diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -22,11 +22,15 @@ import numpy as np
22
22
  import torch
23
23
 
24
24
  from ..configuration_utils import ConfigMixin, register_to_config
25
- from ..utils import deprecate
25
+ from ..utils import deprecate, is_scipy_available
26
26
  from ..utils.torch_utils import randn_tensor
27
27
  from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
28
28
 
29
29
 
30
+ if is_scipy_available():
31
+ import scipy.stats
32
+
33
+
30
34
  # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
31
35
  def betas_for_alpha_bar(
32
36
  num_diffusion_timesteps,
@@ -62,7 +66,7 @@ def betas_for_alpha_bar(
62
66
  return math.exp(t * -12.0)
63
67
 
64
68
  else:
65
- raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
69
+ raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
66
70
 
67
71
  betas = []
68
72
  for i in range(num_diffusion_timesteps):
@@ -92,19 +96,20 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
92
96
  trained_betas (`np.ndarray`, *optional*):
93
97
  Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
94
98
  predictor_order (`int`, defaults to 2):
95
- The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for guided
96
- sampling, and `predictor_order=3` for unconditional sampling.
99
+ The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for
100
+ guided sampling, and `predictor_order=3` for unconditional sampling.
97
101
  corrector_order (`int`, defaults to 2):
98
- The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for guided
99
- sampling, and `corrector_order=3` for unconditional sampling.
102
+ The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for
103
+ guided sampling, and `corrector_order=3` for unconditional sampling.
100
104
  prediction_type (`str`, defaults to `epsilon`, *optional*):
101
105
  Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
102
106
  `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
103
107
  Video](https://imagen.research.google/video/paper.pdf) paper).
104
108
  tau_func (`Callable`, *optional*):
105
- Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`. SA-Solver
106
- will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample from vanilla
107
- diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check https://arxiv.org/abs/2309.05019
109
+ Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`.
110
+ SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample
111
+ from vanilla diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check
112
+ https://arxiv.org/abs/2309.05019
108
113
  thresholding (`bool`, defaults to `False`):
109
114
  Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
110
115
  as Stable Diffusion.
@@ -114,13 +119,18 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
114
119
  The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
115
120
  `algorithm_type="dpmsolver++"`.
116
121
  algorithm_type (`str`, defaults to `data_prediction`):
117
- Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use `data_prediction`
118
- with `solver_order=2` for guided sampling like in Stable Diffusion.
122
+ Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use
123
+ `data_prediction` with `solver_order=2` for guided sampling like in Stable Diffusion.
119
124
  lower_order_final (`bool`, defaults to `True`):
120
125
  Whether to use lower-order solvers in the final steps. Default = True.
121
126
  use_karras_sigmas (`bool`, *optional*, defaults to `False`):
122
127
  Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
123
128
  the sigmas are determined according to a sequence of noise levels {σi}.
129
+ use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
130
+ Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
131
+ use_beta_sigmas (`bool`, *optional*, defaults to `False`):
132
+ Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
133
+ Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
124
134
  lambda_min_clipped (`float`, defaults to `-inf`):
125
135
  Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
126
136
  cosine (`squaredcos_cap_v2`) noise schedule.
@@ -155,11 +165,21 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
155
165
  algorithm_type: str = "data_prediction",
156
166
  lower_order_final: bool = True,
157
167
  use_karras_sigmas: Optional[bool] = False,
168
+ use_exponential_sigmas: Optional[bool] = False,
169
+ use_beta_sigmas: Optional[bool] = False,
170
+ use_flow_sigmas: Optional[bool] = False,
171
+ flow_shift: Optional[float] = 1.0,
158
172
  lambda_min_clipped: float = -float("inf"),
159
173
  variance_type: Optional[str] = None,
160
174
  timestep_spacing: str = "linspace",
161
175
  steps_offset: int = 0,
162
176
  ):
177
+ if self.config.use_beta_sigmas and not is_scipy_available():
178
+ raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
179
+ if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
180
+ raise ValueError(
181
+ "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
182
+ )
163
183
  if trained_betas is not None:
164
184
  self.betas = torch.tensor(trained_betas, dtype=torch.float32)
165
185
  elif beta_schedule == "linear":
@@ -179,7 +199,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
179
199
  # Glide cosine schedule
180
200
  self.betas = betas_for_alpha_bar(num_train_timesteps)
181
201
  else:
182
- raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
202
+ raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
183
203
 
