diffusers 0.27.0__py3-none-any.whl → 0.32.2__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (445) hide show
  1. diffusers/__init__.py +233 -6
  2. diffusers/callbacks.py +209 -0
  3. diffusers/commands/env.py +102 -6
  4. diffusers/configuration_utils.py +45 -16
  5. diffusers/dependency_versions_table.py +4 -3
  6. diffusers/image_processor.py +434 -110
  7. diffusers/loaders/__init__.py +42 -9
  8. diffusers/loaders/ip_adapter.py +626 -36
  9. diffusers/loaders/lora_base.py +900 -0
  10. diffusers/loaders/lora_conversion_utils.py +991 -125
  11. diffusers/loaders/lora_pipeline.py +3812 -0
  12. diffusers/loaders/peft.py +571 -7
  13. diffusers/loaders/single_file.py +405 -173
  14. diffusers/loaders/single_file_model.py +385 -0
  15. diffusers/loaders/single_file_utils.py +1783 -713
  16. diffusers/loaders/textual_inversion.py +41 -23
  17. diffusers/loaders/transformer_flux.py +181 -0
  18. diffusers/loaders/transformer_sd3.py +89 -0
  19. diffusers/loaders/unet.py +464 -540
  20. diffusers/loaders/unet_loader_utils.py +163 -0
  21. diffusers/models/__init__.py +76 -7
  22. diffusers/models/activations.py +65 -10
  23. diffusers/models/adapter.py +53 -53
  24. diffusers/models/attention.py +605 -18
  25. diffusers/models/attention_flax.py +1 -1
  26. diffusers/models/attention_processor.py +4304 -687
  27. diffusers/models/autoencoders/__init__.py +8 -0
  28. diffusers/models/autoencoders/autoencoder_asym_kl.py +15 -17
  29. diffusers/models/autoencoders/autoencoder_dc.py +620 -0
  30. diffusers/models/autoencoders/autoencoder_kl.py +110 -28
  31. diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
  32. diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
  33. diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
  34. diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
  35. diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +19 -24
  37. diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
  38. diffusers/models/autoencoders/autoencoder_tiny.py +21 -18
  39. diffusers/models/autoencoders/consistency_decoder_vae.py +45 -20
  40. diffusers/models/autoencoders/vae.py +41 -29
  41. diffusers/models/autoencoders/vq_model.py +182 -0
  42. diffusers/models/controlnet.py +47 -800
  43. diffusers/models/controlnet_flux.py +70 -0
  44. diffusers/models/controlnet_sd3.py +68 -0
  45. diffusers/models/controlnet_sparsectrl.py +116 -0
  46. diffusers/models/controlnets/__init__.py +23 -0
  47. diffusers/models/controlnets/controlnet.py +872 -0
  48. diffusers/models/{controlnet_flax.py → controlnets/controlnet_flax.py} +9 -9
  49. diffusers/models/controlnets/controlnet_flux.py +536 -0
  50. diffusers/models/controlnets/controlnet_hunyuan.py +401 -0
  51. diffusers/models/controlnets/controlnet_sd3.py +489 -0
  52. diffusers/models/controlnets/controlnet_sparsectrl.py +788 -0
  53. diffusers/models/controlnets/controlnet_union.py +832 -0
  54. diffusers/models/controlnets/controlnet_xs.py +1946 -0
  55. diffusers/models/controlnets/multicontrolnet.py +183 -0
  56. diffusers/models/downsampling.py +85 -18
  57. diffusers/models/embeddings.py +1856 -158
  58. diffusers/models/embeddings_flax.py +23 -9
  59. diffusers/models/model_loading_utils.py +480 -0
  60. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  61. diffusers/models/modeling_flax_utils.py +2 -7
  62. diffusers/models/modeling_outputs.py +14 -0
  63. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  64. diffusers/models/modeling_utils.py +611 -146
  65. diffusers/models/normalization.py +361 -20
  66. diffusers/models/resnet.py +18 -23
  67. diffusers/models/transformers/__init__.py +16 -0
  68. diffusers/models/transformers/auraflow_transformer_2d.py +544 -0
  69. diffusers/models/transformers/cogvideox_transformer_3d.py +542 -0
  70. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  71. diffusers/models/transformers/dual_transformer_2d.py +9 -8
  72. diffusers/models/transformers/hunyuan_transformer_2d.py +578 -0
  73. diffusers/models/transformers/latte_transformer_3d.py +327 -0
  74. diffusers/models/transformers/lumina_nextdit2d.py +340 -0
  75. diffusers/models/transformers/pixart_transformer_2d.py +445 -0
  76. diffusers/models/transformers/prior_transformer.py +13 -13
  77. diffusers/models/transformers/sana_transformer.py +488 -0
  78. diffusers/models/transformers/stable_audio_transformer.py +458 -0
  79. diffusers/models/transformers/t5_film_transformer.py +17 -19
  80. diffusers/models/transformers/transformer_2d.py +297 -187
  81. diffusers/models/transformers/transformer_allegro.py +422 -0
  82. diffusers/models/transformers/transformer_cogview3plus.py +386 -0
  83. diffusers/models/transformers/transformer_flux.py +593 -0
  84. diffusers/models/transformers/transformer_hunyuan_video.py +791 -0
  85. diffusers/models/transformers/transformer_ltx.py +469 -0
  86. diffusers/models/transformers/transformer_mochi.py +499 -0
  87. diffusers/models/transformers/transformer_sd3.py +461 -0
  88. diffusers/models/transformers/transformer_temporal.py +21 -19
  89. diffusers/models/unets/unet_1d.py +8 -8
  90. diffusers/models/unets/unet_1d_blocks.py +31 -31
  91. diffusers/models/unets/unet_2d.py +17 -10
  92. diffusers/models/unets/unet_2d_blocks.py +225 -149
  93. diffusers/models/unets/unet_2d_condition.py +50 -53
  94. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  95. diffusers/models/unets/unet_3d_blocks.py +192 -1057
  96. diffusers/models/unets/unet_3d_condition.py +22 -27
  97. diffusers/models/unets/unet_i2vgen_xl.py +22 -18
  98. diffusers/models/unets/unet_kandinsky3.py +2 -2
  99. diffusers/models/unets/unet_motion_model.py +1413 -89
  100. diffusers/models/unets/unet_spatio_temporal_condition.py +40 -16
  101. diffusers/models/unets/unet_stable_cascade.py +19 -18
  102. diffusers/models/unets/uvit_2d.py +2 -2
  103. diffusers/models/upsampling.py +95 -26
  104. diffusers/models/vq_model.py +12 -164
  105. diffusers/optimization.py +1 -1
  106. diffusers/pipelines/__init__.py +202 -3
  107. diffusers/pipelines/allegro/__init__.py +48 -0
  108. diffusers/pipelines/allegro/pipeline_allegro.py +938 -0
  109. diffusers/pipelines/allegro/pipeline_output.py +23 -0
  110. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  111. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  112. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  113. diffusers/pipelines/animatediff/__init__.py +8 -0
  114. diffusers/pipelines/animatediff/pipeline_animatediff.py +122 -109
  115. diffusers/pipelines/animatediff/pipeline_animatediff_controlnet.py +1106 -0
  116. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1288 -0
  117. diffusers/pipelines/animatediff/pipeline_animatediff_sparsectrl.py +1010 -0
  118. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +236 -180
  119. diffusers/pipelines/animatediff/pipeline_animatediff_video2video_controlnet.py +1341 -0
  120. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  121. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  122. diffusers/pipelines/audioldm2/modeling_audioldm2.py +58 -39
  123. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +121 -36
  124. diffusers/pipelines/aura_flow/__init__.py +48 -0
  125. diffusers/pipelines/aura_flow/pipeline_aura_flow.py +584 -0
  126. diffusers/pipelines/auto_pipeline.py +196 -28
  127. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  128. diffusers/pipelines/blip_diffusion/modeling_blip2.py +6 -6
  129. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  130. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  131. diffusers/pipelines/cogvideo/__init__.py +54 -0
  132. diffusers/pipelines/cogvideo/pipeline_cogvideox.py +772 -0
  133. diffusers/pipelines/cogvideo/pipeline_cogvideox_fun_control.py +825 -0
  134. diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py +885 -0
  135. diffusers/pipelines/cogvideo/pipeline_cogvideox_video2video.py +851 -0
  136. diffusers/pipelines/cogvideo/pipeline_output.py +20 -0
  137. diffusers/pipelines/cogview3/__init__.py +47 -0
  138. diffusers/pipelines/cogview3/pipeline_cogview3plus.py +674 -0
  139. diffusers/pipelines/cogview3/pipeline_output.py +21 -0
  140. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +6 -6
  141. diffusers/pipelines/controlnet/__init__.py +86 -80
  142. diffusers/pipelines/controlnet/multicontrolnet.py +7 -182
  143. diffusers/pipelines/controlnet/pipeline_controlnet.py +134 -87
  144. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  145. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +93 -77
  146. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +88 -197
  147. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +136 -90
  148. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +176 -80
  149. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +125 -89
  150. diffusers/pipelines/controlnet/pipeline_controlnet_union_inpaint_sd_xl.py +1790 -0
  151. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl.py +1501 -0
  152. diffusers/pipelines/controlnet/pipeline_controlnet_union_sd_xl_img2img.py +1627 -0
