diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1341 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn.functional as F
20
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
21
+
22
+ from ...image_processor import PipelineImageInput
23
+ from ...loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
24
+ from ...models import (
25
+ AutoencoderKL,
26
+ ControlNetModel,
27
+ ImageProjection,
28
+ MultiControlNetModel,
29
+ UNet2DConditionModel,
30
+ UNetMotionModel,
31
+ )
32
+ from ...models.lora import adjust_lora_scale_text_encoder
33
+ from ...models.unets.unet_motion_model import MotionAdapter
34
+ from ...schedulers import (
35
+ DDIMScheduler,
36
+ DPMSolverMultistepScheduler,
37
+ EulerAncestralDiscreteScheduler,
38
+ EulerDiscreteScheduler,
39
+ LMSDiscreteScheduler,
40
+ PNDMScheduler,
41
+ )
42
+ from ...utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
43
+ from ...utils.torch_utils import is_compiled_module, randn_tensor
44
+ from ...video_processor import VideoProcessor
45
+ from ..free_init_utils import FreeInitMixin
46
+ from ..free_noise_utils import AnimateDiffFreeNoiseMixin
47
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
48
+ from .pipeline_output import AnimateDiffPipelineOutput
49
+
50
+
51
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
52
+
53
+ EXAMPLE_DOC_STRING = """
54
+ Examples:
55
+ ```py
56
+ >>> import torch
57
+ >>> from PIL import Image
58
+ >>> from tqdm.auto import tqdm
59
+
60
+ >>> from diffusers import AnimateDiffVideoToVideoControlNetPipeline
61
+ >>> from diffusers.utils import export_to_gif, load_video
62
+ >>> from diffusers import AutoencoderKL, ControlNetModel, MotionAdapter, LCMScheduler
63
+
64
+ >>> controlnet = ControlNetModel.from_pretrained(
65
+ ... "lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
66
+ ... )
67
+ >>> motion_adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM")
68
+ >>> vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
69
+
70
+ >>> pipe = AnimateDiffVideoToVideoControlNetPipeline.from_pretrained(
71
+ ... "SG161222/Realistic_Vision_V5.1_noVAE",
72
+ ... motion_adapter=motion_adapter,
73
+ ... controlnet=controlnet,
74
+ ... vae=vae,
75
+ ... ).to(device="cuda", dtype=torch.float16)
76
+
77
+ >>> pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear")
78
+ >>> pipe.load_lora_weights(
79
+ ... "wangfuyun/AnimateLCM", weight_name="AnimateLCM_sd15_t2v_lora.safetensors", adapter_name="lcm-lora"
80
+ ... )
81
+ >>> pipe.set_adapters(["lcm-lora"], [0.8])
82
+
83
+ >>> video = load_video(
84
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/dance.gif"
85
+ ... )
86
+ >>> video = [frame.convert("RGB") for frame in video]
87
+
88
+ >>> from controlnet_aux.processor import OpenposeDetector
89
+
90
+ >>> open_pose = OpenposeDetector.from_pretrained("lllyasviel/Annotators").to("cuda")
91
+ >>> for frame in tqdm(video):
92
+ ... conditioning_frames.append(open_pose(frame))
93
+
94
+ >>> prompt = "astronaut in space, dancing"
95
+ >>> negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
96
+
97
+ >>> strength = 0.8
98
+ >>> with torch.inference_mode():
99
+ ... video = pipe(
100
+ ... video=video,
101
+ ... prompt=prompt,
102
+ ... negative_prompt=negative_prompt,
103
+ ... num_inference_steps=10,
104
+ ... guidance_scale=2.0,
105
+ ... controlnet_conditioning_scale=0.75,
106
+ ... conditioning_frames=conditioning_frames,
107
+ ... strength=strength,
108
+ ... generator=torch.Generator().manual_seed(42),
109
+ ... ).frames[0]
110
+
111
+ >>> video = [frame.resize(conditioning_frames[0].size) for frame in video]
112
+ >>> export_to_gif(video, f"animatediff_vid2vid_controlnet.gif", fps=8)
113
+ ```
114
+ """
115
+
116
+
117
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
118
+ def retrieve_latents(
119
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
120
+ ):
121
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
122
+ return encoder_output.latent_dist.sample(generator)
123
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
124
+ return encoder_output.latent_dist.mode()
125
+ elif hasattr(encoder_output, "latents"):
126
+ return encoder_output.latents
127
+ else:
128
+ raise AttributeError("Could not access latents of provided encoder_output")
129
+
130
+
131
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
132
+ def retrieve_timesteps(
133
+ scheduler,
134
+ num_inference_steps: Optional[int] = None,
135
+ device: Optional[Union[str, torch.device]] = None,
136
+ timesteps: Optional[List[int]] = None,
137
+ sigmas: Optional[List[float]] = None,
138
+ **kwargs,
139
+ ):
140
+ r"""
141
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
142
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
143
+
144
+ Args:
145
+ scheduler (`SchedulerMixin`):
146
+ The scheduler to get timesteps from.
147
+ num_inference_steps (`int`):
148
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
149
+ must be `None`.
150
+ device (`str` or `torch.device`, *optional*):
151
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
152
+ timesteps (`List[int]`, *optional*):
153
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
154
+ `num_inference_steps` and `sigmas` must be `None`.
155
+ sigmas (`List[float]`, *optional*):
156
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
157
+ `num_inference_steps` and `timesteps` must be `None`.
158
+
159
+ Returns:
160
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
161
+ second element is the number of inference steps.
162
+ """
163
+ if timesteps is not None and sigmas is not None:
164
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
165
+ if timesteps is not None:
166
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
167
+ if not accepts_timesteps:
168
+ raise ValueError(
169
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
170
+ f" timestep schedules. Please check whether you are using the correct scheduler."