184
204
  self.alphas = 1.0 - self.betas
185
205
  self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
@@ -193,7 +213,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
193
213
  self.init_noise_sigma = 1.0
194
214
 
195
215
  if algorithm_type not in ["data_prediction", "noise_prediction"]:
196
- raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}")
216
+ raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
197
217
 
198
218
  # setable values
199
219
  self.num_inference_steps = None
@@ -216,7 +236,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
216
236
  @property
217
237
  def step_index(self):
218
238
  """
219
- The index counter for current timestep. It will increae 1 after each scheduler step.
239
+ The index counter for current timestep. It will increase 1 after each scheduler step.
220
240
  """
221
241
  return self._step_index
222
242
 
@@ -277,12 +297,28 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
277
297
  )
278
298
 
279
299
  sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
300
+ log_sigmas = np.log(sigmas)
280
301
  if self.config.use_karras_sigmas:
281
- log_sigmas = np.log(sigmas)
282
302
  sigmas = np.flip(sigmas).copy()
283
303
  sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
284
304
  timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
285
305
  sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
306
+ elif self.config.use_exponential_sigmas:
307
+ sigmas = np.flip(sigmas).copy()
308
+ sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
309
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
310
+ sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
311
+ elif self.config.use_beta_sigmas:
312
+ sigmas = np.flip(sigmas).copy()
313
+ sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
314
+ timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
315
+ sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
316
+ elif self.config.use_flow_sigmas:
317
+ alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
318
+ sigmas = 1.0 - alphas
319
+ sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
320
+ timesteps = (sigmas * self.config.num_train_timesteps).copy()
321
+ sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
286
322
  else:
287
323
  sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
288
324
  sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
@@ -304,7 +340,7 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
304
340
  self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
305
341
 
306
342
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
307
- def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
343
+ def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
308
344
  """
309
345
  "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
310
346
  prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
@@ -363,13 +399,17 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
363
399
 
364
400
  # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
365
401
  def _sigma_to_alpha_sigma_t(self, sigma):
366
- alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
367
- sigma_t = sigma * alpha_t
402
+ if self.config.use_flow_sigmas:
403
+ alpha_t = 1 - sigma
404
+ sigma_t = sigma
405
+ else:
406
+ alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
407
+ sigma_t = sigma * alpha_t
368
408
 
369
409
  return alpha_t, sigma_t
370
410
 
371
411
  # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
372
- def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
412
+ def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
373
413
  """Constructs the noise schedule of Karras et al. (2022)."""
374
414
 
375
415
  # Hack to make sure that other schedulers which copy this function don't break
@@ -394,33 +434,87 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
394
434
  sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
395
435
  return sigmas
396
436
 
437
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
438
+ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
439
+ """Constructs an exponential noise schedule."""
440
+
441
+ # Hack to make sure that other schedulers which copy this function don't break
442
+ # TODO: Add this logic to the other schedulers
443
+ if hasattr(self.config, "sigma_min"):
444
+ sigma_min = self.config.sigma_min
445
+ else:
446
+ sigma_min = None
447
+
448
+ if hasattr(self.config, "sigma_max"):
449
+ sigma_max = self.config.sigma_max
450
+ else:
451
+ sigma_max = None
452
+
453
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
454
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
455
+
456
+ sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
457
+ return sigmas
458
+
459
+ # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
460
+ def _convert_to_beta(
461
+ self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
462
+ ) -> torch.Tensor:
463
+ """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
464
+
465
+ # Hack to make sure that other schedulers which copy this function don't break
466
+ # TODO: Add this logic to the other schedulers
467
+ if hasattr(self.config, "sigma_min"):
468
+ sigma_min = self.config.sigma_min
469
+ else:
470
+ sigma_min = None
471
+
472
+ if hasattr(self.config, "sigma_max"):
473
+ sigma_max = self.config.sigma_max
474
+ else:
475
+ sigma_max = None
476
+
477
+ sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
478
+ sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
479
+
480
+ sigmas = np.array(
481
+ [
482
+ sigma_min + (ppf * (sigma_max - sigma_min))
483
+ for ppf in [
484
+ scipy.stats.beta.ppf(timestep, alpha, beta)
485
+ for timestep in 1 - np.linspace(0, 1, num_inference_steps)
486
+ ]
487
+ ]
488
+ )
489
+ return sigmas
490
+
397
491
  def convert_model_output(
398
492
  self,
399
- model_output: torch.FloatTensor,
493
+ model_output: torch.Tensor,
400
494
  *args,
401
- sample: torch.FloatTensor = None,
495
+ sample: torch.Tensor = None,
402
496
  **kwargs,
403
- ) -> torch.FloatTensor:
497
+ ) -> torch.Tensor:
404
498
  """
405
- Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs. Noise_prediction is
406
- designed to discretize an integral of the noise prediction model, and data_prediction is designed to discretize an
407
- integral of the data prediction model.
499
+ Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs.
500
+ Noise_prediction is designed to discretize an integral of the noise prediction model, and data_prediction is
501
+ designed to discretize an integral of the data prediction model.
408
502
 
409
503
  <Tip>
410
504
 
411
- The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction for both noise
412
- prediction and data prediction models.
505
+ The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction for both
506
+ noise prediction and data prediction models.
413
507
 
414
508
  </Tip>
415
509
 
416
510
  Args:
417
- model_output (`torch.FloatTensor`):
511
+ model_output (`torch.Tensor`):
418
512
  The direct output from the learned diffusion model.
419
- sample (`torch.FloatTensor`):
513
+ sample (`torch.Tensor`):
420
514
  A current instance of a sample created by the diffusion process.
421
515
 
422
516
  Returns:
423
- `torch.FloatTensor`:
517
+ `torch.Tensor`:
424
518
  The converted model output.
425
519
  """
426
520
  timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
@@ -449,10 +543,13 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
449
543
  x0_pred = model_output
450
544
  elif self.config.prediction_type == "v_prediction":
451
545
  x0_pred = alpha_t * sample - sigma_t * model_output
546
+ elif self.config.prediction_type == "flow_prediction":
547
+ sigma_t = self.sigmas[self.step_index]
548
+ x0_pred = sample - sigma_t * model_output
452
549
  else:
453
550
  raise ValueError(
454
- f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
455
- " `v_prediction` for the SASolverScheduler."
551
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
552
+ "`v_prediction`, or `flow_prediction` for the SASolverScheduler."
456
553
  )
457
554
 
458
555
  if self.config.thresholding:
@@ -685,29 +782,29 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
685
782
 
686
783
  def stochastic_adams_bashforth_update(
687
784
  self,
688
- model_output: torch.FloatTensor,
785
+ model_output: torch.Tensor,
689
786
  *args,
690
- sample: torch.FloatTensor,
691
- noise: torch.FloatTensor,
787
+ sample: torch.Tensor,
788
+ noise: torch.Tensor,
692
789
  order: int,
693
- tau: torch.FloatTensor,
790
+ tau: torch.Tensor,
694
791
  **kwargs,
695
- ) -> torch.FloatTensor:
792
+ ) -> torch.Tensor:
696
793
  """
697
794
  One step for the SA-Predictor.
698
795
 
699
796
  Args:
700
- model_output (`torch.FloatTensor`):
797
+ model_output (`torch.Tensor`):
701
798
  The direct output from the learned diffusion model at the current timestep.
702
799
  prev_timestep (`int`):
703
800
  The previous discrete timestep in the diffusion chain.
704
- sample (`torch.FloatTensor`):
801
+ sample (`torch.Tensor`):
705
802
  A current instance of a sample created by the diffusion process.
706
803
  order (`int`):
707
804
  The order of SA-Predictor at this timestep.
708
805
 
709
806
  Returns:
710
- `torch.FloatTensor`:
807
+ `torch.Tensor`:
711
808
  The sample tensor at the previous timestep.
712
809
  """
713
810
  prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
@@ -812,32 +909,32 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
812
909
 
