diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- diffusers/__init__.py +233 -6
- diffusers/callbacks.py +209 -0
- diffusers/commands/env.py +102 -6
- diffusers/configuration_utils.py +45 -16
- diffusers/dependency_versions_table.py +4 -3
- diffusers/image_processor.py +434 -110
- diffusers/loaders/__init__.py +42 -9
- diffusers/loaders/ip_adapter.py +626 -36
- diffusers/loaders/lora_base.py +900 -0
- diffusers/loaders/lora_conversion_utils.py +991 -125
- diffusers/loaders/lora_pipeline.py +3812 -0
- diffusers/loaders/peft.py +571 -7
- diffusers/loaders/single_file.py +405 -173
- diffusers/loaders/single_file_model.py +385 -0
- diffusers/loaders/single_file_utils.py +1783 -713
- diffusers/loaders/textual_inversion.py +41 -23
- diffusers/loaders/transformer_flux.py +181 -0
- diffusers/loaders/transformer_sd3.py +89 -0
- diffusers/loaders/unet.py +464 -540
- diffusers/loaders/unet_loader_utils.py +163 -0
- diffusers/models/__init__.py +76 -7
- diffusers/models/activations.py +65 -10
- diffusers/models/adapter.py +53 -53
- diffusers/models/attention.py +605 -18
- diffusers/models/attention_flax.py +1 -1
- diffusers/models/attention_processor.py +4304 -687
- diffusers/models/autoencoders/__init__.py +8 -0
- diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
- diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- diffusers/models/autoencoders/autoencoder_kl.py +110 -28
- diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
- diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
- diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
- diffusers/models/autoencoders/vae.py +41 -29
- diffusers/models/autoencoders/vq_model.py +182 -0
- diffusers/models/controlnet.py +47 -800
- diffusers/models/controlnet_flux.py +70 -0
- diffusers/models/controlnet_sd3.py +68 -0
- diffusers/models/controlnet_sparsectrl.py +116 -0
- diffusers/models/controlnets/__init__.py +23 -0
- diffusers/models/controlnets/controlnet.py +872 -0
- diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
- diffusers/models/controlnets/controlnet_flux.py +536 -0
- diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
- diffusers/models/controlnets/controlnet_sd3.py +489 -0
- diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
- diffusers/models/controlnets/controlnet_union.py +832 -0
- diffusers/models/controlnets/controlnet_xs.py +1946 -0
- diffusers/models/controlnets/multicontrolnet.py +183 -0
- diffusers/models/downsampling.py +85 -18
- diffusers/models/embeddings.py +1856 -158
- diffusers/models/embeddings_flax.py +23 -9
- diffusers/models/model_loading_utils.py +480 -0
- diffusers/models/modeling_flax_pytorch_utils.py +2 -1
- diffusers/models/modeling_flax_utils.py +2 -7
- diffusers/models/modeling_outputs.py +14 -0
- diffusers/models/modeling_pytorch_flax_utils.py +1 -1
- diffusers/models/modeling_utils.py +611 -146
- diffusers/models/normalization.py +361 -20
- diffusers/models/resnet.py +18 -23
- diffusers/models/transformers/__init__.py +16 -0
- diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
- diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
- diffusers/models/transformers/dit_transformer_2d.py +240 -0
- diffusers/models/transformers/dual_transformer_2d.py +9 -8
- diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
- diffusers/models/transformers/latte_transformer_3d.py +327 -0
- diffusers/models/transformers/lumina_nextdit2d.py +340 -0
- diffusers/models/transformers/pixart_transformer_2d.py +445 -0
- diffusers/models/transformers/prior_transformer.py +13 -13
- diffusers/models/transformers/sana_transformer.py +488 -0
- diffusers/models/transformers/stable_audio_transformer.py +458 -0
- diffusers/models/transformers/t5_film_transformer.py +17 -19
- diffusers/models/transformers/transformer_2d.py +297 -187
- diffusers/models/transformers/transformer_allegro.py +422 -0
- diffusers/models/transformers/transformer_cogview3plus.py +386 -0
- diffusers/models/transformers/transformer_flux.py +593 -0
- diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
- diffusers/models/transformers/transformer_ltx.py +469 -0
- diffusers/models/transformers/transformer_mochi.py +499 -0
- diffusers/models/transformers/transformer_sd3.py +461 -0
- diffusers/models/transformers/transformer_temporal.py +21 -19
- diffusers/models/unets/unet_1d.py +8 -8
- diffusers/models/unets/unet_1d_blocks.py +31 -31
- diffusers/models/unets/unet_2d.py +17 -10
- diffusers/models/unets/unet_2d_blocks.py +225 -149
- diffusers/models/unets/unet_2d_condition.py +50 -53
- diffusers/models/unets/unet_2d_condition_flax.py +6 -5
- diffusers/models/unets/unet_3d_blocks.py +192 -1057
- diffusers/models/unets/unet_3d_condition.py +22 -27
- diffusers/models/unets/unet_i2vgen_xl.py +22 -18
- diffusers/models/unets/unet_kandinsky3.py +2 -2
- diffusers/models/unets/unet_motion_model.py +1413 -89
- diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
- diffusers/models/unets/unet_stable_cascade.py +19 -18
- diffusers/models/unets/uvit_2d.py +2 -2
- diffusers/models/upsampling.py +95 -26
- diffusers/models/vq_model.py +12 -164
- diffusers/optimization.py +1 -1
- diffusers/pipelines/__init__.py +202 -3
- diffusers/pipelines/allegro/__init__.py +48 -0
- diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
- diffusers/pipelines/allegro/pipeline_output.py +23 -0
- diffusers/pipelines/amused/pipeline_amused.py +12 -12
- diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
- diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
- diffusers/pipelines/animatediff/__init__.py +8 -0
- diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
- diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
- diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
- diffusers/pipelines/animatediff/pipeline_output.py +3 -2
- diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
- diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
- diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
- diffusers/pipelines/aura_flow/__init__.py +48 -0
- diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
- diffusers/pipelines/auto_pipeline.py +196 -28
- diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
- diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
- diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
- diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
- diffusers/pipelines/cogvideo/__init__.py +54 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
- diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
- diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
- diffusers/pipelines/cogview3/__init__.py +47 -0
- diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
- diffusers/pipelines/cogview3/pipeline_output.py +21 -0
- diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
- diffusers/pipelines/controlnet/__init__.py +86 -80
- diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
- diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
- diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
- diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
- diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
- diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
- diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
- diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
- diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
- diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
- diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
- diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
- diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
- diffusers/pipelines/controlnet_xs/__init__.py +68 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
- diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
- diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
- diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
- diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
- diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
- diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
- diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
- diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
- diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
- diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
- diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
- diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
- diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
- diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
- diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
- diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
- diffusers/pipelines/dit/pipeline_dit.py +7 -4
- diffusers/pipelines/flux/__init__.py +69 -0
- diffusers/pipelines/flux/modeling_flux.py +47 -0
- diffusers/pipelines/flux/pipeline_flux.py +957 -0
- diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
- diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
- diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
- diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
- diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
- diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
- diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
- diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
- diffusers/pipelines/flux/pipeline_output.py +37 -0
- diffusers/pipelines/free_init_utils.py +41 -38
- diffusers/pipelines/free_noise_utils.py +596 -0
- diffusers/pipelines/hunyuan_video/__init__.py +48 -0
- diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
- diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
- diffusers/pipelines/hunyuandit/__init__.py +48 -0
- diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
- diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
- diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
- diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
- diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
- diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
- diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
- diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
- diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
- diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
- diffusers/pipelines/kolors/__init__.py +54 -0
- diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
- diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
- diffusers/pipelines/kolors/pipeline_output.py +21 -0
- diffusers/pipelines/kolors/text_encoder.py +889 -0
- diffusers/pipelines/kolors/tokenizer.py +338 -0
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
- diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
- diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
- diffusers/pipelines/latte/__init__.py +48 -0
- diffusers/pipelines/latte/pipeline_latte.py +881 -0
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
- diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
- diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
- diffusers/pipelines/ltx/__init__.py +50 -0
- diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
- diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
- diffusers/pipelines/ltx/pipeline_output.py +20 -0
- diffusers/pipelines/lumina/__init__.py +48 -0
- diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
- diffusers/pipelines/marigold/__init__.py +50 -0
- diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
- diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
- diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
- diffusers/pipelines/mochi/__init__.py +48 -0
- diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
- diffusers/pipelines/mochi/pipeline_output.py +20 -0
- diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
- diffusers/pipelines/pag/__init__.py +80 -0
- diffusers/pipelines/pag/pag_utils.py +243 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
- diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
- diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
- diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
- diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
- diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
- diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
- diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
- diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
- diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
- diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
- diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
- diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
- diffusers/pipelines/pia/pipeline_pia.py +74 -164
- diffusers/pipelines/pipeline_flax_utils.py +5 -10
- diffusers/pipelines/pipeline_loading_utils.py +515 -53
- diffusers/pipelines/pipeline_utils.py +411 -222
- diffusers/pipelines/pixart_alpha/__init__.py +8 -1
- diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
- diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
- diffusers/pipelines/sana/__init__.py +47 -0
- diffusers/pipelines/sana/pipeline_output.py +21 -0
- diffusers/pipelines/sana/pipeline_sana.py +884 -0
- diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
- diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
- diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
- diffusers/pipelines/shap_e/renderer.py +1 -1
- diffusers/pipelines/stable_audio/__init__.py +50 -0
- diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
- diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
- diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
- diffusers/pipelines/stable_diffusion/__init__.py +0 -1
- diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
- diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
- diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
- diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
- diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
- diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
- diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
- diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
- diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
- diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
- diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
- diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
- diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
- diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
- diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
- diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
- diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
- diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
- diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
- diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
- diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
- diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
- diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
- diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
- diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
- diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
- diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
- diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
- diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
- diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
- diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
- diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
- diffusers/quantizers/auto.py +139 -0
- diffusers/quantizers/base.py +233 -0
- diffusers/quantizers/bitsandbytes/__init__.py +2 -0
- diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
- diffusers/quantizers/bitsandbytes/utils.py +306 -0
- diffusers/quantizers/gguf/__init__.py +1 -0
- diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
- diffusers/quantizers/gguf/utils.py +456 -0
- diffusers/quantizers/quantization_config.py +669 -0
- diffusers/quantizers/torchao/__init__.py +15 -0
- diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
- diffusers/schedulers/__init__.py +12 -2
- diffusers/schedulers/deprecated/__init__.py +1 -1
- diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
- diffusers/schedulers/scheduling_amused.py +5 -5
- diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
- diffusers/schedulers/scheduling_consistency_models.py +23 -25
- diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
- diffusers/schedulers/scheduling_ddim.py +27 -26
- diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
- diffusers/schedulers/scheduling_ddim_flax.py +2 -1
- diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
- diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
- diffusers/schedulers/scheduling_ddpm.py +27 -30
- diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
- diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
- diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
- diffusers/schedulers/scheduling_deis_multistep.py +150 -50
- diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
- diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
- diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
- diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
- diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
- diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
- diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
- diffusers/schedulers/scheduling_edm_euler.py +62 -39
- diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
- diffusers/schedulers/scheduling_euler_discrete.py +255 -74
- diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
- diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
- diffusers/schedulers/scheduling_heun_discrete.py +174 -46
- diffusers/schedulers/scheduling_ipndm.py +9 -9
- diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
- diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
- diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
- diffusers/schedulers/scheduling_lcm.py +23 -29
- diffusers/schedulers/scheduling_lms_discrete.py +105 -28
- diffusers/schedulers/scheduling_pndm.py +20 -20
- diffusers/schedulers/scheduling_repaint.py +21 -21
- diffusers/schedulers/scheduling_sasolver.py +157 -60
- diffusers/schedulers/scheduling_sde_ve.py +19 -19
- diffusers/schedulers/scheduling_tcd.py +41 -36
- diffusers/schedulers/scheduling_unclip.py +19 -16
- diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
- diffusers/schedulers/scheduling_utils.py +12 -5
- diffusers/schedulers/scheduling_utils_flax.py +1 -3
- diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
- diffusers/training_utils.py +214 -30
- diffusers/utils/__init__.py +17 -1
- diffusers/utils/constants.py +3 -0
- diffusers/utils/doc_utils.py +1 -0
- diffusers/utils/dummy_pt_objects.py +592 -7
- diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
- diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
- diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
- diffusers/utils/dynamic_modules_utils.py +34 -29
- diffusers/utils/export_utils.py +50 -6
- diffusers/utils/hub_utils.py +131 -17
- diffusers/utils/import_utils.py +210 -8
- diffusers/utils/loading_utils.py +118 -5
- diffusers/utils/logging.py +4 -2
- diffusers/utils/peft_utils.py +37 -7
- diffusers/utils/state_dict_utils.py +13 -2
- diffusers/utils/testing_utils.py +193 -11
- diffusers/utils/torch_utils.py +4 -0
- diffusers/video_processor.py +113 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
- diffusers-0.32.2.dist-info/RECORD +550 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
- diffusers/loaders/autoencoder.py +0 -146
- diffusers/loaders/controlnet.py +0 -136
- diffusers/loaders/lora.py +0 -1349
- diffusers/models/prior_transformer.py +0 -12
- diffusers/models/t5_film_transformer.py +0 -70
- diffusers/models/transformer_2d.py +0 -25
- diffusers/models/transformer_temporal.py +0 -34
- diffusers/models/unet_1d.py +0 -26
- diffusers/models/unet_1d_blocks.py +0 -203
- diffusers/models/unet_2d.py +0 -27
- diffusers/models/unet_2d_blocks.py +0 -375
- diffusers/models/unet_2d_condition.py +0 -25
- diffusers-0.27.0.dist-info/RECORD +0 -399
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
- {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,11 +22,15 @@ import numpy as np
|
|
22
22
|
import torch
|
23
23
|
|
24
24
|
from ..configuration_utils import ConfigMixin, register_to_config
|
25
|
-
from ..utils import deprecate
|
25
|
+
from ..utils import deprecate, is_scipy_available
|
26
26
|
from ..utils.torch_utils import randn_tensor
|
27
27
|
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
|
28
28
|
|
29
29
|
|
30
|
+
if is_scipy_available():
|
31
|
+
import scipy.stats
|
32
|
+
|
33
|
+
|
30
34
|
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
31
35
|
def betas_for_alpha_bar(
|
32
36
|
num_diffusion_timesteps,
|
@@ -62,7 +66,7 @@ def betas_for_alpha_bar(
|
|
62
66
|
return math.exp(t * -12.0)
|
63
67
|
|
64
68
|
else:
|
65
|
-
raise ValueError(f"Unsupported
|
69
|
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
66
70
|
|
67
71
|
betas = []
|
68
72
|
for i in range(num_diffusion_timesteps):
|
@@ -92,19 +96,20 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
92
96
|
trained_betas (`np.ndarray`, *optional*):
|
93
97
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
94
98
|
predictor_order (`int`, defaults to 2):
|
95
|
-
The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for
|
96
|
-
sampling, and `predictor_order=3` for unconditional sampling.
|
99
|
+
The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for
|
100
|
+
guided sampling, and `predictor_order=3` for unconditional sampling.
|
97
101
|
corrector_order (`int`, defaults to 2):
|
98
|
-
The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for
|
99
|
-
sampling, and `corrector_order=3` for unconditional sampling.
|
102
|
+
The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for
|
103
|
+
guided sampling, and `corrector_order=3` for unconditional sampling.
|
100
104
|
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
101
105
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
102
106
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
103
107
|
Video](https://imagen.research.google/video/paper.pdf) paper).
|
104
108
|
tau_func (`Callable`, *optional*):
|
105
|
-
Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`.
|
106
|
-
will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample
|
107
|
-
diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check
|
109
|
+
Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`.
|
110
|
+
SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample
|
111
|
+
from vanilla diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check
|
112
|
+
https://arxiv.org/abs/2309.05019
|
108
113
|
thresholding (`bool`, defaults to `False`):
|
109
114
|
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
110
115
|
as Stable Diffusion.
|
@@ -114,13 +119,18 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
114
119
|
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
|
115
120
|
`algorithm_type="dpmsolver++"`.
|
116
121
|
algorithm_type (`str`, defaults to `data_prediction`):
|
117
|
-
Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use
|
118
|
-
with `solver_order=2` for guided sampling like in Stable Diffusion.
|
122
|
+
Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use
|
123
|
+
`data_prediction` with `solver_order=2` for guided sampling like in Stable Diffusion.
|
119
124
|
lower_order_final (`bool`, defaults to `True`):
|
120
125
|
Whether to use lower-order solvers in the final steps. Default = True.
|
121
126
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
122
127
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
123
128
|
the sigmas are determined according to a sequence of noise levels {σi}.
|
129
|
+
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
130
|
+
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
131
|
+
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
|
132
|
+
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
|
133
|
+
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
|
124
134
|
lambda_min_clipped (`float`, defaults to `-inf`):
|
125
135
|
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
|
126
136
|
cosine (`squaredcos_cap_v2`) noise schedule.
|
@@ -155,11 +165,21 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
155
165
|
algorithm_type: str = "data_prediction",
|
156
166
|
lower_order_final: bool = True,
|
157
167
|
use_karras_sigmas: Optional[bool] = False,
|
168
|
+
use_exponential_sigmas: Optional[bool] = False,
|
169
|
+
use_beta_sigmas: Optional[bool] = False,
|
170
|
+
use_flow_sigmas: Optional[bool] = False,
|
171
|
+
flow_shift: Optional[float] = 1.0,
|
158
172
|
lambda_min_clipped: float = -float("inf"),
|
159
173
|
variance_type: Optional[str] = None,
|
160
174
|
timestep_spacing: str = "linspace",
|
161
175
|
steps_offset: int = 0,
|
162
176
|
):
|
177
|
+
if self.config.use_beta_sigmas and not is_scipy_available():
|
178
|
+
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
179
|
+
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
180
|
+
raise ValueError(
|
181
|
+
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
182
|
+
)
|
163
183
|
if trained_betas is not None:
|
164
184
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
165
185
|
elif beta_schedule == "linear":
|
@@ -179,7 +199,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
179
199
|
# Glide cosine schedule
|
180
200
|
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
181
201
|
else:
|
182
|
-
raise NotImplementedError(f"{beta_schedule}
|
202
|
+
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
183
203
|
|
184
204
|
self.alphas = 1.0 - self.betas
|
185
205
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
@@ -193,7 +213,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
193
213
|
self.init_noise_sigma = 1.0
|
194
214
|
|
195
215
|
if algorithm_type not in ["data_prediction", "noise_prediction"]:
|
196
|
-
raise NotImplementedError(f"{algorithm_type}
|
216
|
+
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
|
197
217
|
|
198
218
|
# setable values
|
199
219
|
self.num_inference_steps = None
|
@@ -216,7 +236,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
216
236
|
@property
|
217
237
|
def step_index(self):
|
218
238
|
"""
|
219
|
-
The index counter for current timestep. It will
|
239
|
+
The index counter for current timestep. It will increase 1 after each scheduler step.
|
220
240
|
"""
|
221
241
|
return self._step_index
|
222
242
|
|
@@ -277,12 +297,28 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
277
297
|
)
|
278
298
|
|
279
299
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
|
300
|
+
log_sigmas = np.log(sigmas)
|
280
301
|
if self.config.use_karras_sigmas:
|
281
|
-
log_sigmas = np.log(sigmas)
|
282
302
|
sigmas = np.flip(sigmas).copy()
|
283
303
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
284
304
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
|
285
305
|
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
306
|
+
elif self.config.use_exponential_sigmas:
|
307
|
+
sigmas = np.flip(sigmas).copy()
|
308
|
+
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
309
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
310
|
+
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
311
|
+
elif self.config.use_beta_sigmas:
|
312
|
+
sigmas = np.flip(sigmas).copy()
|
313
|
+
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
314
|
+
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
|
315
|
+
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
316
|
+
elif self.config.use_flow_sigmas:
|
317
|
+
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
|
318
|
+
sigmas = 1.0 - alphas
|
319
|
+
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
|
320
|
+
timesteps = (sigmas * self.config.num_train_timesteps).copy()
|
321
|
+
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
|
286
322
|
else:
|
287
323
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
|
288
324
|
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
|
@@ -304,7 +340,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
304
340
|
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
305
341
|
|
306
342
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
307
|
-
def _threshold_sample(self, sample: torch.
|
343
|
+
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
308
344
|
"""
|
309
345
|
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
310
346
|
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
@@ -363,13 +399,17 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
363
399
|
|
364
400
|
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
|
365
401
|
def _sigma_to_alpha_sigma_t(self, sigma):
|
366
|
-
|
367
|
-
|
402
|
+
if self.config.use_flow_sigmas:
|
403
|
+
alpha_t = 1 - sigma
|
404
|
+
sigma_t = sigma
|
405
|
+
else:
|
406
|
+
alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
|
407
|
+
sigma_t = sigma * alpha_t
|
368
408
|
|
369
409
|
return alpha_t, sigma_t
|
370
410
|
|
371
411
|
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
372
|
-
def _convert_to_karras(self, in_sigmas: torch.
|
412
|
+
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
373
413
|
"""Constructs the noise schedule of Karras et al. (2022)."""
|
374
414
|
|
375
415
|
# Hack to make sure that other schedulers which copy this function don't break
|
@@ -394,33 +434,87 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
394
434
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
395
435
|
return sigmas
|
396
436
|
|
437
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
438
|
+
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
439
|
+
"""Constructs an exponential noise schedule."""
|
440
|
+
|
441
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
442
|
+
# TODO: Add this logic to the other schedulers
|
443
|
+
if hasattr(self.config, "sigma_min"):
|
444
|
+
sigma_min = self.config.sigma_min
|
445
|
+
else:
|
446
|
+
sigma_min = None
|
447
|
+
|
448
|
+
if hasattr(self.config, "sigma_max"):
|
449
|
+
sigma_max = self.config.sigma_max
|
450
|
+
else:
|
451
|
+
sigma_max = None
|
452
|
+
|
453
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
454
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
455
|
+
|
456
|
+
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
457
|
+
return sigmas
|
458
|
+
|
459
|
+
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
460
|
+
def _convert_to_beta(
|
461
|
+
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
462
|
+
) -> torch.Tensor:
|
463
|
+
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
464
|
+
|
465
|
+
# Hack to make sure that other schedulers which copy this function don't break
|
466
|
+
# TODO: Add this logic to the other schedulers
|
467
|
+
if hasattr(self.config, "sigma_min"):
|
468
|
+
sigma_min = self.config.sigma_min
|
469
|
+
else:
|
470
|
+
sigma_min = None
|
471
|
+
|
472
|
+
if hasattr(self.config, "sigma_max"):
|
473
|
+
sigma_max = self.config.sigma_max
|
474
|
+
else:
|
475
|
+
sigma_max = None
|
476
|
+
|
477
|
+
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
478
|
+
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
479
|
+
|
480
|
+
sigmas = np.array(
|
481
|
+
[
|
482
|
+
sigma_min + (ppf * (sigma_max - sigma_min))
|
483
|
+
for ppf in [
|
484
|
+
scipy.stats.beta.ppf(timestep, alpha, beta)
|
485
|
+
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
486
|
+
]
|
487
|
+
]
|
488
|
+
)
|
489
|
+
return sigmas
|
490
|
+
|
397
491
|
def convert_model_output(
|
398
492
|
self,
|
399
|
-
model_output: torch.
|
493
|
+
model_output: torch.Tensor,
|
400
494
|
*args,
|
401
|
-
sample: torch.
|
495
|
+
sample: torch.Tensor = None,
|
402
496
|
**kwargs,
|
403
|
-
) -> torch.
|
497
|
+
) -> torch.Tensor:
|
404
498
|
"""
|
405
|
-
Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs.
|
406
|
-
designed to discretize an integral of the noise prediction model, and data_prediction is
|
407
|
-
integral of the data prediction model.
|
499
|
+
Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs.
|
500
|
+
Noise_prediction is designed to discretize an integral of the noise prediction model, and data_prediction is
|
501
|
+
designed to discretize an integral of the data prediction model.
|
408
502
|
|
409
503
|
<Tip>
|
410
504
|
|
411
|
-
The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction for both
|
412
|
-
prediction and data prediction models.
|
505
|
+
The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction for both
|
506
|
+
noise prediction and data prediction models.
|
413
507
|
|
414
508
|
</Tip>
|
415
509
|
|
416
510
|
Args:
|
417
|
-
model_output (`torch.
|
511
|
+
model_output (`torch.Tensor`):
|
418
512
|
The direct output from the learned diffusion model.
|
419
|
-
sample (`torch.
|
513
|
+
sample (`torch.Tensor`):
|
420
514
|
A current instance of a sample created by the diffusion process.
|
421
515
|
|
422
516
|
Returns:
|
423
|
-
`torch.
|
517
|
+
`torch.Tensor`:
|
424
518
|
The converted model output.
|
425
519
|
"""
|
426
520
|
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
@@ -449,10 +543,13 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
449
543
|
x0_pred = model_output
|
450
544
|
elif self.config.prediction_type == "v_prediction":
|
451
545
|
x0_pred = alpha_t * sample - sigma_t * model_output
|
546
|
+
elif self.config.prediction_type == "flow_prediction":
|
547
|
+
sigma_t = self.sigmas[self.step_index]
|
548
|
+
x0_pred = sample - sigma_t * model_output
|
452
549
|
else:
|
453
550
|
raise ValueError(
|
454
|
-
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,
|
455
|
-
"
|
551
|
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
|
552
|
+
"`v_prediction`, or `flow_prediction` for the SASolverScheduler."
|
456
553
|
)
|
457
554
|
|
458
555
|
if self.config.thresholding:
|
@@ -685,29 +782,29 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
685
782
|
|
686
783
|
def stochastic_adams_bashforth_update(
|
687
784
|
self,
|
688
|
-
model_output: torch.
|
785
|
+
model_output: torch.Tensor,
|
689
786
|
*args,
|
690
|
-
sample: torch.
|
691
|
-
noise: torch.
|
787
|
+
sample: torch.Tensor,
|
788
|
+
noise: torch.Tensor,
|
692
789
|
order: int,
|
693
|
-
tau: torch.
|
790
|
+
tau: torch.Tensor,
|
694
791
|
**kwargs,
|
695
|
-
) -> torch.
|
792
|
+
) -> torch.Tensor:
|
696
793
|
"""
|
697
794
|
One step for the SA-Predictor.
|
698
795
|
|
699
796
|
Args:
|
700
|
-
model_output (`torch.
|
797
|
+
model_output (`torch.Tensor`):
|
701
798
|
The direct output from the learned diffusion model at the current timestep.
|
702
799
|
prev_timestep (`int`):
|
703
800
|
The previous discrete timestep in the diffusion chain.
|
704
|
-
sample (`torch.
|
801
|
+
sample (`torch.Tensor`):
|
705
802
|
A current instance of a sample created by the diffusion process.
|
706
803
|
order (`int`):
|
707
804
|
The order of SA-Predictor at this timestep.
|
708
805
|
|
709
806
|
Returns:
|
710
|
-
`torch.
|
807
|
+
`torch.Tensor`:
|
711
808
|
The sample tensor at the previous timestep.
|
712
809
|
"""
|
713
810
|
prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
|
@@ -812,32 +909,32 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
812
909
|
|
813
910
|
def stochastic_adams_moulton_update(
|
814
911
|
self,
|
815
|
-
this_model_output: torch.
|
912
|
+
this_model_output: torch.Tensor,
|
816
913
|
*args,
|
817
|
-
last_sample: torch.
|
818
|
-
last_noise: torch.
|
819
|
-
this_sample: torch.
|
914
|
+
last_sample: torch.Tensor,
|
915
|
+
last_noise: torch.Tensor,
|
916
|
+
this_sample: torch.Tensor,
|
820
917
|
order: int,
|
821
|
-
tau: torch.
|
918
|
+
tau: torch.Tensor,
|
822
919
|
**kwargs,
|
823
|
-
) -> torch.
|
920
|
+
) -> torch.Tensor:
|
824
921
|
"""
|
825
922
|
One step for the SA-Corrector.
|
826
923
|
|
827
924
|
Args:
|
828
|
-
this_model_output (`torch.
|
925
|
+
this_model_output (`torch.Tensor`):
|
829
926
|
The model outputs at `x_t`.
|
830
927
|
this_timestep (`int`):
|
831
928
|
The current timestep `t`.
|
832
|
-
last_sample (`torch.
|
929
|
+
last_sample (`torch.Tensor`):
|
833
930
|
The generated sample before the last predictor `x_{t-1}`.
|
834
|
-
this_sample (`torch.
|
931
|
+
this_sample (`torch.Tensor`):
|
835
932
|
The generated sample after the last predictor `x_{t}`.
|
836
933
|
order (`int`):
|
837
934
|
The order of SA-Corrector at this step.
|
838
935
|
|
839
936
|
Returns:
|
840
|
-
`torch.
|
937
|
+
`torch.Tensor`:
|
841
938
|
The corrected sample tensor at the current timestep.
|
842
939
|
"""
|
843
940
|
|
@@ -978,9 +1075,9 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
978
1075
|
|
979
1076
|
def step(
|
980
1077
|
self,
|
981
|
-
model_output: torch.
|
1078
|
+
model_output: torch.Tensor,
|
982
1079
|
timestep: int,
|
983
|
-
sample: torch.
|
1080
|
+
sample: torch.Tensor,
|
984
1081
|
generator=None,
|
985
1082
|
return_dict: bool = True,
|
986
1083
|
) -> Union[SchedulerOutput, Tuple]:
|
@@ -989,11 +1086,11 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
989
1086
|
the SA-Solver.
|
990
1087
|
|
991
1088
|
Args:
|
992
|
-
model_output (`torch.
|
1089
|
+
model_output (`torch.Tensor`):
|
993
1090
|
The direct output from learned diffusion model.
|
994
1091
|
timestep (`int`):
|
995
1092
|
The current discrete timestep in the diffusion chain.
|
996
|
-
sample (`torch.
|
1093
|
+
sample (`torch.Tensor`):
|
997
1094
|
A current instance of a sample created by the diffusion process.
|
998
1095
|
generator (`torch.Generator`, *optional*):
|
999
1096
|
A random number generator.
|
@@ -1078,17 +1175,17 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
1078
1175
|
|
1079
1176
|
return SchedulerOutput(prev_sample=prev_sample)
|
1080
1177
|
|
1081
|
-
def scale_model_input(self, sample: torch.
|
1178
|
+
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
1082
1179
|
"""
|
1083
1180
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
1084
1181
|
current timestep.
|
1085
1182
|
|
1086
1183
|
Args:
|
1087
|
-
sample (`torch.
|
1184
|
+
sample (`torch.Tensor`):
|
1088
1185
|
The input sample.
|
1089
1186
|
|
1090
1187
|
Returns:
|
1091
|
-
`torch.
|
1188
|
+
`torch.Tensor`:
|
1092
1189
|
A scaled input sample.
|
1093
1190
|
"""
|
1094
1191
|
return sample
|
@@ -1096,10 +1193,10 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
|
|
1096
1193
|
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
1097
1194
|
def add_noise(
|
1098
1195
|
self,
|
1099
|
-
original_samples: torch.
|
1100
|
-
noise: torch.
|
1196
|
+
original_samples: torch.Tensor,
|
1197
|
+
noise: torch.Tensor,
|
1101
1198
|
timesteps: torch.IntTensor,
|
1102
|
-
) -> torch.
|
1199
|
+
) -> torch.Tensor:
|
1103
1200
|
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
1104
1201
|
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
1105
1202
|
# for the subsequent add_noise calls
|
@@ -32,15 +32,15 @@ class SdeVeOutput(BaseOutput):
|
|
32
32
|
Output class for the scheduler's `step` function output.
|
33
33
|
|
34
34
|
Args:
|
35
|
-
prev_sample (`torch.
|
35
|
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
36
36
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
37
37
|
denoising loop.
|
38
|
-
prev_sample_mean (`torch.
|
38
|
+
prev_sample_mean (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
39
39
|
Mean averaged `prev_sample` over previous timesteps.
|
40
40
|
"""
|
41
41
|
|
42
|
-
prev_sample: torch.
|
43
|
-
prev_sample_mean: torch.
|
42
|
+
prev_sample: torch.Tensor
|
43
|
+
prev_sample_mean: torch.Tensor
|
44
44
|
|
45
45
|
|
46
46
|
class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
@@ -86,19 +86,19 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
|
86
86
|
|
87
87
|
self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
|
88
88
|
|
89
|
-
def scale_model_input(self, sample: torch.
|
89
|
+
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
90
90
|
"""
|
91
91
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
92
92
|
current timestep.
|
93
93
|
|
94
94
|
Args:
|
95
|
-
sample (`torch.
|
95
|
+
sample (`torch.Tensor`):
|
96
96
|
The input sample.
|
97
97
|
timestep (`int`, *optional*):
|
98
98
|
The current timestep in the diffusion chain.
|
99
99
|
|
100
100
|
Returns:
|
101
|
-
`torch.
|
101
|
+
`torch.Tensor`:
|
102
102
|
A scaled input sample.
|
103
103
|
"""
|
104
104
|
return sample
|
@@ -159,9 +159,9 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
|
159
159
|
|
160
160
|
def step_pred(
|
161
161
|
self,
|
162
|
-
model_output: torch.
|
162
|
+
model_output: torch.Tensor,
|
163
163
|
timestep: int,
|
164
|
-
sample: torch.
|
164
|
+
sample: torch.Tensor,
|
165
165
|
generator: Optional[torch.Generator] = None,
|
166
166
|
return_dict: bool = True,
|
167
167
|
) -> Union[SdeVeOutput, Tuple]:
|
@@ -170,11 +170,11 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
|
170
170
|
process from the learned model outputs (most often the predicted noise).
|
171
171
|
|
172
172
|
Args:
|
173
|
-
model_output (`torch.
|
173
|
+
model_output (`torch.Tensor`):
|
174
174
|
The direct output from learned diffusion model.
|
175
175
|
timestep (`int`):
|
176
176
|
The current discrete timestep in the diffusion chain.
|
177
|
-
sample (`torch.
|
177
|
+
sample (`torch.Tensor`):
|
178
178
|
A current instance of a sample created by the diffusion process.
|
179
179
|
generator (`torch.Generator`, *optional*):
|
180
180
|
A random number generator.
|
@@ -227,8 +227,8 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
|
227
227
|
|
228
228
|
def step_correct(
|
229
229
|
self,
|
230
|
-
model_output: torch.
|
231
|
-
sample: torch.
|
230
|
+
model_output: torch.Tensor,
|
231
|
+
sample: torch.Tensor,
|
232
232
|
generator: Optional[torch.Generator] = None,
|
233
233
|
return_dict: bool = True,
|
234
234
|
) -> Union[SchedulerOutput, Tuple]:
|
@@ -237,9 +237,9 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
|
237
237
|
making the prediction for the previous timestep.
|
238
238
|
|
239
239
|
Args:
|
240
|
-
model_output (`torch.
|
240
|
+
model_output (`torch.Tensor`):
|
241
241
|
The direct output from learned diffusion model.
|
242
|
-
sample (`torch.
|
242
|
+
sample (`torch.Tensor`):
|
243
243
|
A current instance of a sample created by the diffusion process.
|
244
244
|
generator (`torch.Generator`, *optional*):
|
245
245
|
A random number generator.
|
@@ -282,10 +282,10 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
|
|
282
282
|
|
283
283
|
def add_noise(
|
284
284
|
self,
|
285
|
-
original_samples: torch.
|
286
|
-
noise: torch.
|
287
|
-
timesteps: torch.
|
288
|
-
) -> torch.
|
285
|
+
original_samples: torch.Tensor,
|
286
|
+
noise: torch.Tensor,
|
287
|
+
timesteps: torch.Tensor,
|
288
|
+
) -> torch.Tensor:
|
289
289
|
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
290
290
|
timesteps = timesteps.to(original_samples.device)
|
291
291
|
sigmas = self.discrete_sigmas.to(original_samples.device)[timesteps]
|