171
+ )
172
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
173
+ timesteps = scheduler.timesteps
174
+ num_inference_steps = len(timesteps)
175
+ elif sigmas is not None:
176
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
177
+ if not accept_sigmas:
178
+ raise ValueError(
179
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
180
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
181
+ )
182
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
183
+ timesteps = scheduler.timesteps
184
+ num_inference_steps = len(timesteps)
185
+ else:
186
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
187
+ timesteps = scheduler.timesteps
188
+ return timesteps, num_inference_steps
189
+
190
+
191
+ class AnimateDiffVideoToVideoControlNetPipeline(
192
+ DiffusionPipeline,
193
+ StableDiffusionMixin,
194
+ TextualInversionLoaderMixin,
195
+ IPAdapterMixin,
196
+ StableDiffusionLoraLoaderMixin,
197
+ FreeInitMixin,
198
+ AnimateDiffFreeNoiseMixin,
199
+ ):
200
+ r"""
201
+ Pipeline for video-to-video generation with ControlNet guidance.
202
+
203
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
204
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
205
+
206
+ The pipeline also inherits the following loading methods:
207
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
208
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
209
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
210
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
211
+
212
+ Args:
213
+ vae ([`AutoencoderKL`]):
214
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
215
+ text_encoder ([`CLIPTextModel`]):
216
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
217
+ tokenizer (`CLIPTokenizer`):
218
+ A [`~transformers.CLIPTokenizer`] to tokenize text.
219
+ unet ([`UNet2DConditionModel`]):
220
+ A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents.
221
+ motion_adapter ([`MotionAdapter`]):
222
+ A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents.
223
+ controlnet ([`ControlNetModel`] or `List[ControlNetModel]` or `Tuple[ControlNetModel]` or `MultiControlNetModel`):
224
+ Provides additional conditioning to the `unet` during the denoising process. If you set multiple
225
+ ControlNets as a list, the outputs from each ControlNet are added together to create one combined
226
+ additional conditioning.
227
+ scheduler ([`SchedulerMixin`]):
228
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
229
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
230
+ """
231
+
232
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
233
+ _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"]
234
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
235
+
236
+ def __init__(
237
+ self,
238
+ vae: AutoencoderKL,
239
+ text_encoder: CLIPTextModel,
240
+ tokenizer: CLIPTokenizer,
241
+ unet: UNet2DConditionModel,
242
+ motion_adapter: MotionAdapter,
243
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
244
+ scheduler: Union[
245
+ DDIMScheduler,
246
+ PNDMScheduler,
247
+ LMSDiscreteScheduler,
248
+ EulerDiscreteScheduler,
249
+ EulerAncestralDiscreteScheduler,
250
+ DPMSolverMultistepScheduler,
251
+ ],
252
+ feature_extractor: CLIPImageProcessor = None,
253
+ image_encoder: CLIPVisionModelWithProjection = None,
254
+ ):
255
+ super().__init__()
256
+ if isinstance(unet, UNet2DConditionModel):
257
+ unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
258
+
259
+ if isinstance(controlnet, (list, tuple)):
260
+ controlnet = MultiControlNetModel(controlnet)
261
+
262
+ self.register_modules(
263
+ vae=vae,
264
+ text_encoder=text_encoder,
265
+ tokenizer=tokenizer,
266
+ unet=unet,
267
+ motion_adapter=motion_adapter,
268
+ controlnet=controlnet,
269
+ scheduler=scheduler,
270
+ feature_extractor=feature_extractor,
271
+ image_encoder=image_encoder,
272
+ )
273
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
274
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
275
+ self.control_video_processor = VideoProcessor(
276
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
277
+ )
278
+
279
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.encode_prompt
280
+ def encode_prompt(
281
+ self,
282
+ prompt,
283
+ device,
284
+ num_images_per_prompt,
285
+ do_classifier_free_guidance,
286
+ negative_prompt=None,
287
+ prompt_embeds: Optional[torch.Tensor] = None,
288
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
289
+ lora_scale: Optional[float] = None,
290
+ clip_skip: Optional[int] = None,
291
+ ):
292
+ r"""
293
+ Encodes the prompt into text encoder hidden states.
294
+
295
+ Args:
296
+ prompt (`str` or `List[str]`, *optional*):
297
+ prompt to be encoded
298
+ device: (`torch.device`):
299
+ torch device
300
+ num_images_per_prompt (`int`):
301
+ number of images that should be generated per prompt
302
+ do_classifier_free_guidance (`bool`):
303
+ whether to use classifier free guidance or not
304
+ negative_prompt (`str` or `List[str]`, *optional*):
305
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
306
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
307
+ less than `1`).
308
+ prompt_embeds (`torch.Tensor`, *optional*):
309
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
310
+ provided, text embeddings will be generated from `prompt` input argument.
311
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
312
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
313
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
314
+ argument.
315
+ lora_scale (`float`, *optional*):
316
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
317
+ clip_skip (`int`, *optional*):
318
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
319
+ the output of the pre-final layer will be used for computing the prompt embeddings.
320
+ """
321
+ # set lora scale so that monkey patched LoRA
322
+ # function of text encoder can correctly access it
323
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
324
+ self._lora_scale = lora_scale
325
+
326
+ # dynamically adjust the LoRA scale
327
+ if not USE_PEFT_BACKEND:
328
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
329
+ else:
330
+ scale_lora_layers(self.text_encoder, lora_scale)
331
+
332
+ if prompt is not None and isinstance(prompt, (str, dict)):
333
+ batch_size = 1
334
+ elif prompt is not None and isinstance(prompt, list):
335
+ batch_size = len(prompt)
336
+ else:
337
+ batch_size = prompt_embeds.shape[0]
338
+
339
+ if prompt_embeds is None:
340
+ # textual inversion: process multi-vector tokens if necessary
341
+ if isinstance(self, TextualInversionLoaderMixin):
342
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
343
+
344
+ text_inputs = self.tokenizer(
345
+ prompt,
346
+ padding="max_length",
347
+ max_length=self.tokenizer.model_max_length,
348
+ truncation=True,
349
+ return_tensors="pt",
350
+ )
351
+ text_input_ids = text_inputs.input_ids
352
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
353
+
354
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
355
+ text_input_ids, untruncated_ids
356
+ ):
357
+ removed_text = self.tokenizer.batch_decode(
358
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
359
+ )
360
+ logger.warning(
361
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
362
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
363
+ )
364
+
365
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
366
+ attention_mask = text_inputs.attention_mask.to(device)
367
+ else:
368
+ attention_mask = None
369
+
370
+ if clip_skip is None:
371
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
372
+ prompt_embeds = prompt_embeds[0]
373
+ else:
374
+ prompt_embeds = self.text_encoder(
375
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
376
+ )
377
+ # Access the `hidden_states` first, that contains a tuple of
378
+ # all the hidden states from the encoder layers. Then index into
379
+ # the tuple to access the hidden states from the desired layer.
380
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
381
+ # We also need to apply the final LayerNorm here to not mess with the
382
+ # representations. The `last_hidden_states` that we typically use for
383
+ # obtaining the final prompt representations passes through the LayerNorm
384
+ # layer.
385
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
386
+
387
+ if self.text_encoder is not None:
388
+ prompt_embeds_dtype = self.text_encoder.dtype
389
+ elif self.unet is not None:
390
+ prompt_embeds_dtype = self.unet.dtype
391
+ else:
392
+ prompt_embeds_dtype = prompt_embeds.dtype
393
+
394
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
395
+
396
+ bs_embed, seq_len, _ = prompt_embeds.shape
397
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
398
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
399
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
400
+
401
+ # get unconditional embeddings for classifier free guidance
402
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
403
+ uncond_tokens: List[str]
404
+ if negative_prompt is None:
405
+ uncond_tokens = [""] * batch_size
406
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
407
+ raise TypeError(
408
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
409
+ f" {type(prompt)}."
410
+ )
411
+ elif isinstance(negative_prompt, str):
412
+ uncond_tokens = [negative_prompt]
413
+ elif batch_size != len(negative_prompt):
414
+ raise ValueError(
415
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
416
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
417
+ " the batch size of `prompt`."
418
+ )
419
+ else:
420
+ uncond_tokens = negative_prompt
421
+
422
+ # textual inversion: process multi-vector tokens if necessary
423
+ if isinstance(self, TextualInversionLoaderMixin):
424
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
425
+
426
+ max_length = prompt_embeds.shape[1]
427
+ uncond_input = self.tokenizer(
428
+ uncond_tokens,
429
+ padding="max_length",
430
+ max_length=max_length,
431
+ truncation=True,
432
+ return_tensors="pt",
433
+ )
434
+
435
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
436
+ attention_mask = uncond_input.attention_mask.to(device)
437
+ else:
438
+ attention_mask = None
439
+
440
+ negative_prompt_embeds = self.text_encoder(
441
+ uncond_input.input_ids.to(device),
442
+ attention_mask=attention_mask,
443
+ )
444
+ negative_prompt_embeds = negative_prompt_embeds[0]
445
+
446
+ if do_classifier_free_guidance:
447
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
448
+ seq_len = negative_prompt_embeds.shape[1]
449
+
450
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
451
+
452
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
453
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
454
+
455
+ if self.text_encoder is not None:
456
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
457
+ # Retrieve the original scale by scaling back the LoRA layers
458
+ unscale_lora_layers(self.text_encoder, lora_scale)
459
+
460
+ return prompt_embeds, negative_prompt_embeds
461
+
462
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
463
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
464
+ dtype = next(self.image_encoder.parameters()).dtype
465
+
466
+ if not isinstance(image, torch.Tensor):
467
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
468
+
469
+ image = image.to(device=device, dtype=dtype)
470
+ if output_hidden_states:
471
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
472
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
473
+ uncond_image_enc_hidden_states = self.image_encoder(
474
+ torch.zeros_like(image), output_hidden_states=True
475
+ ).hidden_states[-2]
476
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
477
+ num_images_per_prompt, dim=0
478
+ )
479
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
480
+ else:
481
+ image_embeds = self.image_encoder(image).image_embeds
482
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
483
+ uncond_image_embeds = torch.zeros_like(image_embeds)
484
+
485
+ return image_embeds, uncond_image_embeds
486
+
487
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
488
+ def prepare_ip_adapter_image_embeds(
489
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
490
+ ):
491
+ image_embeds = []
492
+ if do_classifier_free_guidance:
493
+ negative_image_embeds = []
494
+ if ip_adapter_image_embeds is None:
495
+ if not isinstance(ip_adapter_image, list):
496
+ ip_adapter_image = [ip_adapter_image]
497
+
498
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
499
+ raise ValueError(
500
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
501
+ )
502
+
503
+ for single_ip_adapter_image, image_proj_layer in zip(
504
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
505
+ ):
506
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
507
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
508
+ single_ip_adapter_image, device, 1, output_hidden_state
509
+ )
510
+
511
+ image_embeds.append(single_image_embeds[None, :])
512
+ if do_classifier_free_guidance:
513
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
514
+ else:
515
+ for single_image_embeds in ip_adapter_image_embeds:
516
+ if do_classifier_free_guidance:
517
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
518
+ negative_image_embeds.append(single_negative_image_embeds)
519
+ image_embeds.append(single_image_embeds)
520
+
521
+ ip_adapter_image_embeds = []
522
+ for i, single_image_embeds in enumerate(image_embeds):
523
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
524
+ if do_classifier_free_guidance:
525
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
526
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
527
+
528
+ single_image_embeds = single_image_embeds.to(device=device)
529
+ ip_adapter_image_embeds.append(single_image_embeds)
530
+
531
+ return ip_adapter_image_embeds
532
+
533
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.encode_video
534
+ def encode_video(self, video, generator, decode_chunk_size: int = 16) -> torch.Tensor:
535
+ latents = []
536
+ for i in range(0, len(video), decode_chunk_size):
537
+ batch_video = video[i : i + decode_chunk_size]
538
+ batch_video = retrieve_latents(self.vae.encode(batch_video), generator=generator)
539
+ latents.append(batch_video)
540
+ return torch.cat(latents)
541
+
542
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
543
+ def decode_latents(self, latents, decode_chunk_size: int = 16):
544
+ latents = 1 / self.vae.config.scaling_factor * latents
545
+
546
+ batch_size, channels, num_frames, height, width = latents.shape
547
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
548
+
549
+ video = []
550
+ for i in range(0, latents.shape[0], decode_chunk_size):
551
+ batch_latents = latents[i : i + decode_chunk_size]
552
+ batch_latents = self.vae.decode(batch_latents).sample
553
+ video.append(batch_latents)
554
+
555
+ video = torch.cat(video)
556
+ video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4)
557
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
558
+ video = video.float()
559
+ return video
560
+
561
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
562
+ def prepare_extra_step_kwargs(self, generator, eta):
563
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
564
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
565
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
566
+ # and should be between [0, 1]
567
+
568
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
569
+ extra_step_kwargs = {}
570
+ if accepts_eta:
571
+ extra_step_kwargs["eta"] = eta
572
+
573
+ # check if the scheduler accepts generator
574
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
575
+ if accepts_generator:
576
+ extra_step_kwargs["generator"] = generator
577
+ return extra_step_kwargs
578
+
579
+ def check_inputs(
580
+ self,
581
+ prompt,
582
+ strength,
583
+ height,
584
+ width,
585
+ video=None,
586
+ conditioning_frames=None,
587
+ latents=None,
588
+ negative_prompt=None,
589
+ prompt_embeds=None,
590
+ negative_prompt_embeds=None,
591
+ ip_adapter_image=None,
592
+ ip_adapter_image_embeds=None,
593
+ callback_on_step_end_tensor_inputs=None,
594
+ controlnet_conditioning_scale=1.0,
595
+ control_guidance_start=0.0,
596
+ control_guidance_end=1.0,
597
+ ):
598
+ if strength < 0 or strength > 1:
599
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
600
+
601
+ if height % 8 != 0 or width % 8 != 0:
602
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
603
+
604
+ if callback_on_step_end_tensor_inputs is not None and not all(
605
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
606
+ ):
607
+ raise ValueError(
608
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
609
+ )
610
+
611
+ if prompt is not None and prompt_embeds is not None:
612
+ raise ValueError(
613
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
614
+ " only forward one of the two."
615
+ )
616
+ elif prompt is None and prompt_embeds is None:
617
+ raise ValueError(
618
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
619
+ )
620
+ elif prompt is not None and not isinstance(prompt, (str, list, dict)):
621
+ raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}")
622
+
623
+ if negative_prompt is not None and negative_prompt_embeds is not None:
624
+ raise ValueError(
625
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
626
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
627
+ )
628
+
629
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
630
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
631
+ raise ValueError(
632
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
633
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
634
+ f" {negative_prompt_embeds.shape}."
635
+ )
636
+
637
+ if video is not None and latents is not None:
638
+ raise ValueError("Only one of `video` or `latents` should be provided")
639
+
640
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
641
+ raise ValueError(
642
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
643
+ )
644
+
645
+ if ip_adapter_image_embeds is not None:
646
+ if not isinstance(ip_adapter_image_embeds, list):
647
+ raise ValueError(
648
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
649
+ )
650
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
651
+ raise ValueError(
652
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
653
+ )
654
+
655
+ if isinstance(self.controlnet, MultiControlNetModel):
656
+ if isinstance(prompt, list):
657
+ logger.warning(
658
+ f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
659
+ " prompts. The conditionings will be fixed across the prompts."
660
+ )
661
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
662
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
663
+ )
664
+
665
+ num_frames = len(video) if latents is None else latents.shape[2]
666
+
667
+ if (
668
+ isinstance(self.controlnet, ControlNetModel)
669
+ or is_compiled
670
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
671
+ ):
672
+ if not isinstance(conditioning_frames, list):
673
+ raise TypeError(
674
+ f"For single controlnet, `image` must be of type `list` but got {type(conditioning_frames)}"
675
+ )
676
+ if len(conditioning_frames) != num_frames:
677
+ raise ValueError(f"Excepted image to have length {num_frames} but got {len(conditioning_frames)=}")
678
+ elif (
679
+ isinstance(self.controlnet, MultiControlNetModel)
680
+ or is_compiled
681
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
682
+ ):
683
+ if not isinstance(conditioning_frames, list) or not isinstance(conditioning_frames[0], list):
684
+ raise TypeError(
685
+ f"For multiple controlnets: `image` must be type list of lists but got {type(conditioning_frames)=}"
686
+ )
687
+ if len(conditioning_frames[0]) != num_frames:
688
+ raise ValueError(
689
+ f"Expected length of image sublist as {num_frames} but got {len(conditioning_frames)=}"
690
+ )
691
+ if any(len(img) != len(conditioning_frames[0]) for img in conditioning_frames):
692
+ raise ValueError("All conditioning frame batches for multicontrolnet must be same size")
693
+ else:
694
+ assert False
695
+
696
+ # Check `controlnet_conditioning_scale`
697
+ if (
698
+ isinstance(self.controlnet, ControlNetModel)
699
+ or is_compiled
700
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
701
+ ):
702
+ if not isinstance(controlnet_conditioning_scale, float):
703
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
704
+ elif (
705
+ isinstance(self.controlnet, MultiControlNetModel)
706
+ or is_compiled
707
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
708
+ ):
709
+ if isinstance(controlnet_conditioning_scale, list):
710
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
711
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
712
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
713
+ self.controlnet.nets
714
+ ):
715
+ raise ValueError(
716
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
717
+ " the same length as the number of controlnets"
718
+ )
719
+ else:
720
+ assert False
721
+
722
+ if not isinstance(control_guidance_start, (tuple, list)):
723
+ control_guidance_start = [control_guidance_start]
724
+
725
+ if not isinstance(control_guidance_end, (tuple, list)):
726
+ control_guidance_end = [control_guidance_end]
727
+
728
+ if len(control_guidance_start) != len(control_guidance_end):
729
+ raise ValueError(
730
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
731
+ )
732
+
733
+ if isinstance(self.controlnet, MultiControlNetModel):
734
+ if len(control_guidance_start) != len(self.controlnet.nets):
735
+ raise ValueError(
736
+ f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
737
+ )
738
+
739
+ for start, end in zip(control_guidance_start, control_guidance_end):
740
+ if start >= end:
741
+ raise ValueError(
742
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
743
+ )
744
+ if start < 0.0:
745
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
746
+ if end > 1.0:
747
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
748
+
749
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps
750
+ def get_timesteps(self, num_inference_steps, timesteps, strength, device):
751
+ # get the original timestep using init_timestep
752
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
753
+
754
+ t_start = max(num_inference_steps - init_timestep, 0)
755
+ timesteps = timesteps[t_start * self.scheduler.order :]
756
+
757
+ return timesteps, num_inference_steps - t_start
758
+
759
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.prepare_latents
760
+ def prepare_latents(
761
+ self,
762
+ video: Optional[torch.Tensor] = None,
763
+ height: int = 64,
764
+ width: int = 64,
765
+ num_channels_latents: int = 4,
766
+ batch_size: int = 1,
767
+ timestep: Optional[int] = None,
768
+ dtype: Optional[torch.dtype] = None,
769
+ device: Optional[torch.device] = None,
770
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
771
+ latents: Optional[torch.Tensor] = None,
772
+ decode_chunk_size: int = 16,
773
+ add_noise: bool = False,
774
+ ) -> torch.Tensor:
775
+ num_frames = video.shape[1] if latents is None else latents.shape[2]
776
+ shape = (
777
+ batch_size,
778
+ num_channels_latents,
779
+ num_frames,
780
+ height // self.vae_scale_factor,
781
+ width // self.vae_scale_factor,
782
+ )
783
+
784
+ if isinstance(generator, list) and len(generator) != batch_size:
785
+ raise ValueError(
786
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
787
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
788
+ )
789
+
790
+ if latents is None:
791
+ # make sure the VAE is in float32 mode, as it overflows in float16
792
+ if self.vae.config.force_upcast:
793
+ video = video.float()
794
+ self.vae.to(dtype=torch.float32)
795
+
796
+ if isinstance(generator, list):
797
+ init_latents = [
798
+ self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0)
799
+ for i in range(batch_size)
800
+ ]
801
+ else:
802
+ init_latents = [self.encode_video(vid, generator, decode_chunk_size).unsqueeze(0) for vid in video]
803
+
804
+ init_latents = torch.cat(init_latents, dim=0)
805
+
806
+ # restore vae to original dtype
807
+ if self.vae.config.force_upcast:
808
+ self.vae.to(dtype)
809
+
810
+ init_latents = init_latents.to(dtype)
811
+ init_latents = self.vae.config.scaling_factor * init_latents
812
+
813
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
814
+ # expand init_latents for batch_size
815
+ error_message = (
816
+ f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
817
+ " images (`image`). Please make sure to update your script to pass as many initial images as text prompts"
818
+ )
819
+ raise ValueError(error_message)
820
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
821
+ raise ValueError(
822
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
823
+ )
824
+ else:
825
+ init_latents = torch.cat([init_latents], dim=0)
826
+
827
+ noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype)
828
+ latents = self.scheduler.add_noise(init_latents, noise, timestep).permute(0, 2, 1, 3, 4)
829
+ else:
830
+ if shape != latents.shape:
831
+ # [B, C, F, H, W]
832
+ raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}")
833
+
834
+ latents = latents.to(device, dtype=dtype)
835
+
836
+ if add_noise:
837
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
838
+ latents = self.scheduler.add_noise(latents, noise, timestep)
839
+
840
+ return latents
841
+
842
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_controlnet.AnimateDiffControlNetPipeline.prepare_video
843
+ def prepare_conditioning_frames(
844
+ self,
845
+ video,
846
+ width,
847
+ height,
848
+ batch_size,
849
+ num_videos_per_prompt,
850
+ device,
851
+ dtype,
852
+ do_classifier_free_guidance=False,
853
+ guess_mode=False,
854
+ ):
855
+ video = self.control_video_processor.preprocess_video(video, height=height, width=width).to(
856
+ dtype=torch.float32
857
+ )
858
+ video = video.permute(0, 2, 1, 3, 4).flatten(0, 1)
859
+ video_batch_size = video.shape[0]
860
+
861
+ if video_batch_size == 1:
862
+ repeat_by = batch_size
863
+ else:
864
+ # image batch size is the same as prompt batch size
865
+ repeat_by = num_videos_per_prompt
866
+
867
+ video = video.repeat_interleave(repeat_by, dim=0)
868
+ video = video.to(device=device, dtype=dtype)
869
+
870
+ if do_classifier_free_guidance and not guess_mode:
871
+ video = torch.cat([video] * 2)
872
+
873
+ return video
874
+
875
+ @property
876
+ def guidance_scale(self):
877
+ return self._guidance_scale
878
+
879
+ @property
880
+ def clip_skip(self):
881
+ return self._clip_skip
882
+
883
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
884
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
885
+ # corresponds to doing no classifier free guidance.
886
+ @property
887
+ def do_classifier_free_guidance(self):
888
+ return self._guidance_scale > 1
889
+
890
+ @property
891
+ def cross_attention_kwargs(self):
892
+ return self._cross_attention_kwargs
893
+
894
+ @property
895
+ def num_timesteps(self):
896
+ return self._num_timesteps
897
+
898
+ @property
899
+ def interrupt(self):
900
+ return self._interrupt
901
+
902
+ @torch.no_grad()
903
+ def __call__(
904
+ self,
905
+ video: List[List[PipelineImageInput]] = None,
906
+ prompt: Optional[Union[str, List[str]]] = None,
907
+ height: Optional[int] = None,
908
+ width: Optional[int] = None,
909
+ num_inference_steps: int = 50,
910
+ enforce_inference_steps: bool = False,
911
+ timesteps: Optional[List[int]] = None,
912
+ sigmas: Optional[List[float]] = None,
913
+ guidance_scale: float = 7.5,
914
+ strength: float = 0.8,
915
+ negative_prompt: Optional[Union[str, List[str]]] = None,
916
+ num_videos_per_prompt: Optional[int] = 1,
917
+ eta: float = 0.0,
918
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
919
+ latents: Optional[torch.Tensor] = None,
920
+ prompt_embeds: Optional[torch.Tensor] = None,
921
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
922
+ ip_adapter_image: Optional[PipelineImageInput] = None,
923
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
924
+ conditioning_frames: Optional[List[PipelineImageInput]] = None,
925
+ output_type: Optional[str] = "pil",
926
+ return_dict: bool = True,
927
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
928
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
929
+ guess_mode: bool = False,
930
+ control_guidance_start: Union[float, List[float]] = 0.0,
931
+ control_guidance_end: Union[float, List[float]] = 1.0,
932
+ clip_skip: Optional[int] = None,
933
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
934
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
935
+ decode_chunk_size: int = 16,
936
+ ):
937
+ r"""
938
+ The call function to the pipeline for generation.
939
+
940
+ Args:
941
+ video (`List[PipelineImageInput]`):
942
+ The input video to condition the generation on. Must be a list of images/frames of the video.
943
+ prompt (`str` or `List[str]`, *optional*):
944
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
945
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
946
+ The height in pixels of the generated video.
947
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
948
+ The width in pixels of the generated video.
949
+ num_inference_steps (`int`, *optional*, defaults to 50):
950
+ The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
951
+ expense of slower inference.
952
+ timesteps (`List[int]`, *optional*):
953
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
954
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
955
+ passed will be used. Must be in descending order.
956
+ sigmas (`List[float]`, *optional*):
957
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
958
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
959
+ will be used.
960
+ strength (`float`, *optional*, defaults to 0.8):
961
+ Higher strength leads to more differences between original video and generated video.
962
+ guidance_scale (`float`, *optional*, defaults to 7.5):
963
+ A higher guidance scale value encourages the model to generate images closely linked to the text
964
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
965
+ negative_prompt (`str` or `List[str]`, *optional*):
966
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
967
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
968
+ eta (`float`, *optional*, defaults to 0.0):
969
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
970
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
971
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
972
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
973
+ generation deterministic.
974
+ latents (`torch.Tensor`, *optional*):
975
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
976
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
977
+ tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
978
+ `(batch_size, num_channel, num_frames, height, width)`.
979
+ prompt_embeds (`torch.Tensor`, *optional*):
980
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
981
+ provided, text embeddings are generated from the `prompt` input argument.
982
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
983
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
984
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
985
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
986
+ Optional image input to work with IP Adapters.
987
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
988
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
989
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
990
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
991
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
992
+ conditioning_frames (`List[PipelineImageInput]`, *optional*):
993
+ The ControlNet input condition to provide guidance to the `unet` for generation. If multiple
994
+ ControlNets are specified, images must be passed as a list such that each element of the list can be
995
+ correctly batched for input to a single ControlNet.
996
+ output_type (`str`, *optional*, defaults to `"pil"`):
997
+ The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`.
998
+ return_dict (`bool`, *optional*, defaults to `True`):
999
+ Whether or not to return a [`AnimateDiffPipelineOutput`] instead of a plain tuple.
1000
+ cross_attention_kwargs (`dict`, *optional*):
1001
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
1002
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1003
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
1004
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
1005
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
1006
+ the corresponding scale as a list.
1007
+ guess_mode (`bool`, *optional*, defaults to `False`):
1008
+ The ControlNet encoder tries to recognize the content of the input image even if you remove all
1009
+ prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
1010
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1011
+ The percentage of total steps at which the ControlNet starts applying.
1012
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1013
+ The percentage of total steps at which the ControlNet stops applying.
1014
+ clip_skip (`int`, *optional*):
1015
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1016
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1017
+ callback_on_step_end (`Callable`, *optional*):
1018
+ A function that calls at the end of each denoising steps during the inference. The function is called
1019
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
1020
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
1021
+ `callback_on_step_end_tensor_inputs`.
1022
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1023
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1024
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1025
+ `._callback_tensor_inputs` attribute of your pipeline class.
1026
+ decode_chunk_size (`int`, defaults to `16`):
1027
+ The number of frames to decode at a time when calling `decode_latents` method.
1028
+
1029
+ Examples:
1030
+
1031
+ Returns:
1032
+ [`pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
1033
+ If `return_dict` is `True`, [`pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
1034
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
1035
+ """
1036
+
1037
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1038
+
1039
+ # align format for control guidance
1040
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1041
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1042
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1043
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1044
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
1045
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1046
+ control_guidance_start, control_guidance_end = (
1047
+ mult * [control_guidance_start],
1048
+ mult * [control_guidance_end],
1049
+ )
1050
+
1051
+ # 0. Default height and width to unet
1052
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
1053
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
1054
+
1055
+ num_videos_per_prompt = 1
1056
+
1057
+ # 1. Check inputs. Raise error if not correct
1058
+ self.check_inputs(
1059
+ prompt=prompt,
1060
+ strength=strength,
1061
+ height=height,
1062
+ width=width,
1063
+ negative_prompt=negative_prompt,
1064
+ prompt_embeds=prompt_embeds,
1065
+ negative_prompt_embeds=negative_prompt_embeds,
1066
+ video=video,
1067
+ conditioning_frames=conditioning_frames,
1068
+ latents=latents,
1069
+ ip_adapter_image=ip_adapter_image,
1070
+ ip_adapter_image_embeds=ip_adapter_image_embeds,
1071
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
1072
+ controlnet_conditioning_scale=controlnet_conditioning_scale,
1073
+ control_guidance_start=control_guidance_start,
1074
+ control_guidance_end=control_guidance_end,
1075
+ )
1076
+
1077
+ self._guidance_scale = guidance_scale
1078
+ self._clip_skip = clip_skip
1079
+ self._cross_attention_kwargs = cross_attention_kwargs
1080
+ self._interrupt = False
1081
+
1082
+ # 2. Define call parameters
1083
+ if prompt is not None and isinstance(prompt, (str, dict)):
1084
+ batch_size = 1
1085
+ elif prompt is not None and isinstance(prompt, list):
1086
+ batch_size = len(prompt)
1087
+ else:
1088
+ batch_size = prompt_embeds.shape[0]
1089
+
1090
+ device = self._execution_device
1091
+ dtype = self.dtype
1092
+
1093
+ # 3. Prepare timesteps
1094
+ if not enforce_inference_steps:
1095
+ timesteps, num_inference_steps = retrieve_timesteps(
1096
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1097
+ )
1098
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
1099
+ latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
1100
+ else:
1101
+ denoising_inference_steps = int(num_inference_steps / strength)
1102
+ timesteps, denoising_inference_steps = retrieve_timesteps(
1103
+ self.scheduler, denoising_inference_steps, device, timesteps, sigmas
1104
+ )
1105
+ timesteps = timesteps[-num_inference_steps:]
1106
+ latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
1107
+
1108
+ # 4. Prepare latent variables
1109
+ if latents is None:
1110
+ video = self.video_processor.preprocess_video(video, height=height, width=width)
1111
+ # Move the number of frames before the number of channels.
1112
+ video = video.permute(0, 2, 1, 3, 4)
1113
+ video = video.to(device=device, dtype=dtype)
1114
+
1115
+ num_channels_latents = self.unet.config.in_channels
1116
+ latents = self.prepare_latents(
1117
+ video=video,
1118
+ height=height,
1119
+ width=width,
1120
+ num_channels_latents=num_channels_latents,
1121
+ batch_size=batch_size * num_videos_per_prompt,
1122
+ timestep=latent_timestep,
1123
+ dtype=dtype,
1124
+ device=device,
1125
+ generator=generator,
1126
+ latents=latents,
1127
+ decode_chunk_size=decode_chunk_size,
1128
+ add_noise=enforce_inference_steps,
1129
+ )
1130
+
1131
+ # 5. Encode input prompt
1132
+ text_encoder_lora_scale = (
1133
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1134
+ )
1135
+ num_frames = latents.shape[2]
1136
+ if self.free_noise_enabled:
1137
+ prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise(
1138
+ prompt=prompt,
1139
+ num_frames=num_frames,
1140
+ device=device,
1141
+ num_videos_per_prompt=num_videos_per_prompt,
1142
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1143
+ negative_prompt=negative_prompt,
1144
+ prompt_embeds=prompt_embeds,
1145
+ negative_prompt_embeds=negative_prompt_embeds,
1146
+ lora_scale=text_encoder_lora_scale,
1147
+ clip_skip=self.clip_skip,
1148
+ )
1149
+ else:
1150
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1151
+ prompt,
1152
+ device,
1153
+ num_videos_per_prompt,
1154
+ self.do_classifier_free_guidance,
1155
+ negative_prompt,
1156
+ prompt_embeds=prompt_embeds,
1157
+ negative_prompt_embeds=negative_prompt_embeds,
1158
+ lora_scale=text_encoder_lora_scale,
1159
+ clip_skip=self.clip_skip,
1160
+ )
1161
+
1162
+ # For classifier free guidance, we need to do two forward passes.
1163
+ # Here we concatenate the unconditional and text embeddings into a single batch
1164
+ # to avoid doing two forward passes
1165
+ if self.do_classifier_free_guidance:
1166
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1167
+
1168
+ prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0)
1169
+
1170
+ # 6. Prepare IP-Adapter embeddings
1171
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1172
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1173
+ ip_adapter_image,
1174
+ ip_adapter_image_embeds,
1175
+ device,
1176
+ batch_size * num_videos_per_prompt,
1177
+ self.do_classifier_free_guidance,
1178
+ )
1179
+
1180
+ # 7. Prepare ControlNet conditions
1181
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
1182
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
1183
+
1184
+ global_pool_conditions = (
1185
+ controlnet.config.global_pool_conditions
1186
+ if isinstance(controlnet, ControlNetModel)
1187
+ else controlnet.nets[0].config.global_pool_conditions
1188
+ )
1189
+ guess_mode = guess_mode or global_pool_conditions
1190
+
1191
+ controlnet_keep = []
1192
+ for i in range(len(timesteps)):
1193
+ keeps = [
1194
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1195
+ for s, e in zip(control_guidance_start, control_guidance_end)
1196
+ ]
1197
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1198
+
1199
+ if isinstance(controlnet, ControlNetModel):
1200
+ conditioning_frames = self.prepare_conditioning_frames(
1201
+ video=conditioning_frames,
1202
+ width=width,
1203
+ height=height,
1204
+ batch_size=batch_size * num_videos_per_prompt * num_frames,
1205
+ num_videos_per_prompt=num_videos_per_prompt,
1206
+ device=device,
1207
+ dtype=controlnet.dtype,
1208
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1209
+ guess_mode=guess_mode,
1210
+ )
1211
+ elif isinstance(controlnet, MultiControlNetModel):
1212
+ cond_prepared_videos = []
1213
+ for frame_ in conditioning_frames:
1214
+ prepared_video = self.prepare_conditioning_frames(
1215
+ video=frame_,
1216
+ width=width,
1217
+ height=height,
1218
+ batch_size=batch_size * num_videos_per_prompt * num_frames,
1219
+ num_videos_per_prompt=num_videos_per_prompt,
1220
+ device=device,
1221
+ dtype=controlnet.dtype,
1222
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1223
+ guess_mode=guess_mode,
1224
+ )
1225
+ cond_prepared_videos.append(prepared_video)
1226
+ conditioning_frames = cond_prepared_videos
1227
+ else:
1228
+ assert False
1229
+
1230
+ # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1231
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1232
+
1233
+ # 9. Add image embeds for IP-Adapter
1234
+ added_cond_kwargs = (
1235
+ {"image_embeds": image_embeds}
1236
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None
1237
+ else None
1238
+ )
1239
+
1240
+ num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
1241
+ for free_init_iter in range(num_free_init_iters):
1242
+ if self.free_init_enabled:
1243
+ latents, timesteps = self._apply_free_init(
1244
+ latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
1245
+ )
1246
+ num_inference_steps = len(timesteps)
1247
+ # make sure to readjust timesteps based on strength
1248
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
1249
+
1250
+ self._num_timesteps = len(timesteps)
1251
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1252
+
1253
+ # 10. Denoising loop
1254
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
1255
+ for i, t in enumerate(timesteps):
1256
+ if self.interrupt:
1257
+ continue
1258
+
1259
+ # expand the latents if we are doing classifier free guidance
1260
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1261
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1262
+
1263
+ if guess_mode and self.do_classifier_free_guidance:
1264
+ # Infer ControlNet only for the conditional batch.
1265
+ control_model_input = latents
1266
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1267
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1268
+ else:
1269
+ control_model_input = latent_model_input
1270
+ controlnet_prompt_embeds = prompt_embeds
1271
+
1272
+ if isinstance(controlnet_keep[i], list):
1273
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1274
+ else:
1275
+ controlnet_cond_scale = controlnet_conditioning_scale
1276
+ if isinstance(controlnet_cond_scale, list):
1277
+ controlnet_cond_scale = controlnet_cond_scale[0]
1278
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1279
+
1280
+ control_model_input = torch.transpose(control_model_input, 1, 2)
1281
+ control_model_input = control_model_input.reshape(
1282
+ (-1, control_model_input.shape[2], control_model_input.shape[3], control_model_input.shape[4])
1283
+ )
1284
+
1285
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1286
+ control_model_input,
1287
+ t,
1288
+ encoder_hidden_states=controlnet_prompt_embeds,
1289
+ controlnet_cond=conditioning_frames,
1290
+ conditioning_scale=cond_scale,
1291
+ guess_mode=guess_mode,
1292
+ return_dict=False,
1293
+ )
1294
+
1295
+ # predict the noise residual
1296
+ noise_pred = self.unet(
1297
+ latent_model_input,
1298
+ t,
1299
+ encoder_hidden_states=prompt_embeds,
1300
+ cross_attention_kwargs=self.cross_attention_kwargs,
1301
+ added_cond_kwargs=added_cond_kwargs,
1302
+ down_block_additional_residuals=down_block_res_samples,
1303
+ mid_block_additional_residual=mid_block_res_sample,
1304
+ ).sample
1305
+
1306
+ # perform guidance
1307
+ if self.do_classifier_free_guidance:
1308
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1309
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1310
+
1311
+ # compute the previous noisy sample x_t -> x_t-1
1312
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
1313
+
1314
+ if callback_on_step_end is not None:
1315
+ callback_kwargs = {}
1316
+ for k in callback_on_step_end_tensor_inputs:
1317
+ callback_kwargs[k] = locals()[k]
1318
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1319
+
1320
+ latents = callback_outputs.pop("latents", latents)
1321
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1322
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1323
+
1324
+ # call the callback, if provided
1325
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1326
+ progress_bar.update()
1327
+
1328
+ # 11. Post-processing
1329
+ if output_type == "latent":
1330
+ video = latents
1331
+ else:
1332
+ video_tensor = self.decode_latents(latents, decode_chunk_size)
1333
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
1334
+
1335
+ # 12. Offload all models
1336
+ self.maybe_free_model_hooks()
1337
+
1338
+ if not return_dict:
1339
+ return (video,)
1340
+
1341
+ return AnimateDiffPipelineOutput(frames=video)