *optional*):
783
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
784
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
785
+ passed will be used. Must be in descending order.
786
+ sigmas (`List[float]`, *optional*):
787
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
788
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
789
+ will be used.
774
790
  strength (`float`, *optional*, defaults to 0.8):
775
791
  Higher strength leads to more differences between original video and generated video.
776
792
  guidance_scale (`float`, *optional*, defaults to 7.5):
@@ -785,30 +801,28 @@ class AnimateDiffVideoToVideoPipeline(
785
801
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
786
802
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
787
803
  generation deterministic.
788
- latents (`torch.FloatTensor`, *optional*):
804
+ latents (`torch.Tensor`, *optional*):
789
805
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
790
806
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
791
807
  tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
792
808
  `(batch_size, num_channel, num_frames, height, width)`.
793
- prompt_embeds (`torch.FloatTensor`, *optional*):
809
+ prompt_embeds (`torch.Tensor`, *optional*):
794
810
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
795
811
  provided, text embeddings are generated from the `prompt` input argument.
796
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
812
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
797
813
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
798
814
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
799
815
  ip_adapter_image: (`PipelineImageInput`, *optional*):
800
816
  Optional image input to work with IP Adapters.
801
- ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
802
- Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
803
- Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
804
- if `do_classifier_free_guidance` is set to `True`.
805
- If not provided, embeddings are computed from the `ip_adapter_image` input argument.
817
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
818
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
819
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
820
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
821
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
806
822
  output_type (`str`, *optional*, defaults to `"pil"`):
807
- The output format of the generated video. Choose between `torch.FloatTensor`, `PIL.Image` or
808
- `np.array`.
823
+ The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
809
824
  return_dict (`bool`, *optional*, defaults to `True`):
810
- Whether or not to return a [`AnimateDiffPipelineOutput`] instead
811
- of a plain tuple.
825
+ Whether or not to return a [`AnimateDiffPipelineOutput`] instead of a plain tuple.
812
826
  cross_attention_kwargs (`dict`, *optional*):
813
827
  A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
814
828
  [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
@@ -823,7 +837,9 @@ class AnimateDiffVideoToVideoPipeline(
823
837
  callback_on_step_end_tensor_inputs (`List`, *optional*):
824
838
  The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
825
839
  will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
826
- `._callback_tensor_inputs` attribute of your pipeine class.
840
+ `._callback_tensor_inputs` attribute of your pipeline class.
841
+ decode_chunk_size (`int`, defaults to `16`):
842
+ The number of frames to decode at a time when calling `decode_latents` method.
827
843
 
828
844
  Examples:
829
845
 
@@ -858,9 +874,10 @@ class AnimateDiffVideoToVideoPipeline(
858
874
  self._guidance_scale = guidance_scale
859
875
  self._clip_skip = clip_skip
860
876
  self._cross_attention_kwargs = cross_attention_kwargs
877
+ self._interrupt = False
861
878
 
862
879
  # 2. Define call parameters
863
- if prompt is not None and isinstance(prompt, str):
880
+ if prompt is not None and isinstance(prompt, (str, dict)):
864
881
  batch_size = 1
865
882
  elif prompt is not None and isinstance(prompt, list):
866
883
  batch_size = len(prompt)
@@ -868,44 +885,29 @@ class AnimateDiffVideoToVideoPipeline(
868
885
  batch_size = prompt_embeds.shape[0]
869
886
 
870
887
  device = self._execution_device
888
+ dtype = self.dtype
871
889
 
872
- # 3. Encode input prompt
873
- text_encoder_lora_scale = (
874
- self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
875
- )
876
- prompt_embeds, negative_prompt_embeds = self.encode_prompt(
877
- prompt,
878
- device,
879
- num_videos_per_prompt,
880
- self.do_classifier_free_guidance,
881
- negative_prompt,
882
- prompt_embeds=prompt_embeds,
883
- negative_prompt_embeds=negative_prompt_embeds,
884
- lora_scale=text_encoder_lora_scale,
885
- clip_skip=self.clip_skip,
886
- )
887
-
888
- # For classifier free guidance, we need to do two forward passes.
889
- # Here we concatenate the unconditional and text embeddings into a single batch
890
- # to avoid doing two forward passes
891
- if self.do_classifier_free_guidance:
892
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
893
-
894
- if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
895
- image_embeds = self.prepare_ip_adapter_image_embeds(
896
- ip_adapter_image,
897
- ip_adapter_image_embeds,
898
- device,
899
- batch_size * num_videos_per_prompt,
900
- self.do_classifier_free_guidance,
890
+ # 3. Prepare timesteps
891
+ if not enforce_inference_steps:
892
+ timesteps, num_inference_steps = retrieve_timesteps(
893
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
901
894
  )
895
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
896
+ latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
897
+ else:
898
+ denoising_inference_steps = int(num_inference_steps / strength)
899
+ timesteps, denoising_inference_steps = retrieve_timesteps(
900
+ self.scheduler, denoising_inference_steps, device, timesteps, sigmas
901
+ )
902
+ timesteps = timesteps[-num_inference_steps:]
903
+ latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
902
904
 