813
910
  def stochastic_adams_moulton_update(
814
911
  self,
815
- this_model_output: torch.FloatTensor,
912
+ this_model_output: torch.Tensor,
816
913
  *args,
817
- last_sample: torch.FloatTensor,
818
- last_noise: torch.FloatTensor,
819
- this_sample: torch.FloatTensor,
914
+ last_sample: torch.Tensor,
915
+ last_noise: torch.Tensor,
916
+ this_sample: torch.Tensor,
820
917
  order: int,
821
- tau: torch.FloatTensor,
918
+ tau: torch.Tensor,
822
919
  **kwargs,
823
- ) -> torch.FloatTensor:
920
+ ) -> torch.Tensor:
824
921
  """
825
922
  One step for the SA-Corrector.
826
923
 
827
924
  Args:
828
- this_model_output (`torch.FloatTensor`):
925
+ this_model_output (`torch.Tensor`):
829
926
  The model outputs at `x_t`.
830
927
  this_timestep (`int`):
831
928
  The current timestep `t`.
832
- last_sample (`torch.FloatTensor`):
929
+ last_sample (`torch.Tensor`):
833
930
  The generated sample before the last predictor `x_{t-1}`.
834
- this_sample (`torch.FloatTensor`):
931
+ this_sample (`torch.Tensor`):
835
932
  The generated sample after the last predictor `x_{t}`.
836
933
  order (`int`):
837
934
  The order of SA-Corrector at this step.
838
935
 
839
936
  Returns:
840
- `torch.FloatTensor`:
937
+ `torch.Tensor`:
841
938
  The corrected sample tensor at the current timestep.
842
939
  """
843
940
 
@@ -978,9 +1075,9 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
978
1075
 
979
1076
  def step(
980
1077
  self,
981
- model_output: torch.FloatTensor,
1078
+ model_output: torch.Tensor,
982
1079
  timestep: int,
983
- sample: torch.FloatTensor,
1080
+ sample: torch.Tensor,
984
1081
  generator=None,
985
1082
  return_dict: bool = True,
986
1083
  ) -> Union[SchedulerOutput, Tuple]:
@@ -989,11 +1086,11 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
989
1086
  the SA-Solver.
990
1087
 
991
1088
  Args:
992
- model_output (`torch.FloatTensor`):
1089
+ model_output (`torch.Tensor`):
993
1090
  The direct output from learned diffusion model.
994
1091
  timestep (`int`):
995
1092
  The current discrete timestep in the diffusion chain.
996
- sample (`torch.FloatTensor`):
1093
+ sample (`torch.Tensor`):
997
1094
  A current instance of a sample created by the diffusion process.
998
1095
  generator (`torch.Generator`, *optional*):
999
1096
  A random number generator.
@@ -1078,17 +1175,17 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
1078
1175
 
1079
1176
  return SchedulerOutput(prev_sample=prev_sample)
1080
1177
 
1081
- def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor:
1178
+ def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
1082
1179
  """
1083
1180
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
1084
1181
  current timestep.
1085
1182
 
1086
1183
  Args:
1087
- sample (`torch.FloatTensor`):
1184
+ sample (`torch.Tensor`):
1088
1185
  The input sample.
1089
1186
 
1090
1187
  Returns:
1091
- `torch.FloatTensor`:
1188
+ `torch.Tensor`:
1092
1189
  A scaled input sample.
1093
1190
  """
1094
1191
  return sample
@@ -1096,10 +1193,10 @@ class SASolverScheduler(SchedulerMixin, ConfigMixin):
1096
1193
  # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
1097
1194
  def add_noise(
1098
1195
  self,
1099
- original_samples: torch.FloatTensor,
1100
- noise: torch.FloatTensor,
1196
+ original_samples: torch.Tensor,
1197
+ noise: torch.Tensor,
1101
1198
  timesteps: torch.IntTensor,
1102
- ) -> torch.FloatTensor:
1199
+ ) -> torch.Tensor:
1103
1200
  # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
1104
1201
  # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
1105
1202
  # for the subsequent add_noise calls
@@ -32,15 +32,15 @@ class SdeVeOutput(BaseOutput):
32
32
  Output class for the scheduler's `step` function output.
33
33
 
34
34
  Args:
35
- prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
35
+ prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
36
36
  Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
37
37
  denoising loop.
38
- prev_sample_mean (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
38
+ prev_sample_mean (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
39
  Mean averaged `prev_sample` over previous timesteps.
40
40
  """
41
41
 
42
- prev_sample: torch.FloatTensor
43
- prev_sample_mean: torch.FloatTensor
42
+ prev_sample: torch.Tensor
43
+ prev_sample_mean: torch.Tensor
44
44
 
45
45
 
46
46
  class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
@@ -86,19 +86,19 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
86
86
 
87
87
  self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps)
88
88
 
89
- def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
89
+ def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
90
90
  """
91
91
  Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
92
92
  current timestep.
93
93
 
94
94
  Args:
95
- sample (`torch.FloatTensor`):
95
+ sample (`torch.Tensor`):
96
96
  The input sample.
97
97
  timestep (`int`, *optional*):
98
98
  The current timestep in the diffusion chain.
99
99
 
100
100
  Returns:
101
- `torch.FloatTensor`:
101
+ `torch.Tensor`:
102
102
  A scaled input sample.
103
103
  """
104
104
  return sample
@@ -159,9 +159,9 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
159
159
 
160
160
  def step_pred(
161
161
  self,
162
- model_output: torch.FloatTensor,
162
+ model_output: torch.Tensor,
163
163
  timestep: int,
164
- sample: torch.FloatTensor,
164
+ sample: torch.Tensor,
165
165
  generator: Optional[torch.Generator] = None,
166
166
  return_dict: bool = True,
167
167
  ) -> Union[SdeVeOutput, Tuple]:
@@ -170,11 +170,11 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
170
170
  process from the learned model outputs (most often the predicted noise).
171
171
 
172
172
  Args:
173
- model_output (`torch.FloatTensor`):
173
+ model_output (`torch.Tensor`):
174
174
  The direct output from learned diffusion model.
175
175
  timestep (`int`):
176
176
  The current discrete timestep in the diffusion chain.
177
- sample (`torch.FloatTensor`):
177
+ sample (`torch.Tensor`):
178
178
  A current instance of a sample created by the diffusion process.
179
179
  generator (`torch.Generator`, *optional*):
180
180
  A random number generator.
@@ -227,8 +227,8 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
227
227
 
228
228
  def step_correct(
229
229
  self,
230
- model_output: torch.FloatTensor,
231
- sample: torch.FloatTensor,
230
+ model_output: torch.Tensor,
231
+ sample: torch.Tensor,
232
232
  generator: Optional[torch.Generator] = None,
233
233
  return_dict: bool = True,
234
234
  ) -> Union[SchedulerOutput, Tuple]:
@@ -237,9 +237,9 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
237
237
  making the prediction for the previous timestep.
238
238
 
239
239
  Args:
240
- model_output (`torch.FloatTensor`):
240
+ model_output (`torch.Tensor`):
241
241
  The direct output from learned diffusion model.
242
- sample (`torch.FloatTensor`):
242
+ sample (`torch.Tensor`):
243
243
  A current instance of a sample created by the diffusion process.
244
244
  generator (`torch.Generator`, *optional*):
245
245
  A random number generator.
@@ -282,10 +282,10 @@ class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin):
282
282
 
283
283
  def add_noise(
284
284
  self,
285
- original_samples: torch.FloatTensor,
286
- noise: torch.FloatTensor,
287
- timesteps: torch.FloatTensor,
288
- ) -> torch.FloatTensor:
285
+ original_samples: torch.Tensor,
286
+ noise: torch.Tensor,
287
+ timesteps: torch.Tensor,
288
+ ) -> torch.Tensor:
289
289
  # Make sure sigmas and timesteps have the same device and dtype as original_samples
290
290
  timesteps = timesteps.to(original_samples.device)
291
291
  sigmas = self.discrete_sigmas.to(original_samples.device)[timesteps]