diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -11,15 +11,20 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
+
15
+ from dataclasses import dataclass
14
16
  from typing import Any, Dict, Optional, Tuple, Union
15
17
 
16
18
  import torch
17
19
  import torch.nn as nn
20
+ import torch.nn.functional as F
18
21
  import torch.utils.checkpoint
19
22
 
20
- from ...configuration_utils import ConfigMixin, register_to_config
21
- from ...loaders import UNet2DConditionLoadersMixin
22
- from ...utils import logging
23
+ from ...configuration_utils import ConfigMixin, FrozenDict, register_to_config
24
+ from ...loaders import FromOriginalModelMixin, PeftAdapterMixin, UNet2DConditionLoadersMixin
25
+ from ...utils import BaseOutput, deprecate, is_torch_version, logging
26
+ from ...utils.torch_utils import apply_freeu
27
+ from ..attention import BasicTransformerBlock
23
28
  from ..attention_processor import (
24
29
  ADDED_KV_ATTENTION_PROCESSORS,
25
30
  CROSS_ATTENTION_PROCESSORS,
@@ -27,33 +32,1094 @@ from ..attention_processor import (
27
32
  AttentionProcessor,
28
33
  AttnAddedKVProcessor,
29
34
  AttnProcessor,
35
+ AttnProcessor2_0,
36
+ FusedAttnProcessor2_0,
37
+ IPAdapterAttnProcessor,
38
+ IPAdapterAttnProcessor2_0,
30
39
  )
31
40
  from ..embeddings import TimestepEmbedding, Timesteps
32
41
  from ..modeling_utils import ModelMixin
33
- from ..transformers.transformer_temporal import TransformerTemporalModel
42
+ from ..resnet import Downsample2D, ResnetBlock2D, Upsample2D
43
+ from ..transformers.dual_transformer_2d import DualTransformer2DModel
44
+ from ..transformers.transformer_2d import Transformer2DModel
34
45
  from .unet_2d_blocks import UNetMidBlock2DCrossAttn
35
46
  from .unet_2d_condition import UNet2DConditionModel
36
- from .unet_3d_blocks import (
37
- CrossAttnDownBlockMotion,
38
- CrossAttnUpBlockMotion,
39
- DownBlockMotion,
40
- UNetMidBlockCrossAttnMotion,
41
- UpBlockMotion,
42
- get_down_block,
43
- get_up_block,
44
- )
45
- from .unet_3d_condition import UNet3DConditionOutput
46
47
 
47
48
 
48
49
  logger = logging.get_logger(__name__) # pylint: disable=invalid-name
49
50
 
50
51
 
52
+ @dataclass
53
+ class UNetMotionOutput(BaseOutput):
54
+ """
55
+ The output of [`UNetMotionOutput`].
56
+
57
+ Args:
58
+ sample (`torch.Tensor` of shape `(batch_size, num_channels, num_frames, height, width)`):
59
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
60
+ """
61
+
62
+ sample: torch.Tensor
63
+
64
+
65
+ class AnimateDiffTransformer3D(nn.Module):
66
+ """
67
+ A Transformer model for video-like data.
68
+
69
+ Parameters:
70
+ num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
71
+ attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
72
+ in_channels (`int`, *optional*):
73
+ The number of channels in the input and output (specify if the input is **continuous**).
74
+ num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
75
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
76
+ cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
77
+ attention_bias (`bool`, *optional*):
78
+ Configure if the `TransformerBlock` attention should contain a bias parameter.
79
+ sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
80
+ This is fixed during training since it is used to learn a number of position embeddings.
81
+ activation_fn (`str`, *optional*, defaults to `"geglu"`):
82
+ Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported
83
+ activation functions.
84
+ norm_elementwise_affine (`bool`, *optional*):
85
+ Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization.
86
+ double_self_attention (`bool`, *optional*):
87
+ Configure if each `TransformerBlock` should contain two self-attention layers.
88
+ positional_embeddings: (`str`, *optional*):
89
+ The type of positional embeddings to apply to the sequence input before passing use.
90
+ num_positional_embeddings: (`int`, *optional*):
91
+ The maximum length of the sequence over which to apply positional embeddings.
92
+ """
93
+
94
+ def __init__(
95
+ self,
96
+ num_attention_heads: int = 16,
97
+ attention_head_dim: int = 88,
98
+ in_channels: Optional[int] = None,
99
+ out_channels: Optional[int] = None,
100
+ num_layers: int = 1,
101
+ dropout: float = 0.0,
102
+ norm_num_groups: int = 32,
103
+ cross_attention_dim: Optional[int] = None,
104
+ attention_bias: bool = False,
105
+ sample_size: Optional[int] = None,
106
+ activation_fn: str = "geglu",
107
+ norm_elementwise_affine: bool = True,
108
+ double_self_attention: bool = True,
109
+ positional_embeddings: Optional[str] = None,
110
+ num_positional_embeddings: Optional[int] = None,
111
+ ):
112
+ super().__init__()
113
+ self.num_attention_heads = num_attention_heads
114
+ self.attention_head_dim = attention_head_dim
115
+ inner_dim = num_attention_heads * attention_head_dim
116
+
117
+ self.in_channels = in_channels
118
+
119
+ self.norm = nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
120
+ self.proj_in = nn.Linear(in_channels, inner_dim)
121
+
122
+ # 3. Define transformers blocks
123
+ self.transformer_blocks = nn.ModuleList(
124
+ [
125
+ BasicTransformerBlock(
126
+ inner_dim,
127
+ num_attention_heads,
128
+ attention_head_dim,
129
+ dropout=dropout,
130
+ cross_attention_dim=cross_attention_dim,
131
+ activation_fn=activation_fn,
132
+ attention_bias=attention_bias,
133
+ double_self_attention=double_self_attention,
134
+ norm_elementwise_affine=norm_elementwise_affine,
135
+ positional_embeddings=positional_embeddings,
136
+ num_positional_embeddings=num_positional_embeddings,
137
+ )
138
+ for _ in range(num_layers)
139
+ ]
140
+ )
141
+
142
+ self.proj_out = nn.Linear(inner_dim, in_channels)
143
+
144
+ def forward(
145
+ self,
146
+ hidden_states: torch.Tensor,
147
+ encoder_hidden_states: Optional[torch.LongTensor] = None,
148
+ timestep: Optional[torch.LongTensor] = None,
149
+ class_labels: Optional[torch.LongTensor] = None,
150
+ num_frames: int = 1,
151
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
152
+ ) -> torch.Tensor:
153
+ """
154
+ The [`AnimateDiffTransformer3D`] forward method.
155
+
156
+ Args:
157
+ hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
158
+ Input hidden_states.
159
+ encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
160
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
161
+ self-attention.
162
+ timestep ( `torch.LongTensor`, *optional*):
163
+ Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
164
+ class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
165
+ Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
166
+ `AdaLayerZeroNorm`.
167
+ num_frames (`int`, *optional*, defaults to 1):
168
+ The number of frames to be processed per batch. This is used to reshape the hidden states.
169
+ cross_attention_kwargs (`dict`, *optional*):
170
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
171
+ `self.processor` in
172
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
173
+
174
+ Returns:
175
+ torch.Tensor:
176
+ The output tensor.
177
+ """
178
+ # 1. Input
179
+ batch_frames, channel, height, width = hidden_states.shape
180
+ batch_size = batch_frames // num_frames
181
+
182
+ residual = hidden_states
183
+
184
+ hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width)
185
+ hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
186
+
187
+ hidden_states = self.norm(hidden_states)
188
+ hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel)
189
+
190
+ hidden_states = self.proj_in(input=hidden_states)
191
+
192
+ # 2. Blocks
193
+ for block in self.transformer_blocks:
194
+ hidden_states = block(
195
+ hidden_states=hidden_states,
196
+ encoder_hidden_states=encoder_hidden_states,
197
+ timestep=timestep,
198
+ cross_attention_kwargs=cross_attention_kwargs,
199
+ class_labels=class_labels,
200
+ )
201
+
202
+ # 3. Output
203
+ hidden_states = self.proj_out(input=hidden_states)
204
+ hidden_states = (
205
+ hidden_states[None, None, :]
206
+ .reshape(batch_size, height, width, num_frames, channel)
207
+ .permute(0, 3, 4, 1, 2)
208
+ .contiguous()
209
+ )
210
+ hidden_states = hidden_states.reshape(batch_frames, channel, height, width)
211
+
212
+ output = hidden_states + residual
213
+ return output
214
+
215
+
216
+ class DownBlockMotion(nn.Module):
217
+ def __init__(
218
+ self,
219
+ in_channels: int,
220
+ out_channels: int,
221
+ temb_channels: int,
222
+ dropout: float = 0.0,
223
+ num_layers: int = 1,
224
+ resnet_eps: float = 1e-6,
225
+ resnet_time_scale_shift: str = "default",
226
+ resnet_act_fn: str = "swish",
227
+ resnet_groups: int = 32,
228
+ resnet_pre_norm: bool = True,
229
+ output_scale_factor: float = 1.0,
230
+ add_downsample: bool = True,
231
+ downsample_padding: int = 1,
232
+ temporal_num_attention_heads: Union[int, Tuple[int]] = 1,
233
+ temporal_cross_attention_dim: Optional[int] = None,
234
+ temporal_max_seq_length: int = 32,
235
+ temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
236
+ temporal_double_self_attention: bool = True,
237
+ ):
238
+ super().__init__()
239
+ resnets = []
240
+ motion_modules = []
241
+
242
+ # support for variable transformer layers per temporal block
243
+ if isinstance(temporal_transformer_layers_per_block, int):
244
+ temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
245
+ elif len(temporal_transformer_layers_per_block) != num_layers:
246
+ raise ValueError(
247
+ f"`temporal_transformer_layers_per_block` must be an integer or a tuple of integers of length {num_layers}"
248
+ )
249
+
250
+ # support for variable number of attention head per temporal layers
251
+ if isinstance(temporal_num_attention_heads, int):
252
+ temporal_num_attention_heads = (temporal_num_attention_heads,) * num_layers
253
+ elif len(temporal_num_attention_heads) != num_layers:
254
+ raise ValueError(
255
+ f"`temporal_num_attention_heads` must be an integer or a tuple of integers of length {num_layers}"
256
+ )
257
+
258
+ for i in range(num_layers):
259
+ in_channels = in_channels if i == 0 else out_channels
260
+ resnets.append(
261
+ ResnetBlock2D(
262
+ in_channels=in_channels,
263
+ out_channels=out_channels,
264
+ temb_channels=temb_channels,
265
+ eps=resnet_eps,
266
+ groups=resnet_groups,
267
+ dropout=dropout,
268
+ time_embedding_norm=resnet_time_scale_shift,
269
+ non_linearity=resnet_act_fn,
270
+ output_scale_factor=output_scale_factor,
271
+ pre_norm=resnet_pre_norm,
272
+ )
273
+ )
274
+ motion_modules.append(
275
+ AnimateDiffTransformer3D(
276
+ num_attention_heads=temporal_num_attention_heads[i],
277
+ in_channels=out_channels,
278
+ num_layers=temporal_transformer_layers_per_block[i],
279
+ norm_num_groups=resnet_groups,
280
+ cross_attention_dim=temporal_cross_attention_dim,
281
+ attention_bias=False,
282
+ activation_fn="geglu",
283
+ positional_embeddings="sinusoidal",
284
+ num_positional_embeddings=temporal_max_seq_length,
285
+ attention_head_dim=out_channels // temporal_num_attention_heads[i],
286
+ double_self_attention=temporal_double_self_attention,
287
+ )
288
+ )
289
+
290
+ self.resnets = nn.ModuleList(resnets)
291
+ self.motion_modules = nn.ModuleList(motion_modules)
292
+
293
+ if add_downsample:
294
+ self.downsamplers = nn.ModuleList(
295
+ [
296
+ Downsample2D(
297
+ out_channels,
298
+ use_conv=True,
299
+ out_channels=out_channels,
300
+ padding=downsample_padding,
301
+ name="op",
302
+ )
303
+ ]
304
+ )
305
+ else:
306
+ self.downsamplers = None
307
+
308
+ self.gradient_checkpointing = False
309
+
310
+ def forward(
311
+ self,
312
+ hidden_states: torch.Tensor,
313
+ temb: Optional[torch.Tensor] = None,
314
+ num_frames: int = 1,
315
+ *args,
316
+ **kwargs,
317
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]:
318
+ if len(args) > 0 or kwargs.get("scale", None) is not None:
319
+ deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
320
+ deprecate("scale", "1.0.0", deprecation_message)
321
+
322
+ output_states = ()
323
+
324
+ blocks = zip(self.resnets, self.motion_modules)
325
+ for resnet, motion_module in blocks:
326
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
327
+
328
+ def create_custom_forward(module):
329
+ def custom_forward(*inputs):
330
+ return module(*inputs)
331
+
332
+ return custom_forward
333
+
334
+ if is_torch_version(">=", "1.11.0"):
335
+ hidden_states = torch.utils.checkpoint.checkpoint(
336
+ create_custom_forward(resnet),
337
+ hidden_states,
338
+ temb,
339
+ use_reentrant=False,
340
+ )
341
+ else:
342
+ hidden_states = torch.utils.checkpoint.checkpoint(
343
+ create_custom_forward(resnet), hidden_states, temb
344
+ )
345
+
346
+ else:
347
+ hidden_states = resnet(input_tensor=hidden_states, temb=temb)
348
+
349
+ hidden_states = motion_module(hidden_states, num_frames=num_frames)
350
+
351
+ output_states = output_states + (hidden_states,)
352
+
353
+ if self.downsamplers is not None:
354
+ for downsampler in self.downsamplers:
355
+ hidden_states = downsampler(hidden_states=hidden_states)
356
+
357
+ output_states = output_states + (hidden_states,)
358
+
359
+ return hidden_states, output_states
360
+
361
+
362
+ class CrossAttnDownBlockMotion(nn.Module):
363
+ def __init__(
364
+ self,
365
+ in_channels: int,
366
+ out_channels: int,
367
+ temb_channels: int,
368
+ dropout: float = 0.0,
369
+ num_layers: int = 1,
370
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
371
+ resnet_eps: float = 1e-6,
372
+ resnet_time_scale_shift: str = "default",
373
+ resnet_act_fn: str = "swish",
374
+ resnet_groups: int = 32,
375
+ resnet_pre_norm: bool = True,
376
+ num_attention_heads: int = 1,
377
+ cross_attention_dim: int = 1280,
378
+ output_scale_factor: float = 1.0,
379
+ downsample_padding: int = 1,
380
+ add_downsample: bool = True,
381
+ dual_cross_attention: bool = False,
382
+ use_linear_projection: bool = False,
383
+ only_cross_attention: bool = False,
384
+ upcast_attention: bool = False,
385
+ attention_type: str = "default",
386
+ temporal_cross_attention_dim: Optional[int] = None,
387
+ temporal_num_attention_heads: int = 8,
388
+ temporal_max_seq_length: int = 32,
389
+ temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
390
+ temporal_double_self_attention: bool = True,
391
+ ):
392
+ super().__init__()
393
+ resnets = []
394
+ attentions = []
395
+ motion_modules = []
396
+
397
+ self.has_cross_attention = True
398
+ self.num_attention_heads = num_attention_heads
399
+
400
+ # support for variable transformer layers per block
401
+ if isinstance(transformer_layers_per_block, int):
402
+ transformer_layers_per_block = (transformer_layers_per_block,) * num_layers
403
+ elif len(transformer_layers_per_block) != num_layers:
404
+ raise ValueError(
405
+ f"transformer_layers_per_block must be an integer or a list of integers of length {num_layers}"
406
+ )
407
+
408
+ # support for variable transformer layers per temporal block
409
+ if isinstance(temporal_transformer_layers_per_block, int):
410
+ temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
411
+ elif len(temporal_transformer_layers_per_block) != num_layers:
412
+ raise ValueError(
413
+ f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}"
414
+ )
415
+
416
+ for i in range(num_layers):
417
+ in_channels = in_channels if i == 0 else out_channels
418
+ resnets.append(
419
+ ResnetBlock2D(
420
+ in_channels=in_channels,
421
+ out_channels=out_channels,
422
+ temb_channels=temb_channels,
423
+ eps=resnet_eps,
424
+ groups=resnet_groups,
425
+ dropout=dropout,
426
+ time_embedding_norm=resnet_time_scale_shift,
427
+ non_linearity=resnet_act_fn,
428
+ output_scale_factor=output_scale_factor,
429
+ pre_norm=resnet_pre_norm,
430
+ )
431
+ )
432
+
433
+ if not dual_cross_attention:
434
+ attentions.append(
435
+ Transformer2DModel(
436
+ num_attention_heads,
437
+ out_channels // num_attention_heads,
438
+ in_channels=out_channels,
439
+ num_layers=transformer_layers_per_block[i],
440
+ cross_attention_dim=cross_attention_dim,
441
+ norm_num_groups=resnet_groups,
442
+ use_linear_projection=use_linear_projection,
443
+ only_cross_attention=only_cross_attention,
444
+ upcast_attention=upcast_attention,
445
+ attention_type=attention_type,
446
+ )
447
+ )
448
+ else:
449
+ attentions.append(
450
+ DualTransformer2DModel(
451
+ num_attention_heads,
452
+ out_channels // num_attention_heads,
453
+ in_channels=out_channels,
454
+ num_layers=1,
455
+ cross_attention_dim=cross_attention_dim,
456
+ norm_num_groups=resnet_groups,
457
+ )
458
+ )
459
+
460
+ motion_modules.append(
461
+ AnimateDiffTransformer3D(
462
+ num_attention_heads=temporal_num_attention_heads,
463
+ in_channels=out_channels,
464
+ num_layers=temporal_transformer_layers_per_block[i],
465
+ norm_num_groups=resnet_groups,
466
+ cross_attention_dim=temporal_cross_attention_dim,
467
+ attention_bias=False,
468
+ activation_fn="geglu",
469
+ positional_embeddings="sinusoidal",
470
+ num_positional_embeddings=temporal_max_seq_length,
471
+ attention_head_dim=out_channels // temporal_num_attention_heads,
472
+ double_self_attention=temporal_double_self_attention,
473
+ )
474
+ )
475
+
476
+ self.attentions = nn.ModuleList(attentions)
477
+ self.resnets = nn.ModuleList(resnets)
478
+ self.motion_modules = nn.ModuleList(motion_modules)
479
+
480
+ if add_downsample:
481
+ self.downsamplers = nn.ModuleList(
482
+ [
483
+ Downsample2D(
484
+ out_channels,
485
+ use_conv=True,
486
+ out_channels=out_channels,
487
+ padding=downsample_padding,
488
+ name="op",
489
+ )
490
+ ]
491
+ )
492
+ else:
493
+ self.downsamplers = None
494
+
495
+ self.gradient_checkpointing = False
496
+
497
+ def forward(
498
+ self,
499
+ hidden_states: torch.Tensor,
500
+ temb: Optional[torch.Tensor] = None,
501
+ encoder_hidden_states: Optional[torch.Tensor] = None,
502
+ attention_mask: Optional[torch.Tensor] = None,
503
+ num_frames: int = 1,
504
+ encoder_attention_mask: Optional[torch.Tensor] = None,
505
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
506
+ additional_residuals: Optional[torch.Tensor] = None,
507
+ ):
508
+ if cross_attention_kwargs is not None:
509
+ if cross_attention_kwargs.get("scale", None) is not None:
510
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
511
+
512
+ output_states = ()
513
+
514
+ blocks = list(zip(self.resnets, self.attentions, self.motion_modules))
515
+ for i, (resnet, attn, motion_module) in enumerate(blocks):
516
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
517
+
518
+ def create_custom_forward(module, return_dict=None):
519
+ def custom_forward(*inputs):
520
+ if return_dict is not None:
521
+ return module(*inputs, return_dict=return_dict)
522
+ else:
523
+ return module(*inputs)
524
+
525
+ return custom_forward
526
+
527
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
528
+ hidden_states = torch.utils.checkpoint.checkpoint(
529
+ create_custom_forward(resnet),
530
+ hidden_states,
531
+ temb,
532
+ **ckpt_kwargs,
533
+ )
534
+ else:
535
+ hidden_states = resnet(input_tensor=hidden_states, temb=temb)
536
+
537
+ hidden_states = attn(
538
+ hidden_states=hidden_states,
539
+ encoder_hidden_states=encoder_hidden_states,
540
+ cross_attention_kwargs=cross_attention_kwargs,
541
+ attention_mask=attention_mask,
542
+ encoder_attention_mask=encoder_attention_mask,
543
+ return_dict=False,
544
+ )[0]
545
+
546
+ hidden_states = motion_module(
547
+ hidden_states,
548
+ num_frames=num_frames,
549
+ )
550
+
551
+ # apply additional residuals to the output of the last pair of resnet and attention blocks
552
+ if i == len(blocks) - 1 and additional_residuals is not None:
553
+ hidden_states = hidden_states + additional_residuals
554
+
555
+ output_states = output_states + (hidden_states,)
556
+
557
+ if self.downsamplers is not None:
558
+ for downsampler in self.downsamplers:
559
+ hidden_states = downsampler(hidden_states=hidden_states)
560
+
561
+ output_states = output_states + (hidden_states,)
562
+
563
+ return hidden_states, output_states
564
+
565
+
566
+ class CrossAttnUpBlockMotion(nn.Module):
567
+ def __init__(
568
+ self,
569
+ in_channels: int,
570
+ out_channels: int,
571
+ prev_output_channel: int,
572
+ temb_channels: int,
573
+ resolution_idx: Optional[int] = None,
574
+ dropout: float = 0.0,
575
+ num_layers: int = 1,
576
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
577
+ resnet_eps: float = 1e-6,
578
+ resnet_time_scale_shift: str = "default",
579
+ resnet_act_fn: str = "swish",
580
+ resnet_groups: int = 32,
581
+ resnet_pre_norm: bool = True,
582
+ num_attention_heads: int = 1,
583
+ cross_attention_dim: int = 1280,
584
+ output_scale_factor: float = 1.0,
585
+ add_upsample: bool = True,
586
+ dual_cross_attention: bool = False,
587
+ use_linear_projection: bool = False,
588
+ only_cross_attention: bool = False,
589
+ upcast_attention: bool = False,
590
+ attention_type: str = "default",
591
+ temporal_cross_attention_dim: Optional[int] = None,
592
+ temporal_num_attention_heads: int = 8,
593
+ temporal_max_seq_length: int = 32,
594
+ temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
595
+ ):
596
+ super().__init__()
597
+ resnets = []
598
+ attentions = []
599
+ motion_modules = []
600
+
601
+ self.has_cross_attention = True
602
+ self.num_attention_heads = num_attention_heads
603
+
604
+ # support for variable transformer layers per block
605
+ if isinstance(transformer_layers_per_block, int):
606
+ transformer_layers_per_block = (transformer_layers_per_block,) * num_layers
607
+ elif len(transformer_layers_per_block) != num_layers:
608
+ raise ValueError(
609
+ f"transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(transformer_layers_per_block)}"
610
+ )
611
+
612
+ # support for variable transformer layers per temporal block
613
+ if isinstance(temporal_transformer_layers_per_block, int):
614
+ temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
615
+ elif len(temporal_transformer_layers_per_block) != num_layers:
616
+ raise ValueError(
617
+ f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}, got {len(temporal_transformer_layers_per_block)}"
618
+ )
619
+
620
+ for i in range(num_layers):
621
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
622
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
623
+
624
+ resnets.append(
625
+ ResnetBlock2D(
626
+ in_channels=resnet_in_channels + res_skip_channels,
627
+ out_channels=out_channels,
628
+ temb_channels=temb_channels,
629
+ eps=resnet_eps,
630
+ groups=resnet_groups,
631
+ dropout=dropout,
632
+ time_embedding_norm=resnet_time_scale_shift,
633
+ non_linearity=resnet_act_fn,
634
+ output_scale_factor=output_scale_factor,
635
+ pre_norm=resnet_pre_norm,
636
+ )
637
+ )
638
+
639
+ if not dual_cross_attention:
640
+ attentions.append(
641
+ Transformer2DModel(
642
+ num_attention_heads,
643
+ out_channels // num_attention_heads,
644
+ in_channels=out_channels,
645
+ num_layers=transformer_layers_per_block[i],
646
+ cross_attention_dim=cross_attention_dim,
647
+ norm_num_groups=resnet_groups,
648
+ use_linear_projection=use_linear_projection,
649
+ only_cross_attention=only_cross_attention,
650
+ upcast_attention=upcast_attention,
651
+ attention_type=attention_type,
652
+ )
653
+ )
654
+ else:
655
+ attentions.append(
656
+ DualTransformer2DModel(
657
+ num_attention_heads,
658
+ out_channels // num_attention_heads,
659
+ in_channels=out_channels,
660
+ num_layers=1,
661
+ cross_attention_dim=cross_attention_dim,
662
+ norm_num_groups=resnet_groups,
663
+ )
664
+ )
665
+ motion_modules.append(
666
+ AnimateDiffTransformer3D(
667
+ num_attention_heads=temporal_num_attention_heads,
668
+ in_channels=out_channels,
669
+ num_layers=temporal_transformer_layers_per_block[i],
670
+ norm_num_groups=resnet_groups,
671
+ cross_attention_dim=temporal_cross_attention_dim,
672
+ attention_bias=False,
673
+ activation_fn="geglu",
674
+ positional_embeddings="sinusoidal",
675
+ num_positional_embeddings=temporal_max_seq_length,
676
+ attention_head_dim=out_channels // temporal_num_attention_heads,
677
+ )
678
+ )
679
+
680
+ self.attentions = nn.ModuleList(attentions)
681
+ self.resnets = nn.ModuleList(resnets)
682
+ self.motion_modules = nn.ModuleList(motion_modules)
683
+
684
+ if add_upsample:
685
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
686
+ else:
687
+ self.upsamplers = None
688
+
689
+ self.gradient_checkpointing = False
690
+ self.resolution_idx = resolution_idx
691
+
692
+ def forward(
693
+ self,
694
+ hidden_states: torch.Tensor,
695
+ res_hidden_states_tuple: Tuple[torch.Tensor, ...],
696
+ temb: Optional[torch.Tensor] = None,
697
+ encoder_hidden_states: Optional[torch.Tensor] = None,
698
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
699
+ upsample_size: Optional[int] = None,
700
+ attention_mask: Optional[torch.Tensor] = None,
701
+ encoder_attention_mask: Optional[torch.Tensor] = None,
702
+ num_frames: int = 1,
703
+ ) -> torch.Tensor:
704
+ if cross_attention_kwargs is not None:
705
+ if cross_attention_kwargs.get("scale", None) is not None:
706
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
707
+
708
+ is_freeu_enabled = (
709
+ getattr(self, "s1", None)
710
+ and getattr(self, "s2", None)
711
+ and getattr(self, "b1", None)
712
+ and getattr(self, "b2", None)
713
+ )
714
+
715
+ blocks = zip(self.resnets, self.attentions, self.motion_modules)
716
+ for resnet, attn, motion_module in blocks:
717
+ # pop res hidden states
718
+ res_hidden_states = res_hidden_states_tuple[-1]
719
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
720
+
721
+ # FreeU: Only operate on the first two stages
722
+ if is_freeu_enabled:
723
+ hidden_states, res_hidden_states = apply_freeu(
724
+ self.resolution_idx,
725
+ hidden_states,
726
+ res_hidden_states,
727
+ s1=self.s1,
728
+ s2=self.s2,
729
+ b1=self.b1,
730
+ b2=self.b2,
731
+ )
732
+
733
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
734
+
735
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
736
+
737
+ def create_custom_forward(module, return_dict=None):
738
+ def custom_forward(*inputs):
739
+ if return_dict is not None:
740
+ return module(*inputs, return_dict=return_dict)
741
+ else:
742
+ return module(*inputs)
743
+
744
+ return custom_forward
745
+
746
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
747
+ hidden_states = torch.utils.checkpoint.checkpoint(
748
+ create_custom_forward(resnet),
749
+ hidden_states,
750
+ temb,
751
+ **ckpt_kwargs,
752
+ )
753
+ else:
754
+ hidden_states = resnet(input_tensor=hidden_states, temb=temb)
755
+
756
+ hidden_states = attn(
757
+ hidden_states=hidden_states,
758
+ encoder_hidden_states=encoder_hidden_states,
759
+ cross_attention_kwargs=cross_attention_kwargs,
760
+ attention_mask=attention_mask,
761
+ encoder_attention_mask=encoder_attention_mask,
762
+ return_dict=False,
763
+ )[0]
764
+
765
+ hidden_states = motion_module(
766
+ hidden_states,
767
+ num_frames=num_frames,
768
+ )
769
+
770
+ if self.upsamplers is not None:
771
+ for upsampler in self.upsamplers:
772
+ hidden_states = upsampler(hidden_states=hidden_states, output_size=upsample_size)
773
+
774
+ return hidden_states
775
+
776
+
777
+ class UpBlockMotion(nn.Module):
778
+ def __init__(
779
+ self,
780
+ in_channels: int,
781
+ prev_output_channel: int,
782
+ out_channels: int,
783
+ temb_channels: int,
784
+ resolution_idx: Optional[int] = None,
785
+ dropout: float = 0.0,
786
+ num_layers: int = 1,
787
+ resnet_eps: float = 1e-6,
788
+ resnet_time_scale_shift: str = "default",
789
+ resnet_act_fn: str = "swish",
790
+ resnet_groups: int = 32,
791
+ resnet_pre_norm: bool = True,
792
+ output_scale_factor: float = 1.0,
793
+ add_upsample: bool = True,
794
+ temporal_cross_attention_dim: Optional[int] = None,
795
+ temporal_num_attention_heads: int = 8,
796
+ temporal_max_seq_length: int = 32,
797
+ temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
798
+ ):
799
+ super().__init__()
800
+ resnets = []
801
+ motion_modules = []
802
+
803
+ # support for variable transformer layers per temporal block
804
+ if isinstance(temporal_transformer_layers_per_block, int):
805
+ temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
806
+ elif len(temporal_transformer_layers_per_block) != num_layers:
807
+ raise ValueError(
808
+ f"temporal_transformer_layers_per_block must be an integer or a list of integers of length {num_layers}"
809
+ )
810
+
811
+ for i in range(num_layers):
812
+ res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
813
+ resnet_in_channels = prev_output_channel if i == 0 else out_channels
814
+
815
+ resnets.append(
816
+ ResnetBlock2D(
817
+ in_channels=resnet_in_channels + res_skip_channels,
818
+ out_channels=out_channels,
819
+ temb_channels=temb_channels,
820
+ eps=resnet_eps,
821
+ groups=resnet_groups,
822
+ dropout=dropout,
823
+ time_embedding_norm=resnet_time_scale_shift,
824
+ non_linearity=resnet_act_fn,
825
+ output_scale_factor=output_scale_factor,
826
+ pre_norm=resnet_pre_norm,
827
+ )
828
+ )
829
+
830
+ motion_modules.append(
831
+ AnimateDiffTransformer3D(
832
+ num_attention_heads=temporal_num_attention_heads,
833
+ in_channels=out_channels,
834
+ num_layers=temporal_transformer_layers_per_block[i],
835
+ norm_num_groups=resnet_groups,
836
+ cross_attention_dim=temporal_cross_attention_dim,
837
+ attention_bias=False,
838
+ activation_fn="geglu",
839
+ positional_embeddings="sinusoidal",
840
+ num_positional_embeddings=temporal_max_seq_length,
841
+ attention_head_dim=out_channels // temporal_num_attention_heads,
842
+ )
843
+ )
844
+
845
+ self.resnets = nn.ModuleList(resnets)
846
+ self.motion_modules = nn.ModuleList(motion_modules)
847
+
848
+ if add_upsample:
849
+ self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
850
+ else:
851
+ self.upsamplers = None
852
+
853
+ self.gradient_checkpointing = False
854
+ self.resolution_idx = resolution_idx
855
+
856
+ def forward(
857
+ self,
858
+ hidden_states: torch.Tensor,
859
+ res_hidden_states_tuple: Tuple[torch.Tensor, ...],
860
+ temb: Optional[torch.Tensor] = None,
861
+ upsample_size=None,
862
+ num_frames: int = 1,
863
+ *args,
864
+ **kwargs,
865
+ ) -> torch.Tensor:
866
+ if len(args) > 0 or kwargs.get("scale", None) is not None:
867
+ deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
868
+ deprecate("scale", "1.0.0", deprecation_message)
869
+
870
+ is_freeu_enabled = (
871
+ getattr(self, "s1", None)
872
+ and getattr(self, "s2", None)
873
+ and getattr(self, "b1", None)
874
+ and getattr(self, "b2", None)
875
+ )
876
+
877
+ blocks = zip(self.resnets, self.motion_modules)
878
+
879
+ for resnet, motion_module in blocks:
880
+ # pop res hidden states
881
+ res_hidden_states = res_hidden_states_tuple[-1]
882
+ res_hidden_states_tuple = res_hidden_states_tuple[:-1]
883
+
884
+ # FreeU: Only operate on the first two stages
885
+ if is_freeu_enabled:
886
+ hidden_states, res_hidden_states = apply_freeu(
887
+ self.resolution_idx,
888
+ hidden_states,
889
+ res_hidden_states,
890
+ s1=self.s1,
891
+ s2=self.s2,
892
+ b1=self.b1,
893
+ b2=self.b2,
894
+ )
895
+
896
+ hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
897
+
898
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
899
+
900
+ def create_custom_forward(module):
901
+ def custom_forward(*inputs):
902
+ return module(*inputs)
903
+
904
+ return custom_forward
905
+
906
+ if is_torch_version(">=", "1.11.0"):
907
+ hidden_states = torch.utils.checkpoint.checkpoint(
908
+ create_custom_forward(resnet),
909
+ hidden_states,
910
+ temb,
911
+ use_reentrant=False,
912
+ )
913
+ else:
914
+ hidden_states = torch.utils.checkpoint.checkpoint(
915
+ create_custom_forward(resnet), hidden_states, temb
916
+ )
917
+ else:
918
+ hidden_states = resnet(input_tensor=hidden_states, temb=temb)
919
+
920
+ hidden_states = motion_module(hidden_states, num_frames=num_frames)
921
+
922
+ if self.upsamplers is not None:
923
+ for upsampler in self.upsamplers:
924
+ hidden_states = upsampler(hidden_states=hidden_states, output_size=upsample_size)
925
+
926
+ return hidden_states
927
+
928
+
929
+ class UNetMidBlockCrossAttnMotion(nn.Module):
930
+ def __init__(
931
+ self,
932
+ in_channels: int,
933
+ temb_channels: int,
934
+ dropout: float = 0.0,
935
+ num_layers: int = 1,
936
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
937
+ resnet_eps: float = 1e-6,
938
+ resnet_time_scale_shift: str = "default",
939
+ resnet_act_fn: str = "swish",
940
+ resnet_groups: int = 32,
941
+ resnet_pre_norm: bool = True,
942
+ num_attention_heads: int = 1,
943
+ output_scale_factor: float = 1.0,
944
+ cross_attention_dim: int = 1280,
945
+ dual_cross_attention: bool = False,
946
+ use_linear_projection: bool = False,
947
+ upcast_attention: bool = False,
948
+ attention_type: str = "default",
949
+ temporal_num_attention_heads: int = 1,
950
+ temporal_cross_attention_dim: Optional[int] = None,
951
+ temporal_max_seq_length: int = 32,
952
+ temporal_transformer_layers_per_block: Union[int, Tuple[int]] = 1,
953
+ ):
954
+ super().__init__()
955
+
956
+ self.has_cross_attention = True
957
+ self.num_attention_heads = num_attention_heads
958
+ resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
959
+
960
+ # support for variable transformer layers per block
961
+ if isinstance(transformer_layers_per_block, int):
962
+ transformer_layers_per_block = (transformer_layers_per_block,) * num_layers
963
+ elif len(transformer_layers_per_block) != num_layers:
964
+ raise ValueError(
965
+ f"`transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}."
966
+ )
967
+
968
+ # support for variable transformer layers per temporal block
969
+ if isinstance(temporal_transformer_layers_per_block, int):
970
+ temporal_transformer_layers_per_block = (temporal_transformer_layers_per_block,) * num_layers
971
+ elif len(temporal_transformer_layers_per_block) != num_layers:
972
+ raise ValueError(
973
+ f"`temporal_transformer_layers_per_block` should be an integer or a list of integers of length {num_layers}."
974
+ )
975
+
976
+ # there is always at least one resnet
977
+ resnets = [
978
+ ResnetBlock2D(
979
+ in_channels=in_channels,
980
+ out_channels=in_channels,
981
+ temb_channels=temb_channels,
982
+ eps=resnet_eps,
983
+ groups=resnet_groups,
984
+ dropout=dropout,
985
+ time_embedding_norm=resnet_time_scale_shift,
986
+ non_linearity=resnet_act_fn,
987
+ output_scale_factor=output_scale_factor,
988
+ pre_norm=resnet_pre_norm,
989
+ )
990
+ ]
991
+ attentions = []
992
+ motion_modules = []
993
+
994
+ for i in range(num_layers):
995
+ if not dual_cross_attention:
996
+ attentions.append(
997
+ Transformer2DModel(
998
+ num_attention_heads,
999
+ in_channels // num_attention_heads,
1000
+ in_channels=in_channels,
1001
+ num_layers=transformer_layers_per_block[i],
1002
+ cross_attention_dim=cross_attention_dim,
1003
+ norm_num_groups=resnet_groups,
1004
+ use_linear_projection=use_linear_projection,
1005
+ upcast_attention=upcast_attention,
1006
+ attention_type=attention_type,
1007
+ )
1008
+ )
1009
+ else:
1010
+ attentions.append(
1011
+ DualTransformer2DModel(
1012
+ num_attention_heads,
1013
+ in_channels // num_attention_heads,
1014
+ in_channels=in_channels,
1015
+ num_layers=1,
1016
+ cross_attention_dim=cross_attention_dim,
1017
+ norm_num_groups=resnet_groups,
1018
+ )
1019
+ )
1020
+ resnets.append(
1021
+ ResnetBlock2D(
1022
+ in_channels=in_channels,
1023
+ out_channels=in_channels,
1024
+ temb_channels=temb_channels,
1025
+ eps=resnet_eps,
1026
+ groups=resnet_groups,
1027
+ dropout=dropout,
1028
+ time_embedding_norm=resnet_time_scale_shift,
1029
+ non_linearity=resnet_act_fn,
1030
+ output_scale_factor=output_scale_factor,
1031
+ pre_norm=resnet_pre_norm,
1032
+ )
1033
+ )
1034
+ motion_modules.append(
1035
+ AnimateDiffTransformer3D(
1036
+ num_attention_heads=temporal_num_attention_heads,
1037
+ attention_head_dim=in_channels // temporal_num_attention_heads,
1038
+ in_channels=in_channels,
1039
+ num_layers=temporal_transformer_layers_per_block[i],
1040
+ norm_num_groups=resnet_groups,
1041
+ cross_attention_dim=temporal_cross_attention_dim,
1042
+ attention_bias=False,
1043
+ positional_embeddings="sinusoidal",
1044
+ num_positional_embeddings=temporal_max_seq_length,
1045
+ activation_fn="geglu",
1046
+ )
1047
+ )
1048
+
1049
+ self.attentions = nn.ModuleList(attentions)
1050
+ self.resnets = nn.ModuleList(resnets)
1051
+ self.motion_modules = nn.ModuleList(motion_modules)
1052
+
1053
+ self.gradient_checkpointing = False
1054
+
1055
+ def forward(
1056
+ self,
1057
+ hidden_states: torch.Tensor,
1058
+ temb: Optional[torch.Tensor] = None,
1059
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1060
+ attention_mask: Optional[torch.Tensor] = None,
1061
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1062
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1063
+ num_frames: int = 1,
1064
+ ) -> torch.Tensor:
1065
+ if cross_attention_kwargs is not None:
1066
+ if cross_attention_kwargs.get("scale", None) is not None:
1067
+ logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
1068
+
1069
+ hidden_states = self.resnets[0](input_tensor=hidden_states, temb=temb)
1070
+
1071
+ blocks = zip(self.attentions, self.resnets[1:], self.motion_modules)
1072
+ for attn, resnet, motion_module in blocks:
1073
+ hidden_states = attn(
1074
+ hidden_states=hidden_states,
1075
+ encoder_hidden_states=encoder_hidden_states,
1076
+ cross_attention_kwargs=cross_attention_kwargs,
1077
+ attention_mask=attention_mask,
1078
+ encoder_attention_mask=encoder_attention_mask,
1079
+ return_dict=False,
1080
+ )[0]
1081
+
1082
+ if torch.is_grad_enabled() and self.gradient_checkpointing:
1083
+
1084
+ def create_custom_forward(module, return_dict=None):
1085
+ def custom_forward(*inputs):
1086
+ if return_dict is not None:
1087
+ return module(*inputs, return_dict=return_dict)
1088
+ else:
1089
+ return module(*inputs)
1090
+
1091
+ return custom_forward
1092
+
1093
+ ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
1094
+ hidden_states = torch.utils.checkpoint.checkpoint(
1095
+ create_custom_forward(motion_module),
1096
+ hidden_states,
1097
+ temb,
1098
+ **ckpt_kwargs,
1099
+ )
1100
+ hidden_states = torch.utils.checkpoint.checkpoint(
1101
+ create_custom_forward(resnet),
1102
+ hidden_states,
1103
+ temb,
1104
+ **ckpt_kwargs,
1105
+ )
1106
+ else:
1107
+ hidden_states = motion_module(
1108
+ hidden_states,
1109
+ num_frames=num_frames,
1110
+ )
1111
+ hidden_states = resnet(input_tensor=hidden_states, temb=temb)
1112
+
1113
+ return hidden_states
1114
+
1115
+
51
1116
  class MotionModules(nn.Module):
52
1117
  def __init__(
53
1118
  self,
54
1119
  in_channels: int,
55
1120
  layers_per_block: int = 2,
56
- num_attention_heads: int = 8,
1121
+ transformer_layers_per_block: Union[int, Tuple[int]] = 8,
1122
+ num_attention_heads: Union[int, Tuple[int]] = 8,
57
1123
  attention_bias: bool = False,
58
1124
  cross_attention_dim: Optional[int] = None,
59
1125
  activation_fn: str = "geglu",
@@ -63,10 +1129,19 @@ class MotionModules(nn.Module):
63
1129
  super().__init__()
64
1130
  self.motion_modules = nn.ModuleList([])
65
1131
 
1132
+ if isinstance(transformer_layers_per_block, int):
1133
+ transformer_layers_per_block = (transformer_layers_per_block,) * layers_per_block
1134
+ elif len(transformer_layers_per_block) != layers_per_block:
1135
+ raise ValueError(
1136
+ f"The number of transformer layers per block must match the number of layers per block, "
1137
+ f"got {layers_per_block} and {len(transformer_layers_per_block)}"
1138
+ )
1139
+
66
1140
  for i in range(layers_per_block):
67
1141
  self.motion_modules.append(
68
- TransformerTemporalModel(
1142
+ AnimateDiffTransformer3D(
69
1143
  in_channels=in_channels,
1144
+ num_layers=transformer_layers_per_block[i],
70
1145
  norm_num_groups=norm_num_groups,
71
1146
  cross_attention_dim=cross_attention_dim,
72
1147
  activation_fn=activation_fn,
@@ -79,14 +1154,16 @@ class MotionModules(nn.Module):
79
1154
  )
80
1155
 
81
1156
 
82
- class MotionAdapter(ModelMixin, ConfigMixin):
1157
+ class MotionAdapter(ModelMixin, ConfigMixin, FromOriginalModelMixin):
83
1158
  @register_to_config
84
1159
  def __init__(
85
1160
  self,
86
1161
  block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
87
- motion_layers_per_block: int = 2,
1162
+ motion_layers_per_block: Union[int, Tuple[int]] = 2,
1163
+ motion_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]] = 1,
88
1164
  motion_mid_block_layers_per_block: int = 1,
89
- motion_num_attention_heads: int = 8,
1165
+ motion_transformer_layers_per_mid_block: Union[int, Tuple[int]] = 1,
1166
+ motion_num_attention_heads: Union[int, Tuple[int]] = 8,
90
1167
  motion_norm_num_groups: int = 32,
91
1168
  motion_max_seq_length: int = 32,
92
1169
  use_motion_mid_block: bool = True,
@@ -97,11 +1174,15 @@ class MotionAdapter(ModelMixin, ConfigMixin):
97
1174
  Args:
98
1175
  block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
99
1176
  The tuple of output channels for each UNet block.
100
- motion_layers_per_block (`int`, *optional*, defaults to 2):
1177
+ motion_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 2):
101
1178
  The number of motion layers per UNet block.
1179
+ motion_transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple[int]]`, *optional*, defaults to 1):
1180
+ The number of transformer layers to use in each motion layer in each block.
102
1181
  motion_mid_block_layers_per_block (`int`, *optional*, defaults to 1):
103
1182
  The number of motion layers in the middle UNet block.
104
- motion_num_attention_heads (`int`, *optional*, defaults to 8):
1183
+ motion_transformer_layers_per_mid_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
1184
+ The number of transformer layers to use in each motion layer in the middle block.
1185
+ motion_num_attention_heads (`int` or `Tuple[int]`, *optional*, defaults to 8):
105
1186
  The number of heads to use in each attention layer of the motion module.
106
1187
  motion_norm_num_groups (`int`, *optional*, defaults to 32):
107
1188
  The number of groups to use in each group normalization layer of the motion module.
@@ -115,6 +1196,35 @@ class MotionAdapter(ModelMixin, ConfigMixin):
115
1196
  down_blocks = []
116
1197
  up_blocks = []
117
1198
 
1199
+ if isinstance(motion_layers_per_block, int):
1200
+ motion_layers_per_block = (motion_layers_per_block,) * len(block_out_channels)
1201
+ elif len(motion_layers_per_block) != len(block_out_channels):
1202
+ raise ValueError(
1203
+ f"The number of motion layers per block must match the number of blocks, "
1204
+ f"got {len(block_out_channels)} and {len(motion_layers_per_block)}"
1205
+ )
1206
+
1207
+ if isinstance(motion_transformer_layers_per_block, int):
1208
+ motion_transformer_layers_per_block = (motion_transformer_layers_per_block,) * len(block_out_channels)
1209
+
1210
+ if isinstance(motion_transformer_layers_per_mid_block, int):
1211
+ motion_transformer_layers_per_mid_block = (
1212
+ motion_transformer_layers_per_mid_block,
1213
+ ) * motion_mid_block_layers_per_block
1214
+ elif len(motion_transformer_layers_per_mid_block) != motion_mid_block_layers_per_block:
1215
+ raise ValueError(
1216
+ f"The number of layers per mid block ({motion_mid_block_layers_per_block}) "
1217
+ f"must match the length of motion_transformer_layers_per_mid_block ({len(motion_transformer_layers_per_mid_block)})"
1218
+ )
1219
+
1220
+ if isinstance(motion_num_attention_heads, int):
1221
+ motion_num_attention_heads = (motion_num_attention_heads,) * len(block_out_channels)
1222
+ elif len(motion_num_attention_heads) != len(block_out_channels):
1223
+ raise ValueError(
1224
+ f"The length of the attention head number tuple in the motion module must match the "
1225
+ f"number of block, got {len(motion_num_attention_heads)} and {len(block_out_channels)}"
1226
+ )
1227
+
118
1228
  if conv_in_channels:
119
1229
  # input
120
1230
  self.conv_in = nn.Conv2d(conv_in_channels, block_out_channels[0], kernel_size=3, padding=1)
@@ -130,9 +1240,10 @@ class MotionAdapter(ModelMixin, ConfigMixin):
130
1240
  cross_attention_dim=None,
131
1241
  activation_fn="geglu",
132
1242
  attention_bias=False,
133
- num_attention_heads=motion_num_attention_heads,
1243
+ num_attention_heads=motion_num_attention_heads[i],
134
1244
  max_seq_length=motion_max_seq_length,
135
- layers_per_block=motion_layers_per_block,
1245
+ layers_per_block=motion_layers_per_block[i],
1246
+ transformer_layers_per_block=motion_transformer_layers_per_block[i],
136
1247
  )
137
1248
  )
138
1249
 
@@ -143,15 +1254,20 @@ class MotionAdapter(ModelMixin, ConfigMixin):
143
1254
  cross_attention_dim=None,
144
1255
  activation_fn="geglu",
145
1256
  attention_bias=False,
146
- num_attention_heads=motion_num_attention_heads,
147
- layers_per_block=motion_mid_block_layers_per_block,
1257
+ num_attention_heads=motion_num_attention_heads[-1],
148
1258
  max_seq_length=motion_max_seq_length,
1259
+ layers_per_block=motion_mid_block_layers_per_block,
1260
+ transformer_layers_per_block=motion_transformer_layers_per_mid_block,
149
1261
  )
150
1262
  else:
151
1263
  self.mid_block = None
152
1264
 
153
1265
  reversed_block_out_channels = list(reversed(block_out_channels))
154
1266
  output_channel = reversed_block_out_channels[0]
1267
+
1268
+ reversed_motion_layers_per_block = list(reversed(motion_layers_per_block))
1269
+ reversed_motion_transformer_layers_per_block = list(reversed(motion_transformer_layers_per_block))
1270
+ reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads))
155
1271
  for i, channel in enumerate(reversed_block_out_channels):
156
1272
  output_channel = reversed_block_out_channels[i]
157
1273
  up_blocks.append(
@@ -161,9 +1277,10 @@ class MotionAdapter(ModelMixin, ConfigMixin):
161
1277
  cross_attention_dim=None,
162
1278
  activation_fn="geglu",
163
1279
  attention_bias=False,
164
- num_attention_heads=motion_num_attention_heads,
1280
+ num_attention_heads=reversed_motion_num_attention_heads[i],
165
1281
  max_seq_length=motion_max_seq_length,
166
- layers_per_block=motion_layers_per_block + 1,
1282
+ layers_per_block=reversed_motion_layers_per_block[i] + 1,
1283
+ transformer_layers_per_block=reversed_motion_transformer_layers_per_block[i],
167
1284
  )
168
1285
  )
169
1286
 
@@ -174,7 +1291,7 @@ class MotionAdapter(ModelMixin, ConfigMixin):
174
1291
  pass
175
1292
 
176
1293
 
177
- class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
1294
+ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
178
1295
  r"""
179
1296
  A modified conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a
180
1297
  sample shaped output.
@@ -204,20 +1321,31 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
204
1321
  "CrossAttnUpBlockMotion",
205
1322
  ),
206
1323
  block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
207
- layers_per_block: int = 2,
1324
+ layers_per_block: Union[int, Tuple[int]] = 2,
208
1325
  downsample_padding: int = 1,
209
1326
  mid_block_scale_factor: float = 1,
210
1327
  act_fn: str = "silu",
211
1328
  norm_num_groups: int = 32,
212
1329
  norm_eps: float = 1e-5,
213
1330
  cross_attention_dim: int = 1280,
1331
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
1332
+ reverse_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]] = None,
1333
+ temporal_transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
1334
+ reverse_temporal_transformer_layers_per_block: Optional[Union[int, Tuple[int], Tuple[Tuple]]] = None,
1335
+ transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = None,
1336
+ temporal_transformer_layers_per_mid_block: Optional[Union[int, Tuple[int]]] = 1,
214
1337
  use_linear_projection: bool = False,
215
1338
  num_attention_heads: Union[int, Tuple[int, ...]] = 8,
216
1339
  motion_max_seq_length: int = 32,
217
- motion_num_attention_heads: int = 8,
218
- use_motion_mid_block: int = True,
1340
+ motion_num_attention_heads: Union[int, Tuple[int, ...]] = 8,
1341
+ reverse_motion_num_attention_heads: Optional[Union[int, Tuple[int, ...], Tuple[Tuple[int, ...], ...]]] = None,
1342
+ use_motion_mid_block: bool = True,
1343
+ mid_block_layers: int = 1,
219
1344
  encoder_hid_dim: Optional[int] = None,
220
1345
  encoder_hid_dim_type: Optional[str] = None,
1346
+ addition_embed_type: Optional[str] = None,
1347
+ addition_time_embed_dim: Optional[int] = None,
1348
+ projection_class_embeddings_input_dim: Optional[int] = None,
221
1349
  time_cond_proj_dim: Optional[int] = None,
222
1350
  ):
223
1351
  super().__init__()
@@ -240,6 +1368,31 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
240
1368
  f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
241
1369
  )
242
1370
 
1371
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
1372
+ raise ValueError(
1373
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
1374
+ )
1375
+
1376
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
1377
+ raise ValueError(
1378
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
1379
+ )
1380
+
1381
+ if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
1382
+ for layer_number_per_block in transformer_layers_per_block:
1383
+ if isinstance(layer_number_per_block, list):
1384
+ raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
1385
+
1386
+ if (
1387
+ isinstance(temporal_transformer_layers_per_block, list)
1388
+ and reverse_temporal_transformer_layers_per_block is None
1389
+ ):
1390
+ for layer_number_per_block in temporal_transformer_layers_per_block:
1391
+ if isinstance(layer_number_per_block, list):
1392
+ raise ValueError(
1393
+ "Must provide 'reverse_temporal_transformer_layers_per_block` if using asymmetrical motion module in UNet."
1394
+ )
1395
+
243
1396
  # input
244
1397
  conv_in_kernel = 3
245
1398
  conv_out_kernel = 3
@@ -260,6 +1413,10 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
260
1413
  if encoder_hid_dim_type is None:
261
1414
  self.encoder_hid_proj = None
262
1415
 
1416
+ if addition_embed_type == "text_time":
1417
+ self.add_time_proj = Timesteps(addition_time_embed_dim, True, 0)
1418
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
1419
+
263
1420
  # class embedding
264
1421
  self.down_blocks = nn.ModuleList([])
265
1422
  self.up_blocks = nn.ModuleList([])
@@ -267,6 +1424,29 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
267
1424
  if isinstance(num_attention_heads, int):
268
1425
  num_attention_heads = (num_attention_heads,) * len(down_block_types)
269
1426
 
1427
+ if isinstance(cross_attention_dim, int):
1428
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
1429
+
1430
+ if isinstance(layers_per_block, int):
1431
+ layers_per_block = [layers_per_block] * len(down_block_types)
1432
+
1433
+ if isinstance(transformer_layers_per_block, int):
1434
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
1435
+
1436
+ if isinstance(reverse_transformer_layers_per_block, int):
1437
+ reverse_transformer_layers_per_block = [reverse_transformer_layers_per_block] * len(down_block_types)
1438
+
1439
+ if isinstance(temporal_transformer_layers_per_block, int):
1440
+ temporal_transformer_layers_per_block = [temporal_transformer_layers_per_block] * len(down_block_types)
1441
+
1442
+ if isinstance(reverse_temporal_transformer_layers_per_block, int):
1443
+ reverse_temporal_transformer_layers_per_block = [reverse_temporal_transformer_layers_per_block] * len(
1444
+ down_block_types
1445
+ )
1446
+
1447
+ if isinstance(motion_num_attention_heads, int):
1448
+ motion_num_attention_heads = (motion_num_attention_heads,) * len(down_block_types)
1449
+
270
1450
  # down
271
1451
  output_channel = block_out_channels[0]
272
1452
  for i, down_block_type in enumerate(down_block_types):
@@ -274,27 +1454,53 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
274
1454
  output_channel = block_out_channels[i]
275
1455
  is_final_block = i == len(block_out_channels) - 1
276
1456
 
277
- down_block = get_down_block(
278
- down_block_type,
279
- num_layers=layers_per_block,
280
- in_channels=input_channel,
281
- out_channels=output_channel,
282
- temb_channels=time_embed_dim,
283
- add_downsample=not is_final_block,
284
- resnet_eps=norm_eps,
285
- resnet_act_fn=act_fn,
286
- resnet_groups=norm_num_groups,
287
- cross_attention_dim=cross_attention_dim,
288
- num_attention_heads=num_attention_heads[i],
289
- downsample_padding=downsample_padding,
290
- use_linear_projection=use_linear_projection,
291
- dual_cross_attention=False,
292
- temporal_num_attention_heads=motion_num_attention_heads,
293
- temporal_max_seq_length=motion_max_seq_length,
294
- )
1457
+ if down_block_type == "CrossAttnDownBlockMotion":
1458
+ down_block = CrossAttnDownBlockMotion(
1459
+ in_channels=input_channel,
1460
+ out_channels=output_channel,
1461
+ temb_channels=time_embed_dim,
1462
+ num_layers=layers_per_block[i],
1463
+ transformer_layers_per_block=transformer_layers_per_block[i],
1464
+ resnet_eps=norm_eps,
1465
+ resnet_act_fn=act_fn,
1466
+ resnet_groups=norm_num_groups,
1467
+ num_attention_heads=num_attention_heads[i],
1468
+ cross_attention_dim=cross_attention_dim[i],
1469
+ downsample_padding=downsample_padding,
1470
+ add_downsample=not is_final_block,
1471
+ use_linear_projection=use_linear_projection,
1472
+ temporal_num_attention_heads=motion_num_attention_heads[i],
1473
+ temporal_max_seq_length=motion_max_seq_length,
1474
+ temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i],
1475
+ )
1476
+ elif down_block_type == "DownBlockMotion":
1477
+ down_block = DownBlockMotion(
1478
+ in_channels=input_channel,
1479
+ out_channels=output_channel,
1480
+ temb_channels=time_embed_dim,
1481
+ num_layers=layers_per_block[i],
1482
+ resnet_eps=norm_eps,
1483
+ resnet_act_fn=act_fn,
1484
+ resnet_groups=norm_num_groups,
1485
+ add_downsample=not is_final_block,
1486
+ downsample_padding=downsample_padding,
1487
+ temporal_num_attention_heads=motion_num_attention_heads[i],
1488
+ temporal_max_seq_length=motion_max_seq_length,
1489
+ temporal_transformer_layers_per_block=temporal_transformer_layers_per_block[i],
1490
+ )
1491
+ else:
1492
+ raise ValueError(
1493
+ "Invalid `down_block_type` encountered. Must be one of `CrossAttnDownBlockMotion` or `DownBlockMotion`"
1494
+ )
1495
+
295
1496
  self.down_blocks.append(down_block)
296
1497
 
297
1498
  # mid
1499
+ if transformer_layers_per_mid_block is None:
1500
+ transformer_layers_per_mid_block = (
1501
+ transformer_layers_per_block[-1] if isinstance(transformer_layers_per_block[-1], int) else 1
1502
+ )
1503
+
298
1504
  if use_motion_mid_block:
299
1505
  self.mid_block = UNetMidBlockCrossAttnMotion(
300
1506
  in_channels=block_out_channels[-1],
@@ -302,13 +1508,16 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
302
1508
  resnet_eps=norm_eps,
303
1509
  resnet_act_fn=act_fn,
304
1510
  output_scale_factor=mid_block_scale_factor,
305
- cross_attention_dim=cross_attention_dim,
1511
+ cross_attention_dim=cross_attention_dim[-1],
306
1512
  num_attention_heads=num_attention_heads[-1],
307
1513
  resnet_groups=norm_num_groups,
308
1514
  dual_cross_attention=False,
309
1515
  use_linear_projection=use_linear_projection,
310
- temporal_num_attention_heads=motion_num_attention_heads,
1516
+ num_layers=mid_block_layers,
1517
+ temporal_num_attention_heads=motion_num_attention_heads[-1],
311
1518
  temporal_max_seq_length=motion_max_seq_length,
1519
+ transformer_layers_per_block=transformer_layers_per_mid_block,
1520
+ temporal_transformer_layers_per_block=temporal_transformer_layers_per_mid_block,
312
1521
  )
313
1522
 
314
1523
  else:
@@ -318,11 +1527,13 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
318
1527
  resnet_eps=norm_eps,
319
1528
  resnet_act_fn=act_fn,
320
1529
  output_scale_factor=mid_block_scale_factor,
321
- cross_attention_dim=cross_attention_dim,
1530
+ cross_attention_dim=cross_attention_dim[-1],
322
1531
  num_attention_heads=num_attention_heads[-1],
323
1532
  resnet_groups=norm_num_groups,
324
1533
  dual_cross_attention=False,
325
1534
  use_linear_projection=use_linear_projection,
1535
+ num_layers=mid_block_layers,
1536
+ transformer_layers_per_block=transformer_layers_per_mid_block,
326
1537
  )
327
1538
 
328
1539
  # count how many layers upsample the images
@@ -331,6 +1542,15 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
331
1542
  # up
332
1543
  reversed_block_out_channels = list(reversed(block_out_channels))
333
1544
  reversed_num_attention_heads = list(reversed(num_attention_heads))
1545
+ reversed_layers_per_block = list(reversed(layers_per_block))
1546
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
1547
+ reversed_motion_num_attention_heads = list(reversed(motion_num_attention_heads))
1548
+
1549
+ if reverse_transformer_layers_per_block is None:
1550
+ reverse_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
1551
+
1552
+ if reverse_temporal_transformer_layers_per_block is None:
1553
+ reverse_temporal_transformer_layers_per_block = list(reversed(temporal_transformer_layers_per_block))
334
1554
 
335
1555
  output_channel = reversed_block_out_channels[0]
336
1556
  for i, up_block_type in enumerate(up_block_types):
@@ -347,25 +1567,47 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
347
1567
  else:
348
1568
  add_upsample = False
349
1569
 
350
- up_block = get_up_block(
351
- up_block_type,
352
- num_layers=layers_per_block + 1,
353
- in_channels=input_channel,
354
- out_channels=output_channel,
355
- prev_output_channel=prev_output_channel,
356
- temb_channels=time_embed_dim,
357
- add_upsample=add_upsample,
358
- resnet_eps=norm_eps,
359
- resnet_act_fn=act_fn,
360
- resnet_groups=norm_num_groups,
361
- cross_attention_dim=cross_attention_dim,
362
- num_attention_heads=reversed_num_attention_heads[i],
363
- dual_cross_attention=False,
364
- resolution_idx=i,
365
- use_linear_projection=use_linear_projection,
366
- temporal_num_attention_heads=motion_num_attention_heads,
367
- temporal_max_seq_length=motion_max_seq_length,
368
- )
1570
+ if up_block_type == "CrossAttnUpBlockMotion":
1571
+ up_block = CrossAttnUpBlockMotion(
1572
+ in_channels=input_channel,
1573
+ out_channels=output_channel,
1574
+ prev_output_channel=prev_output_channel,
1575
+ temb_channels=time_embed_dim,
1576
+ resolution_idx=i,
1577
+ num_layers=reversed_layers_per_block[i] + 1,
1578
+ transformer_layers_per_block=reverse_transformer_layers_per_block[i],
1579
+ resnet_eps=norm_eps,
1580
+ resnet_act_fn=act_fn,
1581
+ resnet_groups=norm_num_groups,
1582
+ num_attention_heads=reversed_num_attention_heads[i],
1583
+ cross_attention_dim=reversed_cross_attention_dim[i],
1584
+ add_upsample=add_upsample,
1585
+ use_linear_projection=use_linear_projection,
1586
+ temporal_num_attention_heads=reversed_motion_num_attention_heads[i],
1587
+ temporal_max_seq_length=motion_max_seq_length,
1588
+ temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i],
1589
+ )
1590
+ elif up_block_type == "UpBlockMotion":
1591
+ up_block = UpBlockMotion(
1592
+ in_channels=input_channel,
1593
+ prev_output_channel=prev_output_channel,
1594
+ out_channels=output_channel,
1595
+ temb_channels=time_embed_dim,
1596
+ resolution_idx=i,
1597
+ num_layers=reversed_layers_per_block[i] + 1,
1598
+ resnet_eps=norm_eps,
1599
+ resnet_act_fn=act_fn,
1600
+ resnet_groups=norm_num_groups,
1601
+ add_upsample=add_upsample,
1602
+ temporal_num_attention_heads=reversed_motion_num_attention_heads[i],
1603
+ temporal_max_seq_length=motion_max_seq_length,
1604
+ temporal_transformer_layers_per_block=reverse_temporal_transformer_layers_per_block[i],
1605
+ )
1606
+ else:
1607
+ raise ValueError(
1608
+ "Invalid `up_block_type` encountered. Must be one of `CrossAttnUpBlockMotion` or `UpBlockMotion`"
1609
+ )
1610
+
369
1611
  self.up_blocks.append(up_block)
370
1612
  prev_output_channel = output_channel
371
1613
 
@@ -393,8 +1635,29 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
393
1635
  ):
394
1636
  has_motion_adapter = motion_adapter is not None
395
1637
 
1638
+ if has_motion_adapter:
1639
+ motion_adapter.to(device=unet.device)
1640
+
1641
+ # check compatibility of number of blocks
1642
+ if len(unet.config["down_block_types"]) != len(motion_adapter.config["block_out_channels"]):
1643
+ raise ValueError("Incompatible Motion Adapter, got different number of blocks")
1644
+
1645
+ # check layers compatibility for each block
1646
+ if isinstance(unet.config["layers_per_block"], int):
1647
+ expanded_layers_per_block = [unet.config["layers_per_block"]] * len(unet.config["down_block_types"])
1648
+ else:
1649
+ expanded_layers_per_block = list(unet.config["layers_per_block"])
1650
+ if isinstance(motion_adapter.config["motion_layers_per_block"], int):
1651
+ expanded_adapter_layers_per_block = [motion_adapter.config["motion_layers_per_block"]] * len(
1652
+ motion_adapter.config["block_out_channels"]
1653
+ )
1654
+ else:
1655
+ expanded_adapter_layers_per_block = list(motion_adapter.config["motion_layers_per_block"])
1656
+ if expanded_layers_per_block != expanded_adapter_layers_per_block:
1657
+ raise ValueError("Incompatible Motion Adapter, got different number of layers per block")
1658
+
396
1659
  # based on https://github.com/guoyww/AnimateDiff/blob/895f3220c06318ea0760131ec70408b466c49333/animatediff/models/unet.py#L459
397
- config = unet.config
1660
+ config = dict(unet.config)
398
1661
  config["_class_name"] = cls.__name__
399
1662
 
400
1663
  down_blocks = []
@@ -411,13 +1674,20 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
411
1674
  up_blocks.append("CrossAttnUpBlockMotion")
412
1675
  else:
413
1676
  up_blocks.append("UpBlockMotion")
414
-
415
1677
  config["up_block_types"] = up_blocks
416
1678
 
417
1679
  if has_motion_adapter:
418
1680
  config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"]
419
1681
  config["motion_max_seq_length"] = motion_adapter.config["motion_max_seq_length"]
420
1682
  config["use_motion_mid_block"] = motion_adapter.config["use_motion_mid_block"]
1683
+ config["layers_per_block"] = motion_adapter.config["motion_layers_per_block"]
1684
+ config["temporal_transformer_layers_per_mid_block"] = motion_adapter.config[
1685
+ "motion_transformer_layers_per_mid_block"
1686
+ ]
1687
+ config["temporal_transformer_layers_per_block"] = motion_adapter.config[
1688
+ "motion_transformer_layers_per_block"
1689
+ ]
1690
+ config["motion_num_attention_heads"] = motion_adapter.config["motion_num_attention_heads"]
421
1691
 
422
1692
  # For PIA UNets we need to set the number input channels to 9
423
1693
  if motion_adapter.config["conv_in_channels"]:
@@ -427,6 +1697,9 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
427
1697
  if not config.get("num_attention_heads"):
428
1698
  config["num_attention_heads"] = config["attention_head_dim"]
429
1699
 
1700
+ expected_kwargs, optional_kwargs = cls._get_signature_keys(cls)
1701
+ config = FrozenDict({k: config.get(k) for k in config if k in expected_kwargs or k in optional_kwargs})
1702
+ config["_class_name"] = cls.__name__
430
1703
  model = cls.from_config(config)
431
1704
 
432
1705
  if not load_weights:
@@ -446,6 +1719,36 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
446
1719
  model.time_proj.load_state_dict(unet.time_proj.state_dict())
447
1720
  model.time_embedding.load_state_dict(unet.time_embedding.state_dict())
448
1721
 
1722
+ if any(
1723
+ isinstance(proc, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0))
1724
+ for proc in unet.attn_processors.values()
1725
+ ):
1726
+ attn_procs = {}
1727
+ for name, processor in unet.attn_processors.items():
1728
+ if name.endswith("attn1.processor"):
1729
+ attn_processor_class = (
1730
+ AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
1731
+ )
1732
+ attn_procs[name] = attn_processor_class()
1733
+ else:
1734
+ attn_processor_class = (
1735
+ IPAdapterAttnProcessor2_0
1736
+ if hasattr(F, "scaled_dot_product_attention")
1737
+ else IPAdapterAttnProcessor
1738
+ )
1739
+ attn_procs[name] = attn_processor_class(
1740
+ hidden_size=processor.hidden_size,
1741
+ cross_attention_dim=processor.cross_attention_dim,
1742
+ scale=processor.scale,
1743
+ num_tokens=processor.num_tokens,
1744
+ )
1745
+ for name, processor in model.attn_processors.items():
1746
+ if name not in attn_procs:
1747
+ attn_procs[name] = processor.__class__()
1748
+ model.set_attn_processor(attn_procs)
1749
+ model.config.encoder_hid_dim_type = "ip_image_proj"
1750
+ model.encoder_hid_proj = unet.encoder_hid_proj
1751
+
449
1752
  for i, down_block in enumerate(unet.down_blocks):
450
1753
  model.down_blocks[i].resnets.load_state_dict(down_block.resnets.state_dict())
451
1754
  if hasattr(model.down_blocks[i], "attentions"):
@@ -559,7 +1862,7 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
559
1862
 
560
1863
  def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
561
1864
  if hasattr(module, "get_processor"):
562
- processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
1865
+ processors[f"{name}.processor"] = module.get_processor()
563
1866
 
564
1867
  for sub_name, child in module.named_children():
565
1868
  fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
@@ -606,7 +1909,6 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
606
1909
  for name, module in self.named_children():
607
1910
  fn_recursive_attn_processor(name, module, processor)
608
1911
 
609
- # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
610
1912
  def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
611
1913
  """
612
1914
  Sets the attention processor to use [feed forward
@@ -636,7 +1938,6 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
636
1938
  for module in self.children():
637
1939
  fn_recursive_feed_forward(module, chunk_size, dim)
638
1940
 
639
- # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
640
1941
  def disable_forward_chunking(self) -> None:
641
1942
  def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
642
1943
  if hasattr(module, "set_chunk_feed_forward"):
@@ -705,8 +2006,8 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
705
2006
  # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
706
2007
  def fuse_qkv_projections(self):
707
2008
  """
708
- Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
709
- key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
2009
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
2010
+ are fused. For cross-attention modules, key and value projection matrices are fused.
710
2011
 
711
2012
  <Tip warning={true}>
712
2013
 
@@ -726,6 +2027,8 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
726
2027
  if isinstance(module, Attention):
727
2028
  module.fuse_projections(fuse=True)
728
2029
 
2030
+ self.set_attn_processor(FusedAttnProcessor2_0())
2031
+
729
2032
  # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
730
2033
  def unfuse_qkv_projections(self):
731
2034
  """Disables the fused QKV projection if enabled.
@@ -742,7 +2045,7 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
742
2045
 
743
2046
  def forward(
744
2047
  self,
745
- sample: torch.FloatTensor,
2048
+ sample: torch.Tensor,
746
2049
  timestep: Union[torch.Tensor, float, int],
747
2050
  encoder_hidden_states: torch.Tensor,
748
2051
  timestep_cond: Optional[torch.Tensor] = None,
@@ -752,15 +2055,15 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
752
2055
  down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
753
2056
  mid_block_additional_residual: Optional[torch.Tensor] = None,
754
2057
  return_dict: bool = True,
755
- ) -> Union[UNet3DConditionOutput, Tuple[torch.Tensor]]:
2058
+ ) -> Union[UNetMotionOutput, Tuple[torch.Tensor]]:
756
2059
  r"""
757
2060
  The [`UNetMotionModel`] forward method.
758
2061
 
759
2062
  Args:
760
- sample (`torch.FloatTensor`):
2063
+ sample (`torch.Tensor`):
761
2064
  The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`.
762
- timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
763
- encoder_hidden_states (`torch.FloatTensor`):
2065
+ timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
2066
+ encoder_hidden_states (`torch.Tensor`):
764
2067
  The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
765
2068
  timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
766
2069
  Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
@@ -778,13 +2081,13 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
778
2081
  mid_block_additional_residual: (`torch.Tensor`, *optional*):
779
2082
  A tensor that if specified is added to the residual of the middle unet block.
780
2083
  return_dict (`bool`, *optional*, defaults to `True`):
781
- Whether or not to return a [`~models.unet_3d_condition.UNet3DConditionOutput`] instead of a plain
2084
+ Whether or not to return a [`~models.unets.unet_motion_model.UNetMotionOutput`] instead of a plain
782
2085
  tuple.
783
2086
 
784
2087
  Returns:
785
- [`~models.unet_3d_condition.UNet3DConditionOutput`] or `tuple`:
786
- If `return_dict` is True, an [`~models.unet_3d_condition.UNet3DConditionOutput`] is returned, otherwise
787
- a `tuple` is returned where the first element is the sample tensor.
2088
+ [`~models.unets.unet_motion_model.UNetMotionOutput`] or `tuple`:
2089
+ If `return_dict` is True, an [`~models.unets.unet_motion_model.UNetMotionOutput`] is returned,
2090
+ otherwise a `tuple` is returned where the first element is the sample tensor.
788
2091
  """
789
2092
  # By default samples have to be AT least a multiple of the overall upsampling factor.
790
2093
  # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
@@ -831,8 +2134,29 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
831
2134
  t_emb = t_emb.to(dtype=self.dtype)
832
2135
 
833
2136
  emb = self.time_embedding(t_emb, timestep_cond)
2137
+ aug_emb = None
2138
+
2139
+ if self.config.addition_embed_type == "text_time":
2140
+ if "text_embeds" not in added_cond_kwargs:
2141
+ raise ValueError(
2142
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
2143
+ )
2144
+
2145
+ text_embeds = added_cond_kwargs.get("text_embeds")
2146
+ if "time_ids" not in added_cond_kwargs:
2147
+ raise ValueError(
2148
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
2149
+ )
2150
+ time_ids = added_cond_kwargs.get("time_ids")
2151
+ time_embeds = self.add_time_proj(time_ids.flatten())
2152
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
2153
+
2154
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
2155
+ add_embeds = add_embeds.to(emb.dtype)
2156
+ aug_emb = self.add_embedding(add_embeds)
2157
+
2158
+ emb = emb if aug_emb is None else emb + aug_emb
834
2159
  emb = emb.repeat_interleave(repeats=num_frames, dim=0)
835
- encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)
836
2160
 
837
2161
  if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
838
2162
  if "image_embeds" not in added_cond_kwargs:
@@ -945,4 +2269,4 @@ class UNetMotionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
945
2269
  if not return_dict:
946
2270
  return (sample,)
947
2271
 
948
- return UNet3DConditionOutput(sample=sample)
2272
+ return UNetMotionOutput(sample=sample)