  153. diffusers/pipelines/controlnet/pipeline_flax_controlnet.py +2 -2
  154. diffusers/pipelines/controlnet_hunyuandit/__init__.py +48 -0
  155. diffusers/pipelines/controlnet_hunyuandit/pipeline_hunyuandit_controlnet.py +1060 -0
  156. diffusers/pipelines/controlnet_sd3/__init__.py +57 -0
  157. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1133 -0
  158. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py +1153 -0
  159. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  160. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +916 -0
  161. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1111 -0
  162. diffusers/pipelines/ddpm/pipeline_ddpm.py +2 -2
  163. diffusers/pipelines/deepfloyd_if/pipeline_if.py +16 -30
  164. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +20 -35
  165. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +23 -41
  166. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +22 -38
  167. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +25 -41
  168. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +19 -34
  169. diffusers/pipelines/deepfloyd_if/pipeline_output.py +6 -5
  170. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  171. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  172. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +70 -30
  173. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +48 -25
  174. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  175. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  176. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +21 -20
  177. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +27 -29
  178. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +33 -27
  179. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +33 -23
  180. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +36 -30
  181. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +102 -69
  182. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  183. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  184. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  185. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  186. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  187. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  188. diffusers/pipelines/flux/__init__.py +69 -0
  189. diffusers/pipelines/flux/modeling_flux.py +47 -0
  190. diffusers/pipelines/flux/pipeline_flux.py +957 -0
  191. diffusers/pipelines/flux/pipeline_flux_control.py +889 -0
  192. diffusers/pipelines/flux/pipeline_flux_control_img2img.py +945 -0
  193. diffusers/pipelines/flux/pipeline_flux_control_inpaint.py +1141 -0
  194. diffusers/pipelines/flux/pipeline_flux_controlnet.py +1006 -0
  195. diffusers/pipelines/flux/pipeline_flux_controlnet_image_to_image.py +998 -0
  196. diffusers/pipelines/flux/pipeline_flux_controlnet_inpainting.py +1204 -0
  197. diffusers/pipelines/flux/pipeline_flux_fill.py +969 -0
  198. diffusers/pipelines/flux/pipeline_flux_img2img.py +856 -0
  199. diffusers/pipelines/flux/pipeline_flux_inpaint.py +1022 -0
  200. diffusers/pipelines/flux/pipeline_flux_prior_redux.py +492 -0
  201. diffusers/pipelines/flux/pipeline_output.py +37 -0
  202. diffusers/pipelines/free_init_utils.py +41 -38
  203. diffusers/pipelines/free_noise_utils.py +596 -0
  204. diffusers/pipelines/hunyuan_video/__init__.py +48 -0
  205. diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py +687 -0
  206. diffusers/pipelines/hunyuan_video/pipeline_output.py +20 -0
  207. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  208. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +916 -0
  209. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  210. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  211. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +32 -29
  212. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  213. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  214. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  215. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  216. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +34 -31
  217. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  218. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  219. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  220. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  221. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  222. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  223. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  224. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +22 -35
  225. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +26 -37
  226. diffusers/pipelines/kolors/__init__.py +54 -0
  227. diffusers/pipelines/kolors/pipeline_kolors.py +1070 -0
  228. diffusers/pipelines/kolors/pipeline_kolors_img2img.py +1250 -0
  229. diffusers/pipelines/kolors/pipeline_output.py +21 -0
  230. diffusers/pipelines/kolors/text_encoder.py +889 -0
  231. diffusers/pipelines/kolors/tokenizer.py +338 -0
  232. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +82 -62
  233. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +77 -60
  234. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +12 -12
  235. diffusers/pipelines/latte/__init__.py +48 -0
  236. diffusers/pipelines/latte/pipeline_latte.py +881 -0
  237. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +80 -74
  238. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +85 -76
  239. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  240. diffusers/pipelines/ltx/__init__.py +50 -0
  241. diffusers/pipelines/ltx/pipeline_ltx.py +789 -0
  242. diffusers/pipelines/ltx/pipeline_ltx_image2video.py +885 -0
  243. diffusers/pipelines/ltx/pipeline_output.py +20 -0
  244. diffusers/pipelines/lumina/__init__.py +48 -0
  245. diffusers/pipelines/lumina/pipeline_lumina.py +890 -0
  246. diffusers/pipelines/marigold/__init__.py +50 -0
  247. diffusers/pipelines/marigold/marigold_image_processing.py +576 -0
  248. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  249. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  250. diffusers/pipelines/mochi/__init__.py +48 -0
  251. diffusers/pipelines/mochi/pipeline_mochi.py +748 -0
  252. diffusers/pipelines/mochi/pipeline_output.py +20 -0
  253. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  254. diffusers/pipelines/pag/__init__.py +80 -0
  255. diffusers/pipelines/pag/pag_utils.py +243 -0
  256. diffusers/pipelines/pag/pipeline_pag_controlnet_sd.py +1328 -0
  257. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_inpaint.py +1543 -0
  258. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl.py +1610 -0
  259. diffusers/pipelines/pag/pipeline_pag_controlnet_sd_xl_img2img.py +1683 -0
  260. diffusers/pipelines/pag/pipeline_pag_hunyuandit.py +969 -0
  261. diffusers/pipelines/pag/pipeline_pag_kolors.py +1136 -0
  262. diffusers/pipelines/pag/pipeline_pag_pixart_sigma.py +865 -0
  263. diffusers/pipelines/pag/pipeline_pag_sana.py +886 -0
  264. diffusers/pipelines/pag/pipeline_pag_sd.py +1062 -0
  265. diffusers/pipelines/pag/pipeline_pag_sd_3.py +994 -0
  266. diffusers/pipelines/pag/pipeline_pag_sd_3_img2img.py +1058 -0
  267. diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py +866 -0
  268. diffusers/pipelines/pag/pipeline_pag_sd_img2img.py +1094 -0
  269. diffusers/pipelines/pag/pipeline_pag_sd_inpaint.py +1356 -0
  270. diffusers/pipelines/pag/pipeline_pag_sd_xl.py +1345 -0
  271. diffusers/pipelines/pag/pipeline_pag_sd_xl_img2img.py +1544 -0
  272. diffusers/pipelines/pag/pipeline_pag_sd_xl_inpaint.py +1776 -0
  273. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  274. diffusers/pipelines/pia/pipeline_pia.py +74 -164
  275. diffusers/pipelines/pipeline_flax_utils.py +5 -10
  276. diffusers/pipelines/pipeline_loading_utils.py +515 -53
  277. diffusers/pipelines/pipeline_utils.py +411 -222
  278. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  279. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +76 -93
  280. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +873 -0
  281. diffusers/pipelines/sana/__init__.py +47 -0
  282. diffusers/pipelines/sana/pipeline_output.py +21 -0
  283. diffusers/pipelines/sana/pipeline_sana.py +884 -0
  284. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +27 -23
  285. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  286. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  287. diffusers/pipelines/shap_e/renderer.py +1 -1
  288. diffusers/pipelines/stable_audio/__init__.py +50 -0
  289. diffusers/pipelines/stable_audio/modeling_stable_audio.py +158 -0
  290. diffusers/pipelines/stable_audio/pipeline_stable_audio.py +756 -0
  291. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +71 -25
  292. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  293. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +35 -34
  294. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  295. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +20 -11
  296. diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py +1 -1
  297. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  298. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  299. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +145 -79
  300. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +43 -28
  301. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  302. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +100 -68
  303. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +109 -201
  304. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +131 -32
  305. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +247 -87
  306. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +30 -29
  307. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +35 -27
  308. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +49 -42
  309. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  310. diffusers/pipelines/stable_diffusion_3/__init__.py +54 -0
  311. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  312. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +1140 -0
  313. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +1036 -0
  314. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_inpaint.py +1250 -0
  315. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +29 -20
  316. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +59 -58
  317. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +31 -25
  318. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +38 -22
  319. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +30 -24
  320. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -23
  321. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +107 -67
  322. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +316 -69
  323. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  324. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  325. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +98 -30
  326. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +121 -83
  327. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +161 -105
  328. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +142 -218
  329. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -29
  330. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  331. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  332. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +69 -39
  333. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +105 -74
  334. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  335. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +29 -49
  336. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +32 -93
  337. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +37 -25
  338. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +54 -40
  339. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  340. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  341. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  342. diffusers/pipelines/unidiffuser/modeling_uvit.py +12 -12
  343. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +29 -28
  344. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  345. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  346. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +6 -8
  347. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  348. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  349. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +15 -14
  350. diffusers/{models/dual_transformer_2d.py → quantizers/__init__.py} +2 -6
  351. diffusers/quantizers/auto.py +139 -0
  352. diffusers/quantizers/base.py +233 -0
  353. diffusers/quantizers/bitsandbytes/__init__.py +2 -0
  354. diffusers/quantizers/bitsandbytes/bnb_quantizer.py +561 -0
  355. diffusers/quantizers/bitsandbytes/utils.py +306 -0
  356. diffusers/quantizers/gguf/__init__.py +1 -0
  357. diffusers/quantizers/gguf/gguf_quantizer.py +159 -0
  358. diffusers/quantizers/gguf/utils.py +456 -0
  359. diffusers/quantizers/quantization_config.py +669 -0
  360. diffusers/quantizers/torchao/__init__.py +15 -0
  361. diffusers/quantizers/torchao/torchao_quantizer.py +292 -0
  362. diffusers/schedulers/__init__.py +12 -2
  363. diffusers/schedulers/deprecated/__init__.py +1 -1
  364. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  365. diffusers/schedulers/scheduling_amused.py +5 -5
  366. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  367. diffusers/schedulers/scheduling_consistency_models.py +23 -25
  368. diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py +572 -0
  369. diffusers/schedulers/scheduling_ddim.py +27 -26
  370. diffusers/schedulers/scheduling_ddim_cogvideox.py +452 -0
  371. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  372. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  373. diffusers/schedulers/scheduling_ddim_parallel.py +32 -31
  374. diffusers/schedulers/scheduling_ddpm.py +27 -30
  375. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  376. diffusers/schedulers/scheduling_ddpm_parallel.py +33 -36
  377. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  378. diffusers/schedulers/scheduling_deis_multistep.py +150 -50
  379. diffusers/schedulers/scheduling_dpm_cogvideox.py +489 -0
  380. diffusers/schedulers/scheduling_dpmsolver_multistep.py +221 -84
  381. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  382. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +158 -52
  383. diffusers/schedulers/scheduling_dpmsolver_sde.py +153 -34
  384. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +275 -86
  385. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +81 -57
  386. diffusers/schedulers/scheduling_edm_euler.py +62 -39
  387. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +30 -29
  388. diffusers/schedulers/scheduling_euler_discrete.py +255 -74
  389. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +458 -0
  390. diffusers/schedulers/scheduling_flow_match_heun_discrete.py +320 -0
  391. diffusers/schedulers/scheduling_heun_discrete.py +174 -46
  392. diffusers/schedulers/scheduling_ipndm.py +9 -9
  393. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +138 -29
  394. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +132 -26
  395. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  396. diffusers/schedulers/scheduling_lcm.py +23 -29
  397. diffusers/schedulers/scheduling_lms_discrete.py +105 -28
  398. diffusers/schedulers/scheduling_pndm.py +20 -20
  399. diffusers/schedulers/scheduling_repaint.py +21 -21
  400. diffusers/schedulers/scheduling_sasolver.py +157 -60
  401. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  402. diffusers/schedulers/scheduling_tcd.py +41 -36
  403. diffusers/schedulers/scheduling_unclip.py +19 -16
  404. diffusers/schedulers/scheduling_unipc_multistep.py +243 -47
  405. diffusers/schedulers/scheduling_utils.py +12 -5
  406. diffusers/schedulers/scheduling_utils_flax.py +1 -3
  407. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  408. diffusers/training_utils.py +214 -30
  409. diffusers/utils/__init__.py +17 -1
  410. diffusers/utils/constants.py +3 -0
  411. diffusers/utils/doc_utils.py +1 -0
  412. diffusers/utils/dummy_pt_objects.py +592 -7
  413. diffusers/utils/dummy_torch_and_torchsde_objects.py +15 -0
  414. diffusers/utils/dummy_torch_and_transformers_and_sentencepiece_objects.py +47 -0
  415. diffusers/utils/dummy_torch_and_transformers_objects.py +1001 -71
  416. diffusers/utils/dynamic_modules_utils.py +34 -29
  417. diffusers/utils/export_utils.py +50 -6
  418. diffusers/utils/hub_utils.py +131 -17
  419. diffusers/utils/import_utils.py +210 -8
  420. diffusers/utils/loading_utils.py +118 -5
  421. diffusers/utils/logging.py +4 -2
  422. diffusers/utils/peft_utils.py +37 -7
  423. diffusers/utils/state_dict_utils.py +13 -2
  424. diffusers/utils/testing_utils.py +193 -11
  425. diffusers/utils/torch_utils.py +4 -0
  426. diffusers/video_processor.py +113 -0
  427. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/METADATA +82 -91
  428. diffusers-0.32.2.dist-info/RECORD +550 -0
  429. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/WHEEL +1 -1
  430. diffusers/loaders/autoencoder.py +0 -146
  431. diffusers/loaders/controlnet.py +0 -136
  432. diffusers/loaders/lora.py +0 -1349
  433. diffusers/models/prior_transformer.py +0 -12
  434. diffusers/models/t5_film_transformer.py +0 -70
  435. diffusers/models/transformer_2d.py +0 -25
  436. diffusers/models/transformer_temporal.py +0 -34
  437. diffusers/models/unet_1d.py +0 -26
  438. diffusers/models/unet_1d_blocks.py +0 -203
  439. diffusers/models/unet_2d.py +0 -27
  440. diffusers/models/unet_2d_blocks.py +0 -375
  441. diffusers/models/unet_2d_condition.py +0 -25
  442. diffusers-0.27.0.dist-info/RECORD +0 -399
  443. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/LICENSE +0 -0
  444. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/entry_points.txt +0 -0
  445. {diffusers-0.27.0.dist-info → diffusers-0.32.2.dist-info}/top_level.txt +0 -0
@@ -21,7 +21,12 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMR
21
21
 
22
22
  from ....configuration_utils import FrozenDict
23
23
  from ....image_processor import PipelineImageInput, VaeImageProcessor
24
- from ....loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
24
+ from ....loaders import (
25
+ FromSingleFileMixin,
26
+ IPAdapterMixin,
27
+ StableDiffusionLoraLoaderMixin,
28
+ TextualInversionLoaderMixin,
29
+ )
25
30
  from ....models import AutoencoderKL, ImageProjection, UNet2DConditionModel
26
31
  from ....models.lora import adjust_lora_scale_text_encoder
27
32
  from ....schedulers import KarrasDiffusionSchedulers
@@ -60,9 +65,21 @@ EXAMPLE_DOC_STRING = """
60
65
 
61
66
  # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
62
67
  def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
63
- """
64
- Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
65
- Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
68
+ r"""
69
+ Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
70
+ Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
71
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf).
72
+
73
+ Args:
74
+ noise_cfg (`torch.Tensor`):
75
+ The predicted noise tensor for the guided diffusion process.
76
+ noise_pred_text (`torch.Tensor`):
77
+ The predicted noise tensor for the text-guided diffusion process.
78
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
79
+ A rescale factor applied to the noise predictions.
80
+
81
+ Returns:
82
+ noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
66
83
  """
67
84
  std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
68
85
  std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
@@ -79,9 +96,10 @@ def retrieve_timesteps(
79
96
  num_inference_steps: Optional[int] = None,
80
97
  device: Optional[Union[str, torch.device]] = None,
81
98
  timesteps: Optional[List[int]] = None,
99
+ sigmas: Optional[List[float]] = None,
82
100
  **kwargs,
83
101
  ):
84
- """
102
+ r"""
85
103
  Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
86
104
  custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
87
105
 
@@ -89,19 +107,23 @@ def retrieve_timesteps(
89
107
  scheduler (`SchedulerMixin`):
90
108
  The scheduler to get timesteps from.
91
109
  num_inference_steps (`int`):
92
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
93
- `timesteps` must be `None`.
110
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
111
+ must be `None`.
94
112
  device (`str` or `torch.device`, *optional*):
95
113
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
96
114
  timesteps (`List[int]`, *optional*):
97
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
98
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
99
- must be `None`.
115
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
116
+ `num_inference_steps` and `sigmas` must be `None`.
117
+ sigmas (`List[float]`, *optional*):
118
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
119
+ `num_inference_steps` and `timesteps` must be `None`.
100
120
 
101
121
  Returns:
102
122
  `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
103
123
  second element is the number of inference steps.
104
124
  """
125
+ if timesteps is not None and sigmas is not None:
126
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
105
127
  if timesteps is not None:
106
128
  accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
107
129
  if not accepts_timesteps:
@@ -112,6 +134,16 @@ def retrieve_timesteps(
112
134
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
113
135
  timesteps = scheduler.timesteps
114
136
  num_inference_steps = len(timesteps)
137
+ elif sigmas is not None:
138
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
139
+ if not accept_sigmas:
140
+ raise ValueError(
141
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
142
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
143
+ )
144
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
145
+ timesteps = scheduler.timesteps
146
+ num_inference_steps = len(timesteps)
115
147
  else:
116
148
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
117
149
  timesteps = scheduler.timesteps
@@ -122,7 +154,7 @@ class AltDiffusionPipeline(
122
154
  DiffusionPipeline,
123
155
  StableDiffusionMixin,
124
156
  TextualInversionLoaderMixin,
125
- LoraLoaderMixin,
157
+ StableDiffusionLoraLoaderMixin,
126
158
  IPAdapterMixin,
127
159
  FromSingleFileMixin,
128
160
  ):
@@ -134,8 +166,8 @@ class AltDiffusionPipeline(
134
166
 
135
167
  The pipeline also inherits the following loading methods:
136
168
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
137
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
138
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
169
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
170
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
139
171
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
140
172
  - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
141
173
 
@@ -263,8 +295,8 @@ class AltDiffusionPipeline(
263
295
  num_images_per_prompt,
264
296
  do_classifier_free_guidance,
265
297
  negative_prompt=None,
266
- prompt_embeds: Optional[torch.FloatTensor] = None,
267
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
298
+ prompt_embeds: Optional[torch.Tensor] = None,
299
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
268
300
  lora_scale: Optional[float] = None,
269
301
  **kwargs,
270
302
  ):
@@ -295,8 +327,8 @@ class AltDiffusionPipeline(
295
327
  num_images_per_prompt,
296
328
  do_classifier_free_guidance,
297
329
  negative_prompt=None,
298
- prompt_embeds: Optional[torch.FloatTensor] = None,
299
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
330
+ prompt_embeds: Optional[torch.Tensor] = None,
331
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
300
332
  lora_scale: Optional[float] = None,
301
333
  clip_skip: Optional[int] = None,
302
334
  ):
@@ -316,10 +348,10 @@ class AltDiffusionPipeline(
316
348
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
317
349
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
318
350
  less than `1`).
319
- prompt_embeds (`torch.FloatTensor`, *optional*):
351
+ prompt_embeds (`torch.Tensor`, *optional*):
320
352
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
321
353
  provided, text embeddings will be generated from `prompt` input argument.
322
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
354
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
323
355
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
324
356
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
325
357
  argument.
@@ -331,7 +363,7 @@ class AltDiffusionPipeline(
331
363
  """
332
364
  # set lora scale so that monkey patched LoRA
333
365
  # function of text encoder can correctly access it
334
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
366
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
335
367
  self._lora_scale = lora_scale
336
368
 
337
369
  # dynamically adjust the LoRA scale
@@ -463,7 +495,7 @@ class AltDiffusionPipeline(
463
495
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
464
496
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
465
497
 
466
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
498
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
467
499
  # Retrieve the original scale by scaling back the LoRA layers
468
500
  unscale_lora_layers(self.text_encoder, lora_scale)
469
501
 
@@ -588,7 +620,12 @@ class AltDiffusionPipeline(
588
620
  )
589
621
 
590
622
  def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
591
- shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
623
+ shape = (
624
+ batch_size,
625
+ num_channels_latents,
626
+ int(height) // self.vae_scale_factor,
627
+ int(width) // self.vae_scale_factor,
628
+ )
592
629
  if isinstance(generator, list) and len(generator) != batch_size:
593
630
  raise ValueError(
594
631
  f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
@@ -617,7 +654,7 @@ class AltDiffusionPipeline(
617
654
  data type of the generated embeddings
618
655
 
619
656
  Returns:
620
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
657
+ `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
621
658
  """
622
659
  assert len(w.shape) == 1
623
660
  w = w * 1000.0
@@ -668,14 +705,15 @@ class AltDiffusionPipeline(
668
705
  width: Optional[int] = None,
669
706
  num_inference_steps: int = 50,
670
707
  timesteps: List[int] = None,
708
+ sigmas: List[float] = None,
671
709
  guidance_scale: float = 7.5,
672
710
  negative_prompt: Optional[Union[str, List[str]]] = None,
673
711
  num_images_per_prompt: Optional[int] = 1,
674
712
  eta: float = 0.0,
675
713
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
676
- latents: Optional[torch.FloatTensor] = None,
677
- prompt_embeds: Optional[torch.FloatTensor] = None,
678
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
714
+ latents: Optional[torch.Tensor] = None,
715
+ prompt_embeds: Optional[torch.Tensor] = None,
716
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
679
717
  ip_adapter_image: Optional[PipelineImageInput] = None,
680
718
  output_type: Optional[str] = "pil",
681
719
  return_dict: bool = True,
@@ -717,14 +755,14 @@ class AltDiffusionPipeline(
717
755
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
718
756
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
719
757
  generation deterministic.
720
- latents (`torch.FloatTensor`, *optional*):
758
+ latents (`torch.Tensor`, *optional*):
721
759
  Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
722
760
  generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
723
761
  tensor is generated by sampling using the supplied random `generator`.
724
- prompt_embeds (`torch.FloatTensor`, *optional*):
762
+ prompt_embeds (`torch.Tensor`, *optional*):
725
763
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
726
764
  provided, text embeddings are generated from the `prompt` input argument.
727
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
765
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
728
766
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
729
767
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
730
768
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
@@ -843,7 +881,9 @@ class AltDiffusionPipeline(
843
881
  image_embeds = torch.cat([negative_image_embeds, image_embeds])
844
882
 
845
883
  # 4. Prepare timesteps
846
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
884
+ timesteps, num_inference_steps = retrieve_timesteps(
885
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
886
+ )
847
887
 
848
888
  # 5. Prepare latent variables
849
889
  num_channels_latents = self.unet.config.in_channels
@@ -23,7 +23,12 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, XLMR
23
23
 
24
24
  from ....configuration_utils import FrozenDict
25
25
  from ....image_processor import PipelineImageInput, VaeImageProcessor
26
- from ....loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
26
+ from ....loaders import (
27
+ FromSingleFileMixin,
28
+ IPAdapterMixin,
29
+ StableDiffusionLoraLoaderMixin,
30
+ TextualInversionLoaderMixin,
31
+ )
27
32
  from ....models import AutoencoderKL, ImageProjection, UNet2DConditionModel
28
33
  from ....models.lora import adjust_lora_scale_text_encoder
29
34
  from ....schedulers import KarrasDiffusionSchedulers
@@ -119,9 +124,10 @@ def retrieve_timesteps(
119
124
  num_inference_steps: Optional[int] = None,
120
125
  device: Optional[Union[str, torch.device]] = None,
121
126
  timesteps: Optional[List[int]] = None,
127
+ sigmas: Optional[List[float]] = None,
122
128
  **kwargs,
123
129
  ):
124
- """
130
+ r"""
125
131
  Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
126
132
  custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
127
133
 
@@ -129,19 +135,23 @@ def retrieve_timesteps(
129
135
  scheduler (`SchedulerMixin`):
130
136
  The scheduler to get timesteps from.
131
137
  num_inference_steps (`int`):
132
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
133
- `timesteps` must be `None`.
138
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
139
+ must be `None`.
134
140
  device (`str` or `torch.device`, *optional*):
135
141
  The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
136
142
  timesteps (`List[int]`, *optional*):
137
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
138
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
139
- must be `None`.
143
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
144
+ `num_inference_steps` and `sigmas` must be `None`.
145
+ sigmas (`List[float]`, *optional*):
146
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
147
+ `num_inference_steps` and `timesteps` must be `None`.
140
148
 
141
149
  Returns:
142
150
  `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
143
151
  second element is the number of inference steps.
144
152
  """
153
+ if timesteps is not None and sigmas is not None:
154
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
145
155
  if timesteps is not None:
146
156
  accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
147
157
  if not accepts_timesteps:
@@ -152,6 +162,16 @@ def retrieve_timesteps(
152
162
  scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
153
163
  timesteps = scheduler.timesteps
154
164
  num_inference_steps = len(timesteps)
165
+ elif sigmas is not None:
166
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
167
+ if not accept_sigmas:
168
+ raise ValueError(
169
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
170
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
171
+ )
172
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
173
+ timesteps = scheduler.timesteps
174
+ num_inference_steps = len(timesteps)
155
175
  else:
156
176
  scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
157
177
  timesteps = scheduler.timesteps
@@ -163,7 +183,7 @@ class AltDiffusionImg2ImgPipeline(
163
183
  StableDiffusionMixin,
164
184
  TextualInversionLoaderMixin,
165
185
  IPAdapterMixin,
166
- LoraLoaderMixin,
186
+ StableDiffusionLoraLoaderMixin,
167
187
  FromSingleFileMixin,
168
188
  ):
169
189
  r"""
@@ -174,8 +194,8 @@ class AltDiffusionImg2ImgPipeline(
174
194
 
175
195
  The pipeline also inherits the following loading methods:
176
196
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
177
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
178
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
197
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
198
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
179
199
  - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
180
200
  - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
181
201
 
@@ -303,8 +323,8 @@ class AltDiffusionImg2ImgPipeline(
303
323
  num_images_per_prompt,
304
324
  do_classifier_free_guidance,
305
325
  negative_prompt=None,
306
- prompt_embeds: Optional[torch.FloatTensor] = None,
307
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
326
+ prompt_embeds: Optional[torch.Tensor] = None,
327
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
308
328
  lora_scale: Optional[float] = None,
309
329
  **kwargs,
310
330
  ):
@@ -335,8 +355,8 @@ class AltDiffusionImg2ImgPipeline(
335
355
  num_images_per_prompt,
336
356
  do_classifier_free_guidance,
337
357
  negative_prompt=None,
338
- prompt_embeds: Optional[torch.FloatTensor] = None,
339
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
358
+ prompt_embeds: Optional[torch.Tensor] = None,
359
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
340
360
  lora_scale: Optional[float] = None,
341
361
  clip_skip: Optional[int] = None,
342
362
  ):
@@ -356,10 +376,10 @@ class AltDiffusionImg2ImgPipeline(
356
376
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
357
377
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
358
378
  less than `1`).
359
- prompt_embeds (`torch.FloatTensor`, *optional*):
379
+ prompt_embeds (`torch.Tensor`, *optional*):
360
380
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
361
381
  provided, text embeddings will be generated from `prompt` input argument.
362
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
382
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
363
383
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
364
384
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
365
385
  argument.
@@ -371,7 +391,7 @@ class AltDiffusionImg2ImgPipeline(
371
391
  """
372
392
  # set lora scale so that monkey patched LoRA
373
393
  # function of text encoder can correctly access it
374
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
394
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
375
395
  self._lora_scale = lora_scale
376
396
 
377
397
  # dynamically adjust the LoRA scale
@@ -503,7 +523,7 @@ class AltDiffusionImg2ImgPipeline(
503
523
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
504
524
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
505
525
 
506
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
526
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
507
527
  # Retrieve the original scale by scaling back the LoRA layers
508
528
  unscale_lora_layers(self.text_encoder, lora_scale)
509
529
 
@@ -706,7 +726,7 @@ class AltDiffusionImg2ImgPipeline(
706
726
  data type of the generated embeddings
707
727
 
708
728
  Returns:
709
- `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
729
+ `torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
710
730
  """
711
731
  assert len(w.shape) == 1
712
732
  w = w * 1000.0
@@ -753,13 +773,14 @@ class AltDiffusionImg2ImgPipeline(
753
773
  strength: float = 0.8,
754
774
  num_inference_steps: Optional[int] = 50,
755
775
  timesteps: List[int] = None,
776
+ sigmas: List[float] = None,
756
777
  guidance_scale: Optional[float] = 7.5,
757
778
  negative_prompt: Optional[Union[str, List[str]]] = None,
758
779
  num_images_per_prompt: Optional[int] = 1,
759
780
  eta: Optional[float] = 0.0,
760
781
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
761
- prompt_embeds: Optional[torch.FloatTensor] = None,
762
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
782
+ prompt_embeds: Optional[torch.Tensor] = None,
783
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
763
784
  ip_adapter_image: Optional[PipelineImageInput] = None,
764
785
  output_type: Optional[str] = "pil",
765
786
  return_dict: bool = True,
@@ -775,7 +796,7 @@ class AltDiffusionImg2ImgPipeline(
775
796
  Args:
776
797
  prompt (`str` or `List[str]`, *optional*):
777
798
  The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
778
- image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
799
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
779
800
  `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
780
801
  numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
781
802
  or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
@@ -808,10 +829,10 @@ class AltDiffusionImg2ImgPipeline(
808
829
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
809
830
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
810
831
  generation deterministic.
811
- prompt_embeds (`torch.FloatTensor`, *optional*):
832
+ prompt_embeds (`torch.Tensor`, *optional*):
812
833
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
813
834
  provided, text embeddings are generated from the `prompt` input argument.
814
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
835
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
815
836
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
816
837
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
817
838
  ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
@@ -919,7 +940,9 @@ class AltDiffusionImg2ImgPipeline(
919
940
  image = self.image_processor.preprocess(image)
920
941
 
921
942
  # 5. set timesteps
922
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
943
+ timesteps, num_inference_steps = retrieve_timesteps(
944
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
945
+ )
923
946
  timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
924
947
  latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
925
948
 
@@ -112,9 +112,9 @@ class RePaintPipeline(DiffusionPipeline):
112
112
  The call function to the pipeline for generation.
113
113
 
114
114
  Args:
115
- image (`torch.FloatTensor` or `PIL.Image.Image`):
115
+ image (`torch.Tensor` or `PIL.Image.Image`):
116
116
  The original image to inpaint on.
117
- mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
117
+ mask_image (`torch.Tensor` or `PIL.Image.Image`):
118
118
  The mask_image where 0.0 define which part of the original image to inpaint.
119
119
  num_inference_steps (`int`, *optional*, defaults to 1000):
120
120
  The number of denoising steps. More denoising steps usually lead to a higher quality image at the
@@ -133,8 +133,8 @@ class SpectrogramDiffusionPipeline(DiffusionPipeline):
133
133
  generator: Optional[torch.Generator] = None,
134
134
  num_inference_steps: int = 100,
135
135
  return_dict: bool = True,
136
- output_type: str = "numpy",
137
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
136
+ output_type: str = "np",
137
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
138
138
  callback_steps: int = 1,
139
139
  ) -> Union[AudioPipelineOutput, Tuple]:
140
140
  if (callback_steps is None) or (
@@ -157,11 +157,11 @@ class SpectrogramDiffusionPipeline(DiffusionPipeline):
157
157
  expense of slower inference.
158
158
  return_dict (`bool`, *optional*, defaults to `True`):
159
159
  Whether or not to return a [`~pipelines.AudioPipelineOutput`] instead of a plain tuple.
160
- output_type (`str`, *optional*, defaults to `"numpy"`):
160
+ output_type (`str`, *optional*, defaults to `"np"`):
161
161
  The output format of the generated audio.
162
162
  callback (`Callable`, *optional*):
163
163
  A function that calls every `callback_steps` steps during inference. The function is called with the
164
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
164
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
165
165
  callback_steps (`int`, *optional*, defaults to 1):
166
166
  The frequency at which the `callback` function is called. If not specified, the callback is called at
167
167
  every step.
@@ -249,16 +249,16 @@ class SpectrogramDiffusionPipeline(DiffusionPipeline):
249
249
 
250
250
  logger.info("Generated segment", i)
251
251
 
252
- if output_type == "numpy" and not is_onnx_available():
252
+ if output_type == "np" and not is_onnx_available():
253
253
  raise ValueError(
254
254
  "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'."
255
255
  )
256
- elif output_type == "numpy" and self.melgan is None:
256
+ elif output_type == "np" and self.melgan is None:
257
257
  raise ValueError(
258
258
  "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'."
259
259
  )
260
260
 
261
- if output_type == "numpy":
261
+ if output_type == "np":
262
262
  output = self.melgan(input_features=full_pred_mel.astype(np.float32))
263
263
  else:
264
264
  output = full_pred_mel
@@ -23,7 +23,7 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
23
23
 
24
24
  from ....configuration_utils import FrozenDict
25
25
  from ....image_processor import PipelineImageInput, VaeImageProcessor
26
- from ....loaders import LoraLoaderMixin, TextualInversionLoaderMixin
26
+ from ....loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
27
27
  from ....models import AutoencoderKL, UNet2DConditionModel
28
28
  from ....models.lora import adjust_lora_scale_text_encoder
29
29
  from ....schedulers import DDIMScheduler
@@ -136,7 +136,7 @@ def compute_noise(scheduler, prev_latents, latents, timestep, noise_pred, eta):
136
136
  return noise
137
137
 
138
138
 
139
- class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
139
+ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin):
140
140
  r"""
141
141
  Pipeline for text-guided image to image generation using Stable Diffusion.
142
142
 
@@ -145,8 +145,8 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
145
145
 
146
146
  The pipeline also inherits the following loading methods:
147
147
  - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
148
- - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
149
- - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
148
+ - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
149
+ - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
150
150
 
151
151
  Args:
152
152
  vae ([`AutoencoderKL`]):
@@ -255,8 +255,8 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
255
255
  num_images_per_prompt,
256
256
  do_classifier_free_guidance,
257
257
  negative_prompt=None,
258
- prompt_embeds: Optional[torch.FloatTensor] = None,
259
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
258
+ prompt_embeds: Optional[torch.Tensor] = None,
259
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
260
260
  lora_scale: Optional[float] = None,
261
261
  **kwargs,
262
262
  ):
@@ -288,8 +288,8 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
288
288
  num_images_per_prompt,
289
289
  do_classifier_free_guidance,
290
290
  negative_prompt=None,
291
- prompt_embeds: Optional[torch.FloatTensor] = None,
292
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
291
+ prompt_embeds: Optional[torch.Tensor] = None,
292
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
293
293
  lora_scale: Optional[float] = None,
294
294
  clip_skip: Optional[int] = None,
295
295
  ):
@@ -309,10 +309,10 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
309
309
  The prompt or prompts not to guide the image generation. If not defined, one has to pass
310
310
  `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
311
311
  less than `1`).
312
- prompt_embeds (`torch.FloatTensor`, *optional*):
312
+ prompt_embeds (`torch.Tensor`, *optional*):
313
313
  Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
314
314
  provided, text embeddings will be generated from `prompt` input argument.
315
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
315
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
316
316
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
317
317
  weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
318
318
  argument.
@@ -324,7 +324,7 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
324
324
  """
325
325
  # set lora scale so that monkey patched LoRA
326
326
  # function of text encoder can correctly access it
327
- if lora_scale is not None and isinstance(self, LoraLoaderMixin):
327
+ if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
328
328
  self._lora_scale = lora_scale
329
329
 
330
330
  # dynamically adjust the LoRA scale
@@ -456,9 +456,10 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
456
456
  negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
457
457
  negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
458
458
 
459
- if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
460
- # Retrieve the original scale by scaling back the LoRA layers
461
- unscale_lora_layers(self.text_encoder, lora_scale)
459
+ if self.text_encoder is not None:
460
+ if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
461
+ # Retrieve the original scale by scaling back the LoRA layers
462
+ unscale_lora_layers(self.text_encoder, lora_scale)
462
463
 
463
464
  return prompt_embeds, negative_prompt_embeds
464
465
 
@@ -638,10 +639,10 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
638
639
  num_images_per_prompt: Optional[int] = 1,
639
640
  eta: Optional[float] = 0.1,
640
641
  generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
641
- prompt_embeds: Optional[torch.FloatTensor] = None,
642
+ prompt_embeds: Optional[torch.Tensor] = None,
642
643
  output_type: Optional[str] = "pil",
643
644
  return_dict: bool = True,
644
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
645
+ callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
645
646
  callback_steps: int = 1,
646
647
  cross_attention_kwargs: Optional[Dict[str, Any]] = None,
647
648
  clip_skip: Optional[int] = None,
@@ -652,7 +653,7 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
652
653
  Args:
653
654
  prompt (`str` or `List[str]`):
654
655
  The prompt or prompts to guide the image generation.
655
- image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
656
+ image (`torch.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
656
657
  `Image` or tensor representing an image batch to be used as the starting point. Can also accept image
657
658
  latents as `image`, but if passing latents directly it is not encoded again.
658
659
  strength (`float`, *optional*, defaults to 0.8):
@@ -678,10 +679,10 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
678
679
  generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
679
680
  A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
680
681
  generation deterministic.
681
- prompt_embeds (`torch.FloatTensor`, *optional*):
682
+ prompt_embeds (`torch.Tensor`, *optional*):
682
683
  Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
683
684
  provided, text embeddings are generated from the `prompt` input argument.
684
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
685
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
685
686
  Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
686
687
  not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
687
688
  output_type (`str`, *optional*, defaults to `"pil"`):
@@ -691,7 +692,7 @@ class CycleDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, Lor
691
692
  plain tuple.
692
693
  callback (`Callable`, *optional*):
693
694
  A function that calls every `callback_steps` steps during inference. The function is called with the
694
- following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
695
+ following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
695
696
  callback_steps (`int`, *optional*, defaults to 1):
696
697
  The frequency at which the `callback` function is called. If not specified, the callback is called at
697
698
  every step.