903
- # 4. Prepare timesteps
904
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
905
- timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
906
- latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
907
-
908
- # 5. Prepare latent variables
905
+ # 4. Prepare latent variables
906
+ if latents is None:
907
+ video = self.video_processor.preprocess_video(video, height=height, width=width)
908
+ # Move the number of frames before the number of channels.
909
+ video = video.permute(0, 2, 1, 3, 4)
910
+ video = video.to(device=device, dtype=dtype)
909
911
  num_channels_latents = self.unet.config.in_channels
910
912
  latents = self.prepare_latents(
911
913
  video=video,
@@ -914,16 +916,67 @@ class AnimateDiffVideoToVideoPipeline(
914
916
  num_channels_latents=num_channels_latents,
915
917
  batch_size=batch_size * num_videos_per_prompt,
916
918
  timestep=latent_timestep,
917
- dtype=prompt_embeds.dtype,
919
+ dtype=dtype,
918
920
  device=device,
919
921
  generator=generator,
920
922
  latents=latents,
923
+ decode_chunk_size=decode_chunk_size,
924
+ add_noise=enforce_inference_steps,
921
925
  )
922
926
 
923
- # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
927
+ # 5. Encode input prompt
928
+ text_encoder_lora_scale = (
929
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
930
+ )
931
+ num_frames = latents.shape[2]
932
+ if self.free_noise_enabled:
933
+ prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise(
934
+ prompt=prompt,
935
+ num_frames=num_frames,
936
+ device=device,
937
+ num_videos_per_prompt=num_videos_per_prompt,
938
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
939
+ negative_prompt=negative_prompt,
940
+ prompt_embeds=prompt_embeds,
941
+ negative_prompt_embeds=negative_prompt_embeds,
942
+ lora_scale=text_encoder_lora_scale,
943
+ clip_skip=self.clip_skip,
944
+ )
945
+ else:
946
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
947
+ prompt,
948
+ device,
949
+ num_videos_per_prompt,
950
+ self.do_classifier_free_guidance,
951
+ negative_prompt,
952
+ prompt_embeds=prompt_embeds,
953
+ negative_prompt_embeds=negative_prompt_embeds,
954
+ lora_scale=text_encoder_lora_scale,
955
+ clip_skip=self.clip_skip,
956
+ )
957
+
958
+ # For classifier free guidance, we need to do two forward passes.
959
+ # Here we concatenate the unconditional and text embeddings into a single batch
960
+ # to avoid doing two forward passes
961
+ if self.do_classifier_free_guidance:
962
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
963
+
964
+ prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
965
+
966
+ # 6. Prepare IP-Adapter embeddings
967
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
968
+ image_embeds = self.prepare_ip_adapter_image_embeds(
969
+ ip_adapter_image,
970
+ ip_adapter_image_embeds,
971
+ device,
972
+ batch_size * num_videos_per_prompt,
973
+ self.do_classifier_free_guidance,
974
+ )
975
+
976
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
924
977
  extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
925
978
 
926
- # 7. Add image embeds for IP-Adapter
979
+ # 8. Add image embeds for IP-Adapter
927
980
  added_cond_kwargs = (
928
981
  {"image_embeds": image_embeds}
929
982
  if ip_adapter_image is not None or ip_adapter_image_embeds is not None
@@ -943,9 +996,12 @@ class AnimateDiffVideoToVideoPipeline(
943
996
  self._num_timesteps = len(timesteps)
944
997
  num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
945
998
 
946
- # 8. Denoising loop
947
- with self.progress_bar(total=num_inference_steps) as progress_bar:
999
+ # 9. Denoising loop
1000
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
948
1001
  for i, t in enumerate(timesteps):
1002
+ if self.interrupt:
1003
+ continue
1004
+
949
1005
  # expand the latents if we are doing classifier free guidance
950
1006
  latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
951
1007
  latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
@@ -981,14 +1037,14 @@ class AnimateDiffVideoToVideoPipeline(
981
1037
  if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
982
1038
  progress_bar.update()
983
1039
 
984
- # 9. Post-processing
1040
+ # 10. Post-processing
985
1041
  if output_type == "latent":
986
1042
  video = latents
987
1043
  else:
988
- video_tensor = self.decode_latents(latents)
989
- video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
1044
+ video_tensor = self.decode_latents(latents, decode_chunk_size)
1045
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
990
1046
 
991
- # 10. Offload all models
1047
+ # 11. Offload all models
992
1048
  self.maybe_free_model_hooks()
993
1049
 
994
1050
  if not return_dict: