diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1356 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ from typing import Any, Callable, Dict, List, Optional, Union
16
+
17
+ import PIL.Image
18
+ import torch
19
+ from packaging import version
20
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
21
+
22
+ from ...configuration_utils import FrozenDict
23
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
24
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
25
+ from ...models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel
26
+ from ...models.lora import adjust_lora_scale_text_encoder
27
+ from ...schedulers import KarrasDiffusionSchedulers
28
+ from ...utils import (
29
+ USE_PEFT_BACKEND,
30
+ deprecate,
31
+ logging,
32
+ replace_example_docstring,
33
+ scale_lora_layers,
34
+ unscale_lora_layers,
35
+ )
36
+ from ...utils.torch_utils import randn_tensor
37
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
38
+ from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
39
+ from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
40
+ from .pag_utils import PAGMixin
41
+
42
+
43
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
44
+
45
+ EXAMPLE_DOC_STRING = """
46
+ Examples:
47
+ ```py
48
+ >>> import torch
49
+ >>> from diffusers import AutoPipelineForInpainting
50
+
51
+ >>> pipe = AutoPipelineForInpainting.from_pretrained(
52
+ ... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, enable_pag=True
53
+ ... )
54
+ >>> pipe = pipe.to("cuda")
55
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
56
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
57
+ >>> init_image = load_image(img_url).convert("RGB")
58
+ >>> mask_image = load_image(mask_url).convert("RGB")
59
+ >>> prompt = "A majestic tiger sitting on a bench"
60
+ >>> image = pipe(
61
+ ... prompt=prompt,
62
+ ... image=init_image,
63
+ ... mask_image=mask_image,
64
+ ... strength=0.8,
65
+ ... num_inference_steps=50,
66
+ ... guidance_scale=guidance_scale,
67
+ ... generator=generator,
68
+ ... pag_scale=pag_scale,
69
+ ... ).images[0]
70
+ ```
71
+ """
72
+
73
+
74
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
75
+ def retrieve_latents(
76
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
77
+ ):
78
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
79
+ return encoder_output.latent_dist.sample(generator)
80
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
81
+ return encoder_output.latent_dist.mode()
82
+ elif hasattr(encoder_output, "latents"):
83
+ return encoder_output.latents
84
+ else:
85
+ raise AttributeError("Could not access latents of provided encoder_output")
86
+
87
+
88
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
89
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
90
+ r"""
91
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
92
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
93
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
94
+
95
+ Args:
96
+ noise_cfg (`torch.Tensor`):
97
+ The predicted noise tensor for the guided diffusion process.
98
+ noise_pred_text (`torch.Tensor`):
99
+ The predicted noise tensor for the text-guided diffusion process.
100
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
101
+ A rescale factor applied to the noise predictions.
102
+
103
+ Returns:
104
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
105
+ """
106
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
107
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
108
+ # rescale the results from guidance (fixes overexposure)
109
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
110
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
111
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
112
+ return noise_cfg
113
+
114
+
115
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
116
+ def retrieve_timesteps(
117
+ scheduler,
118
+ num_inference_steps: Optional[int] = None,
119
+ device: Optional[Union[str, torch.device]] = None,
120
+ timesteps: Optional[List[int]] = None,
121
+ sigmas: Optional[List[float]] = None,
122
+ **kwargs,
123
+ ):
124
+ r"""
125
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
126
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
127
+
128
+ Args:
129
+ scheduler (`SchedulerMixin`):
130
+ The scheduler to get timesteps from.
131
+ num_inference_steps (`int`):
132
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
133
+ must be `None`.
134
+ device (`str` or `torch.device`, *optional*):
135
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
136
+ timesteps (`List[int]`, *optional*):
137
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
138
+ `num_inference_steps` and `sigmas` must be `None`.
139
+ sigmas (`List[float]`, *optional*):
140
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
141
+ `num_inference_steps` and `timesteps` must be `None`.
142
+
143
+ Returns:
144
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
145
+ second element is the number of inference steps.
146
+ """
147
+ if timesteps is not None and sigmas is not None:
148
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
149
+ if timesteps is not None:
150
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
151
+ if not accepts_timesteps:
152
+ raise ValueError(
153
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
154
+ f" timestep schedules. Please check whether you are using the correct scheduler."
155
+ )
156
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
157
+ timesteps = scheduler.timesteps
158
+ num_inference_steps = len(timesteps)
159
+ elif sigmas is not None:
160
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
161
+ if not accept_sigmas:
162
+ raise ValueError(
163
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
164
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
165
+ )
166
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
167
+ timesteps = scheduler.timesteps
168
+ num_inference_steps = len(timesteps)
169
+ else:
170
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
171
+ timesteps = scheduler.timesteps
172
+ return timesteps, num_inference_steps
173
+
174
+
175
+ class StableDiffusionPAGInpaintPipeline(
176
+ DiffusionPipeline,
177
+ StableDiffusionMixin,
178
+ TextualInversionLoaderMixin,
179
+ StableDiffusionLoraLoaderMixin,
180
+ IPAdapterMixin,
181
+ FromSingleFileMixin,
182
+ PAGMixin,
183
+ ):
184
+ r"""
185
+ Pipeline for text-to-image generation using Stable Diffusion.
186
+
187
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
188
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
189
+
190
+ The pipeline also inherits the following loading methods:
191
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
192
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
193
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
194
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
195
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
196
+
197
+ Args:
198
+ vae ([`AutoencoderKL`]):
199
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
200
+ text_encoder ([`~transformers.CLIPTextModel`]):
201
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
202
+ tokenizer ([`~transformers.CLIPTokenizer`]):
203
+ A `CLIPTokenizer` to tokenize text.
204
+ unet ([`UNet2DConditionModel`]):
205
+ A `UNet2DConditionModel` to denoise the encoded image latents.
206
+ scheduler ([`SchedulerMixin`]):
207
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
208
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
209
+ safety_checker ([`StableDiffusionSafetyChecker`]):
210
+ Classification module that estimates whether generated images could be considered offensive or harmful.
211
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
212
+ about a model's potential harms.
213
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
214
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
215
+ """
216
+
217
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
218
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
219
+ _exclude_from_cpu_offload = ["safety_checker"]
220
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
221
+
222
+ def __init__(
223
+ self,
224
+ vae: AutoencoderKL,
225
+ text_encoder: CLIPTextModel,
226
+ tokenizer: CLIPTokenizer,
227
+ unet: UNet2DConditionModel,
228
+ scheduler: KarrasDiffusionSchedulers,
229
+ safety_checker: StableDiffusionSafetyChecker,
230
+ feature_extractor: CLIPImageProcessor,
231
+ image_encoder: CLIPVisionModelWithProjection = None,
232
+ requires_safety_checker: bool = True,
233
+ pag_applied_layers: Union[str, List[str]] = "mid",
234
+ ):
235
+ super().__init__()
236
+
237
+ if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
238
+ deprecation_message = (
239
+ f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
240
+ f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
241
+ "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
242
+ " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
243
+ " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
244
+ " file"
245
+ )
246
+ deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
247
+ new_config = dict(scheduler.config)
248
+ new_config["steps_offset"] = 1
249
+ scheduler._internal_dict = FrozenDict(new_config)
250
+
251
+ if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
252
+ deprecation_message = (
253
+ f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
254
+ " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
255
+ " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
256
+ " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
257
+ " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
258
+ )
259
+ deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
260
+ new_config = dict(scheduler.config)
261
+ new_config["clip_sample"] = False
262
+ scheduler._internal_dict = FrozenDict(new_config)
263
+
264
+ if safety_checker is None and requires_safety_checker:
265
+ logger.warning(
266
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
267
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
268
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
269
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
270
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
271
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
272
+ )
273
+
274
+ if safety_checker is not None and feature_extractor is None:
275
+ raise ValueError(
276
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
277
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
278
+ )
279
+
280
+ is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
281
+ version.parse(unet.config._diffusers_version).base_version
282
+ ) < version.parse("0.9.0.dev0")
283
+ is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
284
+ if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
285
+ deprecation_message = (
286
+ "The configuration file of the unet has set the default `sample_size` to smaller than"
287
+ " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
288
+ " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
289
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
290
+ " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
291
+ " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
292
+ " in the config might lead to incorrect results in future versions. If you have downloaded this"
293
+ " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
294
+ " the `unet/config.json` file"
295
+ )
296
+ deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
297
+ new_config = dict(unet.config)
298
+ new_config["sample_size"] = 64
299
+ unet._internal_dict = FrozenDict(new_config)
300
+
301
+ self.register_modules(
302
+ vae=vae,
303
+ text_encoder=text_encoder,
304
+ tokenizer=tokenizer,
305
+ unet=unet,
306
+ scheduler=scheduler,
307
+ safety_checker=safety_checker,
308
+ feature_extractor=feature_extractor,
309
+ image_encoder=image_encoder,
310
+ )
311
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
312
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
313
+ self.mask_processor = VaeImageProcessor(
314
+ vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
315
+ )
316
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
317
+
318
+ self.set_pag_applied_layers(pag_applied_layers)
319
+
320
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
321
+ def encode_prompt(
322
+ self,
323
+ prompt,
324
+ device,
325
+ num_images_per_prompt,
326
+ do_classifier_free_guidance,
327
+ negative_prompt=None,
328
+ prompt_embeds: Optional[torch.Tensor] = None,
329
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
330
+ lora_scale: Optional[float] = None,
331
+ clip_skip: Optional[int] = None,
332
+ ):
333
+ r"""
334
+ Encodes the prompt into text encoder hidden states.
335
+
336
+ Args:
337
+ prompt (`str` or `List[str]`, *optional*):
338
+ prompt to be encoded
339
+ device: (`torch.device`):
340
+ torch device
341
+ num_images_per_prompt (`int`):
342
+ number of images that should be generated per prompt
343
+ do_classifier_free_guidance (`bool`):
344
+ whether to use classifier free guidance or not
345
+ negative_prompt (`str` or `List[str]`, *optional*):
346
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
347
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
348
+ less than `1`).
349
+ prompt_embeds (`torch.Tensor`, *optional*):
350
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
351
+ provided, text embeddings will be generated from `prompt` input argument.
352
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
353
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
354
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
355
+ argument.
356
+ lora_scale (`float`, *optional*):
357
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
358
+ clip_skip (`int`, *optional*):
359
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
360
+ the output of the pre-final layer will be used for computing the prompt embeddings.
361
+ """
362
+ # set lora scale so that monkey patched LoRA
363
+ # function of text encoder can correctly access it
364
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
365
+ self._lora_scale = lora_scale
366
+
367
+ # dynamically adjust the LoRA scale
368
+ if not USE_PEFT_BACKEND:
369
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
370
+ else:
371
+ scale_lora_layers(self.text_encoder, lora_scale)
372
+
373
+ if prompt is not None and isinstance(prompt, str):
374
+ batch_size = 1
375
+ elif prompt is not None and isinstance(prompt, list):
376
+ batch_size = len(prompt)
377
+ else:
378
+ batch_size = prompt_embeds.shape[0]
379
+
380
+ if prompt_embeds is None:
381
+ # textual inversion: process multi-vector tokens if necessary
382
+ if isinstance(self, TextualInversionLoaderMixin):
383
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
384
+
385
+ text_inputs = self.tokenizer(
386
+ prompt,
387
+ padding="max_length",
388
+ max_length=self.tokenizer.model_max_length,
389
+ truncation=True,
390
+ return_tensors="pt",
391
+ )
392
+ text_input_ids = text_inputs.input_ids
393
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
394
+
395
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
396
+ text_input_ids, untruncated_ids
397
+ ):
398
+ removed_text = self.tokenizer.batch_decode(
399
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
400
+ )
401
+ logger.warning(
402
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
403
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
404
+ )
405
+
406
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
407
+ attention_mask = text_inputs.attention_mask.to(device)
408
+ else:
409
+ attention_mask = None
410
+
411
+ if clip_skip is None:
412
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
413
+ prompt_embeds = prompt_embeds[0]
414
+ else:
415
+ prompt_embeds = self.text_encoder(
416
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
417
+ )
418
+ # Access the `hidden_states` first, that contains a tuple of
419
+ # all the hidden states from the encoder layers. Then index into
420
+ # the tuple to access the hidden states from the desired layer.
421
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
422
+ # We also need to apply the final LayerNorm here to not mess with the
423
+ # representations. The `last_hidden_states` that we typically use for
424
+ # obtaining the final prompt representations passes through the LayerNorm
425
+ # layer.
426
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
427
+
428
+ if self.text_encoder is not None:
429
+ prompt_embeds_dtype = self.text_encoder.dtype
430
+ elif self.unet is not None:
431
+ prompt_embeds_dtype = self.unet.dtype
432
+ else:
433
+ prompt_embeds_dtype = prompt_embeds.dtype
434
+
435
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
436
+
437
+ bs_embed, seq_len, _ = prompt_embeds.shape
438
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
439
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
440
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
441
+
442
+ # get unconditional embeddings for classifier free guidance
443
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
444
+ uncond_tokens: List[str]
445
+ if negative_prompt is None:
446
+ uncond_tokens = [""] * batch_size
447
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
448
+ raise TypeError(
449
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
450
+ f" {type(prompt)}."
451
+ )
452
+ elif isinstance(negative_prompt, str):
453
+ uncond_tokens = [negative_prompt]
454
+ elif batch_size != len(negative_prompt):
455
+ raise ValueError(
456
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
457
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
458
+ " the batch size of `prompt`."
459
+ )
460
+ else:
461
+ uncond_tokens = negative_prompt
462
+
463
+ # textual inversion: process multi-vector tokens if necessary
464
+ if isinstance(self, TextualInversionLoaderMixin):
465
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
466
+
467
+ max_length = prompt_embeds.shape[1]
468
+ uncond_input = self.tokenizer(
469
+ uncond_tokens,
470
+ padding="max_length",
471
+ max_length=max_length,
472
+ truncation=True,
473
+ return_tensors="pt",
474
+ )
475
+
476
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
477
+ attention_mask = uncond_input.attention_mask.to(device)
478
+ else:
479
+ attention_mask = None
480
+
481
+ negative_prompt_embeds = self.text_encoder(
482
+ uncond_input.input_ids.to(device),
483
+ attention_mask=attention_mask,
484
+ )
485
+ negative_prompt_embeds = negative_prompt_embeds[0]
486
+
487
+ if do_classifier_free_guidance:
488
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
489
+ seq_len = negative_prompt_embeds.shape[1]
490
+
491
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
492
+
493
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
494
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
495
+
496
+ if self.text_encoder is not None:
497
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
498
+ # Retrieve the original scale by scaling back the LoRA layers
499
+ unscale_lora_layers(self.text_encoder, lora_scale)
500
+
501
+ return prompt_embeds, negative_prompt_embeds
502
+
503
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
504
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
505
+ dtype = next(self.image_encoder.parameters()).dtype
506
+
507
+ if not isinstance(image, torch.Tensor):
508
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
509
+
510
+ image = image.to(device=device, dtype=dtype)
511
+ if output_hidden_states:
512
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
513
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
514
+ uncond_image_enc_hidden_states = self.image_encoder(
515
+ torch.zeros_like(image), output_hidden_states=True
516
+ ).hidden_states[-2]
517
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
518
+ num_images_per_prompt, dim=0
519
+ )
520
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
521
+ else:
522
+ image_embeds = self.image_encoder(image).image_embeds
523
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
524
+ uncond_image_embeds = torch.zeros_like(image_embeds)
525
+
526
+ return image_embeds, uncond_image_embeds
527
+
528
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
529
+ def prepare_ip_adapter_image_embeds(
530
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
531
+ ):
532
+ image_embeds = []
533
+ if do_classifier_free_guidance:
534
+ negative_image_embeds = []
535
+ if ip_adapter_image_embeds is None:
536
+ if not isinstance(ip_adapter_image, list):
537
+ ip_adapter_image = [ip_adapter_image]
538
+
539
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
540
+ raise ValueError(
541
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
542
+ )
543
+
544
+ for single_ip_adapter_image, image_proj_layer in zip(
545
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
546
+ ):
547
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
548
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
549
+ single_ip_adapter_image, device, 1, output_hidden_state
550
+ )
551
+
552
+ image_embeds.append(single_image_embeds[None, :])
553
+ if do_classifier_free_guidance:
554
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
555
+ else:
556
+ for single_image_embeds in ip_adapter_image_embeds:
557
+ if do_classifier_free_guidance:
558
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
559
+ negative_image_embeds.append(single_negative_image_embeds)
560
+ image_embeds.append(single_image_embeds)
561
+
562
+ ip_adapter_image_embeds = []
563
+ for i, single_image_embeds in enumerate(image_embeds):
564
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
565
+ if do_classifier_free_guidance:
566
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
567
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
568
+
569
+ single_image_embeds = single_image_embeds.to(device=device)
570
+ ip_adapter_image_embeds.append(single_image_embeds)
571
+
572
+ return ip_adapter_image_embeds
573
+
574
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
575
+ def run_safety_checker(self, image, device, dtype):
576
+ if self.safety_checker is None:
577
+ has_nsfw_concept = None
578
+ else:
579
+ if torch.is_tensor(image):
580
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
581
+ else:
582
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
583
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
584
+ image, has_nsfw_concept = self.safety_checker(
585
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
586
+ )
587
+ return image, has_nsfw_concept
588
+
589
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
590
+ def prepare_extra_step_kwargs(self, generator, eta):
591
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
592
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
593
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
594
+ # and should be between [0, 1]
595
+
596
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
597
+ extra_step_kwargs = {}
598
+ if accepts_eta:
599
+ extra_step_kwargs["eta"] = eta
600
+
601
+ # check if the scheduler accepts generator
602
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
603
+ if accepts_generator:
604
+ extra_step_kwargs["generator"] = generator
605
+ return extra_step_kwargs
606
+
607
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.check_inputs
608
+ def check_inputs(
609
+ self,
610
+ prompt,
611
+ image,
612
+ mask_image,
613
+ height,
614
+ width,
615
+ strength,
616
+ callback_steps,
617
+ output_type,
618
+ negative_prompt=None,
619
+ prompt_embeds=None,
620
+ negative_prompt_embeds=None,
621
+ ip_adapter_image=None,
622
+ ip_adapter_image_embeds=None,
623
+ callback_on_step_end_tensor_inputs=None,
624
+ padding_mask_crop=None,
625
+ ):
626
+ if strength < 0 or strength > 1:
627
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
628
+
629
+ if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0:
630
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
631
+
632
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
633
+ raise ValueError(
634
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
635
+ f" {type(callback_steps)}."
636
+ )
637
+
638
+ if callback_on_step_end_tensor_inputs is not None and not all(
639
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
640
+ ):
641
+ raise ValueError(
642
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
643
+ )
644
+
645
+ if prompt is not None and prompt_embeds is not None:
646
+ raise ValueError(
647
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
648
+ " only forward one of the two."
649
+ )
650
+ elif prompt is None and prompt_embeds is None:
651
+ raise ValueError(
652
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
653
+ )
654
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
655
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
656
+
657
+ if negative_prompt is not None and negative_prompt_embeds is not None:
658
+ raise ValueError(
659
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
660
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
661
+ )
662
+
663
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
664
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
665
+ raise ValueError(
666
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
667
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
668
+ f" {negative_prompt_embeds.shape}."
669
+ )
670
+ if padding_mask_crop is not None:
671
+ if not isinstance(image, PIL.Image.Image):
672
+ raise ValueError(
673
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
674
+ )
675
+ if not isinstance(mask_image, PIL.Image.Image):
676
+ raise ValueError(
677
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
678
+ f" {type(mask_image)}."
679
+ )
680
+ if output_type != "pil":
681
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
682
+
683
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
684
+ raise ValueError(
685
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
686
+ )
687
+
688
+ if ip_adapter_image_embeds is not None:
689
+ if not isinstance(ip_adapter_image_embeds, list):
690
+ raise ValueError(
691
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
692
+ )
693
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
694
+ raise ValueError(
695
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
696
+ )
697
+
698
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
699
+ def prepare_latents(
700
+ self,
701
+ batch_size,
702
+ num_channels_latents,
703
+ height,
704
+ width,
705
+ dtype,
706
+ device,
707
+ generator,
708
+ latents=None,
709
+ image=None,
710
+ timestep=None,
711
+ is_strength_max=True,
712
+ return_noise=False,
713
+ return_image_latents=False,
714
+ ):
715
+ shape = (
716
+ batch_size,
717
+ num_channels_latents,
718
+ int(height) // self.vae_scale_factor,
719
+ int(width) // self.vae_scale_factor,
720
+ )
721
+ if isinstance(generator, list) and len(generator) != batch_size:
722
+ raise ValueError(
723
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
724
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
725
+ )
726
+
727
+ if (image is None or timestep is None) and not is_strength_max:
728
+ raise ValueError(
729
+ "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
730
+ "However, either the image or the noise timestep has not been provided."
731
+ )
732
+
733
+ if return_image_latents or (latents is None and not is_strength_max):
734
+ image = image.to(device=device, dtype=dtype)
735
+
736
+ if image.shape[1] == 4:
737
+ image_latents = image
738
+ else:
739
+ image_latents = self._encode_vae_image(image=image, generator=generator)
740
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
741
+
742
+ if latents is None:
743
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
744
+ # if strength is 1. then initialise the latents to noise, else initial to image + noise
745
+ latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
746
+ # if pure noise then scale the initial latents by the Scheduler's init sigma
747
+ latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
748
+ else:
749
+ noise = latents.to(device)
750
+ latents = noise * self.scheduler.init_noise_sigma
751
+
752
+ outputs = (latents,)
753
+
754
+ if return_noise:
755
+ outputs += (noise,)
756
+
757
+ if return_image_latents:
758
+ outputs += (image_latents,)
759
+
760
+ return outputs
761
+
762
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
763
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
764
+ if isinstance(generator, list):
765
+ image_latents = [
766
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
767
+ for i in range(image.shape[0])
768
+ ]
769
+ image_latents = torch.cat(image_latents, dim=0)
770
+ else:
771
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
772
+
773
+ image_latents = self.vae.config.scaling_factor * image_latents
774
+
775
+ return image_latents
776
+
777
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
778
+ def prepare_mask_latents(
779
+ self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
780
+ ):
781
+ # resize the mask to latents shape as we concatenate the mask to the latents
782
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
783
+ # and half precision
784
+ mask = torch.nn.functional.interpolate(
785
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
786
+ )
787
+ mask = mask.to(device=device, dtype=dtype)
788
+
789
+ masked_image = masked_image.to(device=device, dtype=dtype)
790
+
791
+ if masked_image.shape[1] == 4:
792
+ masked_image_latents = masked_image
793
+ else:
794
+ masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
795
+
796
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
797
+ if mask.shape[0] < batch_size:
798
+ if not batch_size % mask.shape[0] == 0:
799
+ raise ValueError(
800
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
801
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
802
+ " of masks that you pass is divisible by the total requested batch size."
803
+ )
804
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
805
+ if masked_image_latents.shape[0] < batch_size:
806
+ if not batch_size % masked_image_latents.shape[0] == 0:
807
+ raise ValueError(
808
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
809
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
810
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
811
+ )
812
+ masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
813
+
814
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
815
+ masked_image_latents = (
816
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
817
+ )
818
+
819
+ # aligning device to prevent device errors when concating it with the latent model input
820
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
821
+ return mask, masked_image_latents
822
+
823
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
824
+ def get_timesteps(self, num_inference_steps, strength, device):
825
+ # get the original timestep using init_timestep
826
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
827
+
828
+ t_start = max(num_inference_steps - init_timestep, 0)
829
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
830
+ if hasattr(self.scheduler, "set_begin_index"):
831
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
832
+
833
+ return timesteps, num_inference_steps - t_start
834
+
835
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
836
+ def get_guidance_scale_embedding(
837
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
838
+ ) -> torch.Tensor:
839
+ """
840
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
841
+
842
+ Args:
843
+ w (`torch.Tensor`):
844
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
845
+ embedding_dim (`int`, *optional*, defaults to 512):
846
+ Dimension of the embeddings to generate.
847
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
848
+ Data type of the generated embeddings.
849
+
850
+ Returns:
851
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
852
+ """
853
+ assert len(w.shape) == 1
854
+ w = w * 1000.0
855
+
856
+ half_dim = embedding_dim // 2
857
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
858
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
859
+ emb = w.to(dtype)[:, None] * emb[None, :]
860
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
861
+ if embedding_dim % 2 == 1: # zero pad
862
+ emb = torch.nn.functional.pad(emb, (0, 1))
863
+ assert emb.shape == (w.shape[0], embedding_dim)
864
+ return emb
865
+
866
+ @property
867
+ def guidance_scale(self):
868
+ return self._guidance_scale
869
+
870
+ @property
871
+ def guidance_rescale(self):
872
+ return self._guidance_rescale
873
+
874
+ @property
875
+ def clip_skip(self):
876
+ return self._clip_skip
877
+
878
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
879
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
880
+ # corresponds to doing no classifier free guidance.
881
+ @property
882
+ def do_classifier_free_guidance(self):
883
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
884
+
885
+ @property
886
+ def cross_attention_kwargs(self):
887
+ return self._cross_attention_kwargs
888
+
889
+ @property
890
+ def num_timesteps(self):
891
+ return self._num_timesteps
892
+
893
+ @property
894
+ def interrupt(self):
895
+ return self._interrupt
896
+
897
+ @torch.no_grad()
898
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
899
+ def __call__(
900
+ self,
901
+ prompt: Union[str, List[str]] = None,
902
+ image: PipelineImageInput = None,
903
+ mask_image: PipelineImageInput = None,
904
+ masked_image_latents: torch.Tensor = None,
905
+ height: Optional[int] = None,
906
+ width: Optional[int] = None,
907
+ padding_mask_crop: Optional[int] = None,
908
+ strength: float = 0.9999,
909
+ num_inference_steps: int = 50,
910
+ timesteps: List[int] = None,
911
+ sigmas: List[float] = None,
912
+ guidance_scale: float = 7.5,
913
+ negative_prompt: Optional[Union[str, List[str]]] = None,
914
+ num_images_per_prompt: Optional[int] = 1,
915
+ eta: float = 0.0,
916
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
917
+ latents: Optional[torch.Tensor] = None,
918
+ prompt_embeds: Optional[torch.Tensor] = None,
919
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
920
+ ip_adapter_image: Optional[PipelineImageInput] = None,
921
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
922
+ output_type: Optional[str] = "pil",
923
+ return_dict: bool = True,
924
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
925
+ guidance_rescale: float = 0.0,
926
+ clip_skip: Optional[int] = None,
927
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
928
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
929
+ pag_scale: float = 3.0,
930
+ pag_adaptive_scale: float = 0.0,
931
+ ):
932
+ r"""
933
+ The call function to the pipeline for generation.
934
+
935
+ Args:
936
+ prompt (`str` or `List[str]`, *optional*):
937
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
938
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
939
+ The height in pixels of the generated image.
940
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
941
+ The width in pixels of the generated image.
942
+ num_inference_steps (`int`, *optional*, defaults to 50):
943
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
944
+ expense of slower inference.
945
+ timesteps (`List[int]`, *optional*):
946
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
947
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
948
+ passed will be used. Must be in descending order.
949
+ sigmas (`List[float]`, *optional*):
950
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
951
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
952
+ will be used.
953
+ guidance_scale (`float`, *optional*, defaults to 7.5):
954
+ A higher guidance scale value encourages the model to generate images closely linked to the text
955
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
956
+ negative_prompt (`str` or `List[str]`, *optional*):
957
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
958
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
959
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
960
+ The number of images to generate per prompt.
961
+ eta (`float`, *optional*, defaults to 0.0):
962
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
963
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
964
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
965
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
966
+ generation deterministic.
967
+ latents (`torch.Tensor`, *optional*):
968
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
969
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
970
+ tensor is generated by sampling using the supplied random `generator`.
971
+ prompt_embeds (`torch.Tensor`, *optional*):
972
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
973
+ provided, text embeddings are generated from the `prompt` input argument.
974
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
975
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
976
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
977
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
978
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
979
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
980
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
981
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
982
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
983
+ output_type (`str`, *optional*, defaults to `"pil"`):
984
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
985
+ return_dict (`bool`, *optional*, defaults to `True`):
986
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
987
+ plain tuple.
988
+ cross_attention_kwargs (`dict`, *optional*):
989
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
990
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
991
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
992
+ Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
993
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
994
+ using zero terminal SNR.
995
+ clip_skip (`int`, *optional*):
996
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
997
+ the output of the pre-final layer will be used for computing the prompt embeddings.
998
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
999
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1000
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1001
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1002
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1003
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1004
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1005
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1006
+ `._callback_tensor_inputs` attribute of your pipeline class.
1007
+ pag_scale (`float`, *optional*, defaults to 3.0):
1008
+ The scale factor for the perturbed attention guidance. If it is set to 0.0, the perturbed attention
1009
+ guidance will not be used.
1010
+ pag_adaptive_scale (`float`, *optional*, defaults to 0.0):
1011
+ The adaptive scale factor for the perturbed attention guidance. If it is set to 0.0, `pag_scale` is
1012
+ used.
1013
+
1014
+ Examples:
1015
+
1016
+ Returns:
1017
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1018
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
1019
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
1020
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
1021
+ "not-safe-for-work" (nsfw) content.
1022
+ """
1023
+
1024
+ # 0. Default height and width to unet
1025
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
1026
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
1027
+ # to deal with lora scaling and other possible forward hooks
1028
+
1029
+ # 1. Check inputs. Raise error if not correct
1030
+ self.check_inputs(
1031
+ prompt,
1032
+ image,
1033
+ mask_image,
1034
+ height,
1035
+ width,
1036
+ strength,
1037
+ None,
1038
+ None,
1039
+ negative_prompt,
1040
+ prompt_embeds,
1041
+ negative_prompt_embeds,
1042
+ ip_adapter_image,
1043
+ ip_adapter_image_embeds,
1044
+ callback_on_step_end_tensor_inputs,
1045
+ padding_mask_crop,
1046
+ )
1047
+
1048
+ self._guidance_scale = guidance_scale
1049
+ self._guidance_rescale = guidance_rescale
1050
+ self._clip_skip = clip_skip
1051
+ self._cross_attention_kwargs = cross_attention_kwargs
1052
+ self._interrupt = False
1053
+ self._pag_scale = pag_scale
1054
+ self._pag_adaptive_scale = pag_adaptive_scale
1055
+
1056
+ # 2. Define call parameters
1057
+ if prompt is not None and isinstance(prompt, str):
1058
+ batch_size = 1
1059
+ elif prompt is not None and isinstance(prompt, list):
1060
+ batch_size = len(prompt)
1061
+ else:
1062
+ batch_size = prompt_embeds.shape[0]
1063
+
1064
+ device = self._execution_device
1065
+
1066
+ # 3. Encode input prompt
1067
+ lora_scale = (
1068
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1069
+ )
1070
+
1071
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1072
+ prompt,
1073
+ device,
1074
+ num_images_per_prompt,
1075
+ self.do_classifier_free_guidance,
1076
+ negative_prompt,
1077
+ prompt_embeds=prompt_embeds,
1078
+ negative_prompt_embeds=negative_prompt_embeds,
1079
+ lora_scale=lora_scale,
1080
+ clip_skip=self.clip_skip,
1081
+ )
1082
+
1083
+ # 4. set timesteps
1084
+ timesteps, num_inference_steps = retrieve_timesteps(
1085
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1086
+ )
1087
+ timesteps, num_inference_steps = self.get_timesteps(
1088
+ num_inference_steps=num_inference_steps, strength=strength, device=device
1089
+ )
1090
+ # check that number of inference steps is not < 1 - as this doesn't make sense
1091
+ if num_inference_steps < 1:
1092
+ raise ValueError(
1093
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
1094
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
1095
+ )
1096
+
1097
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1098
+ # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
1099
+ is_strength_max = strength == 1.0
1100
+
1101
+ # 5. Preprocess mask and image
1102
+ if padding_mask_crop is not None:
1103
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
1104
+ resize_mode = "fill"
1105
+ else:
1106
+ crops_coords = None
1107
+ resize_mode = "default"
1108
+
1109
+ original_image = image
1110
+ init_image = self.image_processor.preprocess(
1111
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
1112
+ )
1113
+ init_image = init_image.to(dtype=torch.float32)
1114
+
1115
+ # 6. Prepare latent variables
1116
+ num_channels_latents = self.vae.config.latent_channels
1117
+ num_channels_unet = self.unet.config.in_channels
1118
+ return_image_latents = num_channels_unet == 4
1119
+
1120
+ latents_outputs = self.prepare_latents(
1121
+ batch_size * num_images_per_prompt,
1122
+ num_channels_latents,
1123
+ height,
1124
+ width,
1125
+ prompt_embeds.dtype,
1126
+ device,
1127
+ generator,
1128
+ latents,
1129
+ image=init_image,
1130
+ timestep=latent_timestep,
1131
+ is_strength_max=is_strength_max,
1132
+ return_noise=True,
1133
+ return_image_latents=return_image_latents,
1134
+ )
1135
+
1136
+ if return_image_latents:
1137
+ latents, noise, image_latents = latents_outputs
1138
+ else:
1139
+ latents, noise = latents_outputs
1140
+
1141
+ # 7. Prepare mask latent variables
1142
+ mask_condition = self.mask_processor.preprocess(
1143
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1144
+ )
1145
+
1146
+ if masked_image_latents is None:
1147
+ masked_image = init_image * (mask_condition < 0.5)
1148
+ else:
1149
+ masked_image = masked_image_latents
1150
+
1151
+ mask, masked_image_latents = self.prepare_mask_latents(
1152
+ mask_condition,
1153
+ masked_image,
1154
+ batch_size * num_images_per_prompt,
1155
+ height,
1156
+ width,
1157
+ prompt_embeds.dtype,
1158
+ device,
1159
+ generator,
1160
+ self.do_classifier_free_guidance,
1161
+ )
1162
+ if self.do_perturbed_attention_guidance:
1163
+ if self.do_classifier_free_guidance:
1164
+ mask, _ = mask.chunk(2)
1165
+ masked_image_latents, _ = masked_image_latents.chunk(2)
1166
+ mask = self._prepare_perturbed_attention_guidance(mask, mask, self.do_classifier_free_guidance)
1167
+ masked_image_latents = self._prepare_perturbed_attention_guidance(
1168
+ masked_image_latents, masked_image_latents, self.do_classifier_free_guidance
1169
+ )
1170
+
1171
+ # 8. Check that sizes of mask, masked image and latents match
1172
+ if num_channels_unet == 9:
1173
+ # default case for runwayml/stable-diffusion-inpainting
1174
+ num_channels_mask = mask.shape[1]
1175
+ num_channels_masked_image = masked_image_latents.shape[1]
1176
+ if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
1177
+ raise ValueError(
1178
+ f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
1179
+ f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
1180
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
1181
+ f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
1182
+ " `pipeline.unet` or your `mask_image` or `image` input."
1183
+ )
1184
+ elif num_channels_unet != 4:
1185
+ raise ValueError(
1186
+ f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
1187
+ )
1188
+ # 9 Prepare extra step kwargs.
1189
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1190
+
1191
+ # For classifier free guidance, we need to do two forward passes.
1192
+ # Here we concatenate the unconditional and text embeddings into a single batch
1193
+ # to avoid doing two forward passes
1194
+
1195
+ if self.do_perturbed_attention_guidance:
1196
+ prompt_embeds = self._prepare_perturbed_attention_guidance(
1197
+ prompt_embeds, negative_prompt_embeds, self.do_classifier_free_guidance
1198
+ )
1199
+ elif self.do_classifier_free_guidance:
1200
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1201
+
1202
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1203
+ ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
1204
+ ip_adapter_image,
1205
+ ip_adapter_image_embeds,
1206
+ device,
1207
+ batch_size * num_images_per_prompt,
1208
+ self.do_classifier_free_guidance,
1209
+ )
1210
+
1211
+ for i, image_embeds in enumerate(ip_adapter_image_embeds):
1212
+ negative_image_embeds = None
1213
+ if self.do_classifier_free_guidance:
1214
+ negative_image_embeds, image_embeds = image_embeds.chunk(2)
1215
+ if self.do_perturbed_attention_guidance:
1216
+ image_embeds = self._prepare_perturbed_attention_guidance(
1217
+ image_embeds, negative_image_embeds, self.do_classifier_free_guidance
1218
+ )
1219
+
1220
+ elif self.do_classifier_free_guidance:
1221
+ image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0)
1222
+ image_embeds = image_embeds.to(device)
1223
+ ip_adapter_image_embeds[i] = image_embeds
1224
+
1225
+ # 9.1 Add image embeds for IP-Adapter
1226
+ added_cond_kwargs = (
1227
+ {"image_embeds": ip_adapter_image_embeds}
1228
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
1229
+ else None
1230
+ )
1231
+
1232
+ # 9.2 Optionally get Guidance Scale Embedding
1233
+ timestep_cond = None
1234
+ if self.unet.config.time_cond_proj_dim is not None:
1235
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1236
+ timestep_cond = self.get_guidance_scale_embedding(
1237
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1238
+ ).to(device=device, dtype=latents.dtype)
1239
+
1240
+ # 10. Denoising loop
1241
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1242
+
1243
+ if self.do_perturbed_attention_guidance:
1244
+ original_attn_proc = self.unet.attn_processors
1245
+ self._set_pag_attn_processor(
1246
+ pag_applied_layers=self.pag_applied_layers,
1247
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1248
+ )
1249
+ self._num_timesteps = len(timesteps)
1250
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1251
+ for i, t in enumerate(timesteps):
1252
+ if self.interrupt:
1253
+ continue
1254
+
1255
+ # expand the latents if we are doing classifier free guidance
1256
+ latent_model_input = torch.cat([latents] * (prompt_embeds.shape[0] // latents.shape[0]))
1257
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1258
+
1259
+ if num_channels_unet == 9:
1260
+ latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
1261
+
1262
+ # predict the noise residual
1263
+ noise_pred = self.unet(
1264
+ latent_model_input,
1265
+ t,
1266
+ encoder_hidden_states=prompt_embeds,
1267
+ timestep_cond=timestep_cond,
1268
+ cross_attention_kwargs=self.cross_attention_kwargs,
1269
+ added_cond_kwargs=added_cond_kwargs,
1270
+ return_dict=False,
1271
+ )[0]
1272
+
1273
+ # perform guidance
1274
+ if self.do_perturbed_attention_guidance:
1275
+ noise_pred = self._apply_perturbed_attention_guidance(
1276
+ noise_pred, self.do_classifier_free_guidance, self.guidance_scale, t
1277
+ )
1278
+
1279
+ elif self.do_classifier_free_guidance:
1280
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1281
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1282
+
1283
+ if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1284
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1285
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1286
+
1287
+ # compute the previous noisy sample x_t -> x_t-1
1288
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1289
+
1290
+ if num_channels_unet == 4:
1291
+ init_latents_proper = image_latents
1292
+ if self.do_perturbed_attention_guidance:
1293
+ init_mask, *_ = mask.chunk(3) if self.do_classifier_free_guidance else mask.chunk(2)
1294
+ else:
1295
+ init_mask, *_ = mask.chunk(2) if self.do_classifier_free_guidance else mask
1296
+
1297
+ if i < len(timesteps) - 1:
1298
+ noise_timestep = timesteps[i + 1]
1299
+ init_latents_proper = self.scheduler.add_noise(
1300
+ init_latents_proper, noise, torch.tensor([noise_timestep])
1301
+ )
1302
+
1303
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1304
+
1305
+ if callback_on_step_end is not None:
1306
+ callback_kwargs = {}
1307
+ for k in callback_on_step_end_tensor_inputs:
1308
+ callback_kwargs[k] = locals()[k]
1309
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1310
+
1311
+ latents = callback_outputs.pop("latents", latents)
1312
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1313
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1314
+ mask = callback_outputs.pop("mask", mask)
1315
+ masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
1316
+
1317
+ # call the callback, if provided
1318
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1319
+ progress_bar.update()
1320
+
1321
+ if not output_type == "latent":
1322
+ condition_kwargs = {}
1323
+ if isinstance(self.vae, AsymmetricAutoencoderKL):
1324
+ init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
1325
+ init_image_condition = init_image.clone()
1326
+ init_image = self._encode_vae_image(init_image, generator=generator)
1327
+ mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
1328
+ condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
1329
+ image = self.vae.decode(
1330
+ latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs
1331
+ )[0]
1332
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1333
+ else:
1334
+ image = latents
1335
+ has_nsfw_concept = None
1336
+
1337
+ if has_nsfw_concept is None:
1338
+ do_denormalize = [True] * image.shape[0]
1339
+ else:
1340
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1341
+
1342
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1343
+
1344
+ if padding_mask_crop is not None:
1345
+ image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
1346
+
1347
+ # Offload all models
1348
+ self.maybe_free_model_hooks()
1349
+
1350
+ if self.do_perturbed_attention_guidance:
1351
+ self.unet.set_attn_processor(original_attn_proc)
1352
+
1353
+ if not return_dict:
1354
+ return (image, has_nsfw_concept)
1355
+
1356
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)